JPS62211597A - Method of decontaminating piping - Google Patents

Method of decontaminating piping

Info

Publication number
JPS62211597A
JPS62211597A JP5250986A JP5250986A JPS62211597A JP S62211597 A JPS62211597 A JP S62211597A JP 5250986 A JP5250986 A JP 5250986A JP 5250986 A JP5250986 A JP 5250986A JP S62211597 A JPS62211597 A JP S62211597A
Authority
JP
Japan
Prior art keywords
decontamination
piping
metal oxides
electrode
decontaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5250986A
Other languages
Japanese (ja)
Inventor
一郎 片岡
大角 克己
小林 政人
久雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP5250986A priority Critical patent/JPS62211597A/en
Publication of JPS62211597A publication Critical patent/JPS62211597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pipeline Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラントの配管内表面に付着した金属酸化物を
溶解・除去する方法に関するもので、特に原子カプラン
トの配管内表面に付着した放射性核種を含む金属酸化物
を高効率的に溶解・除去することができる配管の除染方
法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for dissolving and removing metal oxides attached to the inner surface of plant piping, and in particular to a method for dissolving and removing metal oxides attached to the inner surface of atomic couplant piping. The present invention relates to a piping decontamination method that can highly efficiently dissolve and remove metal oxides containing metal oxides.

〔従来の技術〕[Conventional technology]

原子カプラントでは、運転時間の経過に伴い、−次系配
管に放射性核種(”Co 、 ”M n等)を含む酸化
物が付着し、線量が増大する傾向を示している。原子カ
プラントの運転時並びに定検時に作業員が受ける線量が
増大する傾向にあり、線量低減対策の一つとして、表面
の金属酸化物を溶解除去する除染技術が必要となってい
る。
In atomic couplers, oxides containing radioactive nuclides (Co, Mn, etc.) tend to adhere to secondary system piping as the operating time progresses, and the dose tends to increase. The radiation doses that workers receive during the operation and periodic inspection of nuclear couplants tend to increase, and decontamination technology that dissolves and removes metal oxides on the surface is required as one measure to reduce the radiation doses.

従来から実施されている表面に付着した金属酸化物を除
去する方法として、化学薬剤を用いる化学除染法がある
。化学除染法は特開53−731号に代表されるように
酸及び錯化剤、還元剤を主成分とする溶液を用いるもの
であり、pHが比較的低いため1表面の金属酸化物の溶
解には効果的であるが、構成材料の腐食の観点より好ま
しいものとは言えない。また、電気的に金属表面に付着
した酸化物を溶解・除去する方法として、除染対象物に
対し、対極を設は電解する方法である電解研磨法が知ら
れている。電解研磨法は、高電流を流し酸化物のみなら
ず構成材料も溶解してしまうものであり、再使用する対
象物には適したものではない。また、この方法では、除
染対象物として弁類、短管等に主眼が置かれており、配
管等の系統除染には適していない。これに対し、中性溶
液を使用し構成材料の腐食を緩和すると共に除染液を隔
膜電解槽を用いて電解し除染液の再生を行い表面に付着
した金属酸化物を溶解させる方法がある。(特開57−
85980号) この方法は、除染対象物を直接カソード分極する方法と
除染液側から除染対象物に電子を供給し。
As a conventional method for removing metal oxides adhering to surfaces, there is a chemical decontamination method using chemical agents. Chemical decontamination methods, as typified by JP-A No. 53-731, use a solution containing an acid, a complexing agent, and a reducing agent as main components, and because the pH is relatively low, metal oxides on one surface are Although it is effective for dissolving, it is not preferable from the viewpoint of corrosion of constituent materials. Further, as a method for electrically dissolving and removing oxides attached to metal surfaces, an electrolytic polishing method is known, which is a method in which a counter electrode is provided to the object to be decontaminated and electrolysis is performed. The electrolytic polishing method uses a high current to dissolve not only the oxide but also the constituent materials, so it is not suitable for objects to be reused. In addition, this method focuses on valves, short pipes, etc. as objects to be decontaminated, and is not suitable for system decontamination of piping and the like. On the other hand, there is a method that uses a neutral solution to alleviate the corrosion of the constituent materials, and also electrolyzes the decontamination solution using a diaphragm electrolytic tank to regenerate the decontamination solution and dissolve the metal oxides attached to the surface. . (Unexamined Japanese Patent Publication No. 57-
(No. 85980) This method involves directly cathodically polarizing the object to be decontaminated, and supplying electrons to the object from the decontamination liquid side.

表面酸化物を溶解させる方法を挙げている。A method for dissolving surface oxides is listed.

前者の方法は、装置的に直流電源が必要となると共にカ
ソード分極する際、過電圧が大きくなり。
The former method requires a DC power source for the device and also causes a large overvoltage when polarizing the cathode.

エネルギー効率的に好ましくない、また、後者の方法は
除染液の還元力再生のために電解槽を使用し、電解電流
を適切な設定値に保つ等の考慮が必要である。
In addition, the latter method is not preferred in terms of energy efficiency, and requires consideration such as using an electrolytic cell to regenerate the reducing power of the decontamination solution and maintaining the electrolytic current at an appropriate setting value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

原子炉−次系配管全体を除染するような系統除染におい
ては、化学除染が適している。しかし、従来の化学除染
は、除染対象物に対し除染ループを構成させた後、除染
液を100℃以上に加温すると共に除染液を循環させ除
染を行うものであり、除染装置自体が圧力容器仕様とな
り、許認可上及びコスト面の配慮が必要となる。また、
100℃以下の温度で除染を行った場合、除染速度は極
端に低下する。
Chemical decontamination is suitable for system decontamination that involves decontaminating the entire reactor-subsystem piping. However, in conventional chemical decontamination, after forming a decontamination loop for the object to be decontaminated, decontamination is carried out by heating the decontamination solution to 100°C or higher and circulating the decontamination solution. The decontamination equipment itself will be a pressure vessel, and consideration will need to be given to permits and costs. Also,
When decontamination is carried out at a temperature of 100°C or lower, the decontamination speed is extremely reduced.

本発明の目的は、系統除染において従来の化学除染に比
較して、除染温度100℃以下でも高除去率を得ること
ができ、母材を溶解させずに表面の金属酸化物を溶解除
去することができる配管の除染方法を提供することにあ
る。
The purpose of the present invention is to achieve a high removal rate in systematic decontamination compared to conventional chemical decontamination even at a decontamination temperature of 100°C or lower, and to dissolve metal oxides on the surface without dissolving the base material. An object of the present invention is to provide a method for decontaminating piping that can be removed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、除染温度100℃以下でも従来の化学除染法
に比べ高除去率な効果を得るため、除染対象配管と除染
装置の間にループを構成する際に、対象配管内にフレキ
シブルな線あるいは板状の電極を挿入し配管内表面に接
触させ金属酸化物を還元溶解させるものである。本発明
に使用する線あるいは板状の電極は炭素鋼製とする。電
極の挿入は、除染ループ構成の際に接続箇所より行う。
In order to achieve a higher removal rate than conventional chemical decontamination methods even at a decontamination temperature of 100°C or lower, the present invention is designed to provide a A flexible wire or plate-shaped electrode is inserted and brought into contact with the inner surface of the pipe to reduce and dissolve metal oxides. The wire or plate-shaped electrodes used in the present invention are made of carbon steel. The electrodes are inserted from the connection point when configuring the decontamination loop.

また、線あるいは板状の!極を挿入する変わりに鉄粒子
あるいは鉄粉末を除染ループ構成後、除染液と混合し除
染対象配管に対し循環させ配管内表面に粒子、粉末を接
解させ金属酸化物を溶解させる。本発明の粒子状電極を
用いた除染においての運転パタンは、粒子状電極を含む
除染液を循環させ、その後循環を一端停止し1粒子を配
管内表面に沈降堆積させる操作を行ない表面の金属酸化
物と接触させる。この運転パタンの繰り返しにより除染
を行う。粒子状電極を用いて除染は、除染液と混ぜ循環
させるため、既設のドレン口及び除染口を使用して行う
ことが可能である。
Also, it can be linear or plate-shaped! Instead of inserting a pole, iron particles or iron powder are used to form a decontamination loop, mixed with a decontamination liquid, and circulated around the piping to be decontaminated to lyse the particles and powder on the inner surface of the piping and dissolve metal oxides. The operation pattern for decontamination using the particulate electrode of the present invention is to circulate the decontamination solution containing the particulate electrode, then stop the circulation once, and perform an operation to deposit one particle on the inner surface of the pipe. Contact with metal oxides. Decontamination is performed by repeating this operation pattern. Decontamination using particulate electrodes can be carried out using existing drain ports and decontamination ports because they are mixed with decontamination liquid and circulated.

上記手段により、除染温度100℃以下においても、従
来の化学除染法に比べ容易に高除去率な効果を達成する
ことができる。
By the above means, even at a decontamination temperature of 100° C. or lower, a high removal rate can be easily achieved compared to conventional chemical decontamination methods.

〔作用〕[Effect]

本発明の除染方法は、配管内表面に付着した金属酸化物
を溶解除去するものであり、特に原子カプラントの一次
系配管内表面に付着した放射性核種(”Co 、 ”M
 n等)を含んだ金属酸化物を容易に効率的に溶解させ
ることを特徴とするものである。
The decontamination method of the present invention dissolves and removes metal oxides attached to the inner surface of piping, and in particular removes radioactive nuclides ("Co", "M") attached to the inner surface of the primary system piping of the atomic couplant.
It is characterized by easily and efficiently dissolving metal oxides containing metals such as n, etc.).

原子カプラントの一次冷却水系配管内表面に付着してい
る金属酸化物はFe3O4,F e208が主成分であ
り、これらの酸化物内には線量率に寄与する放射性核種
を含んでいる。これらの金属酸化物は還元することによ
り溶解できる。
The metal oxides adhering to the inner surface of the primary cooling water system piping of the atomic couplant are mainly composed of Fe3O4 and Fe208, and these oxides contain radionuclides that contribute to the dose rate. These metal oxides can be dissolved by reduction.

本発明では、除染対象配管内表面に卑の電位を有する炭
素鋼製の線状あるいは板状の電極を表面金属酸化物に電
気的に接触させることにより電極と除染対象物との間に
電池を形成させ金属酸化物を溶解除去するものである。
In the present invention, a linear or plate-shaped electrode made of carbon steel having a base potential is brought into electrical contact with the surface metal oxide on the inner surface of the pipe to be decontaminated, thereby creating a gap between the electrode and the object to be decontaminated. It forms a battery and dissolves and removes metal oxides.

この方法は、除染温度が低い場合においても従来の化学
除染より効果的である。これらの反応は、下記のように
進行し。
This method is more effective than conventional chemical decontamination even at low decontamination temperatures. These reactions proceed as follows.

金属酸化物を溶解する。Dissolves metal oxides.

Fs→F e”++ 2 e−−(1)F e aoa
+ 8 H÷+2 e−−+3 F e”++4 Hz
O・・・・・・(2) また、この作用を利用して、線状電極のかわりに粒子状
電極を除染液に混合し、循環させることにより表面の金
属酸化物を溶解除去させることができる。この方法にお
いては循環可能な粒状電極を用いる。粒状電極としては
、鉄粒子あるいは鉄粉末、さらに鉄を皮覆した粒子を使
用する。
Fs→F e"++ 2 e--(1) F e aoa
+8 H÷+2 e--+3 F e”++4 Hz
O... (2) Also, by utilizing this effect, metal oxides on the surface can be dissolved and removed by mixing particulate electrodes with the decontamination liquid instead of linear electrodes and circulating it. I can do it. This method uses a cyclically granular electrode. As the granular electrode, iron particles, iron powder, and particles coated with iron are used.

以上の電極は、金属酸化物表面に電圧的に接触させるこ
とにより前記(1)の反応が生じ、酸化物は(2)の様
に進行する。電極の設置は、線状。
When the above electrode is brought into contact with the surface of the metal oxide under voltage, the reaction (1) occurs, and the oxide progresses as shown in (2). The electrodes are installed in a linear manner.

板状の電極については除染対象配管に対し除染ループを
構成する際に除染装置接続箇所より挿入する。電極はフ
レキシブルな電極を使用するため当該配管が長い場合に
は挿入設置が可能なものとする。
The plate-shaped electrode is inserted from the decontamination device connection point when constructing the decontamination loop for the piping to be decontaminated. Since flexible electrodes are used, they can be inserted and installed if the piping is long.

また、粒子状の電極については、除染液と混ぜ当該配管
に注入するため、前もって配管内へ設置しておく必要が
ない。この除染操作においては、除染液を所定の温度ま
で加温すると共に十分に脱気した後、除染液中へ粒子あ
るいは粉末を混ぜ当該配管へ循環注入すると共に循環中
に循環ポンプを停止させ粒子、粉末を当該配管内表面に
沈降堆積させることにより電気的に接触させる。運転バ
タンはこの循環→停止→循環を繰り返し実施して金属表
面の酸化物を溶解させる。
Furthermore, since the particulate electrode is mixed with the decontamination liquid and injected into the pipe, there is no need to install it in the pipe in advance. In this decontamination operation, the decontamination solution is heated to a predetermined temperature and sufficiently degassed, and then particles or powder are mixed into the decontamination solution and circulated and injected into the relevant piping, and the circulation pump is stopped during the circulation. The particles or powder are deposited on the inner surface of the pipe to make electrical contact. The operation button repeats this cycle → stop → circulation to dissolve oxides on the metal surface.

除染液は錯化剤を主成分とする溶液からなりp)(5〜
7の溶液を用いる。また、適用に際しては除染液を十分
に脱気すると共に除染温度を100℃以下に抑えて使用
する。
The decontamination solution consists of a solution whose main component is a complexing agent.
Use solution No. 7. In addition, during application, the decontamination solution should be sufficiently deaerated and the decontamination temperature should be kept below 100°C.

〔実施例〕〔Example〕

本発明について実施例を挙げ下記に説明する。 The present invention will be described below with reference to Examples.

まず1本発明を実機プラントに適用した場合の除染フロ
ーを第1図及び第2図に示す。
First, FIGS. 1 and 2 show decontamination flows when the present invention is applied to an actual plant.

第1図は除染対象物1の配管に対し、フレキシブルな線
状あるいは板状の電極2を挿入し、配管内表面に電極2
を接触させ、金属酸化物を溶解除去する場合の除染フロ
ーを示す。除染対象物1の金属酸化物は、電極2の溶解
に伴い還元溶解される。除染液3は、除染液タンク4で
調整し、ヒータ5で所定温度(100℃以下)まで昇温
すると共に溶存酸素を除去するため、不活性ガス(Nz
yArガス)6を注入する。除染フローには、除染液3
を除染対象物1に注入循環するための循環ポンプ7を備
えている。また、剥離したクラッド成分はフィルター8
で除去される。化学除染終了後は、系統内及び対象物1
の水洗を行い、最終的に水洗水は温床式イオン交換樹脂
塔9を通し、純水化した後、ドレン系へ排水する。さら
に除染タンク4にはドレン口10、ベントロ11を備え
ている。除染終了後、電極2を撤去する。
Figure 1 shows that a flexible linear or plate-shaped electrode 2 is inserted into the piping of the object to be decontaminated 1, and the electrode 2 is placed on the inner surface of the piping.
This shows the decontamination flow when metal oxides are dissolved and removed by bringing them into contact with each other. The metal oxide of the object to be decontaminated 1 is reduced and dissolved as the electrode 2 is dissolved. The decontamination liquid 3 is adjusted in a decontamination liquid tank 4, heated to a predetermined temperature (below 100°C) by a heater 5, and inert gas (Nz
yAr gas) 6 is injected. In the decontamination flow, decontamination liquid 3
A circulation pump 7 is provided for injecting and circulating the water into the object 1 to be decontaminated. In addition, the peeled cladding component is removed by filter 8.
will be removed. After chemical decontamination, the system and object 1
Finally, the washing water is passed through a hot bed type ion exchange resin column 9 to be purified and then drained to a drain system. Furthermore, the decontamination tank 4 is equipped with a drain port 10 and a vent hole 11. After decontamination is completed, electrode 2 is removed.

第2図は除染対象物1に対し、粒状あるいは粉末状の電
極12を除染液3と混ぜ注入循環させ、表面の金属酸化
物を還元溶解させる。この除染操作は、循環途中で循環
ポンプ7を停止しさせ1粒状の電極12を対象物内表面
に沈降堆積させ、電極との電気的接触を密にし、金属酸
化物の溶解を促進する。この様に粒状あるいは粉末状の
電極を用いた除去においては、循環→停止→循環の運転
パタンを繰り返す操作を行う。除染液3は第1図と同様
に除染タンク4内で加熱用ヒータ5で昇温すると共に溶
存酸素を除去するためにArあるいはNzガス6を注入
する。但し、粒状あるいは粉末状の電極12は、所定温
度(100℃以下)まで昇温後、タンク内に投入し、攪
拌機13で攪拌する。その後、循環ポンプ7で対象物内
1へ注入する。除染終了後、残存粒子、粉末はフィルタ
ー8を通し除去する。
In FIG. 2, a granular or powdered electrode 12 is mixed with a decontamination liquid 3 and is injected and circulated into an object 1 to be decontaminated, thereby reducing and dissolving metal oxides on the surface. In this decontamination operation, the circulation pump 7 is stopped during the circulation, and a single particle of the electrode 12 is deposited on the inner surface of the object, thereby making close electrical contact with the electrode and promoting dissolution of the metal oxide. In such removal using a granular or powdered electrode, an operation pattern of circulation→stop→circulation is repeated. The temperature of the decontamination liquid 3 is raised in a decontamination tank 4 by a heater 5 as in FIG. 1, and Ar or Nz gas 6 is injected to remove dissolved oxygen. However, the granular or powdered electrode 12 is heated to a predetermined temperature (below 100° C.), then put into a tank and stirred by a stirrer 13. Thereafter, it is injected into the object 1 using the circulation pump 7. After the decontamination is completed, remaining particles and powder are removed through a filter 8.

以上の除染に用いる電極は、フレキシブルな炭素鋼線及
び板、あるいはこれらを束ねたものを吏用する。また1
粒子状の電極については循環可能な鉄粒子及び鉄粉末あ
るいは鉄を皮覆した粒子を使用する。線状、板状の電極
は、除染装置を除染対象配管へ接続する際に接続箇所よ
りあらかじめ配管内へ挿入設置しておく。粒状電極の場
合はあらかじめ設置しておく必要はなく、除染液に混ぜ
注入循環することができる。
The electrodes used for the above decontamination are flexible carbon steel wires and plates, or bundles of these. Also 1
For particulate electrodes, recyclable iron particles and iron powder or iron coated particles are used. When connecting the decontamination equipment to the piping to be decontaminated, the wire or plate-shaped electrodes are inserted into the piping from the connection point in advance. In the case of granular electrodes, there is no need to install them in advance, and they can be mixed with the decontamination solution and injected and circulated.

次に本発明の実施例とその結果について説明する。Next, examples of the present invention and their results will be described.

本発明の有効性検討を行った除染試験装置を第3図に示
す、第3図の装置は板状の電極(炭素鋼)14を除染対
象物(試験片)15に接続し、除染効果を検討したもの
である。試験装置は大別して電位差計16、反応槽17
.加熱用ヒーター8から構成されている。除染液19は
、90℃まで昇温すると共にArガスを注入管2oより
注入脱気を行った。構成材料及び試験片の電位を測定す
るため飽和材コウ基準電極21を設置し、電位差計16
で電位測定を行った。本試験において、除染液は錯化剤
、有機酸を主成分とする溶液を使用した。金属酸化物の
溶解量については原子吸光光度計により定量化を行った
。模擬試験片(FeaOa)を用いた試験結果を電位依
存性の観点よりまとめたものを第4図に、示す。第4図
は、縦軸にFe+sO+の溶解量(g/%)、横軸に電
位(Vvs、 S CE )を示す。FegOaの溶解
量は図に示すように電位依存性を示し、自然電位より卑
な電位になるに従い、溶解量は増加傾向にある。試験片
FeaO4の電位は、本条件において、飽和材コウ電極
で−0,1V 前後に位置している。これに対し、電極
である炭素鋼は−0,7V前後の電位を有しており、除
染対象物であるFaao番に接触あるいは接続すること
によりFagO番の溶解域の電位ヘシフトさせることが
できる。このことにより、通常の化学除染と比べ、低温
(100℃以下)においても良好な除染効果を得ること
ができる。この電極を粒子状及び粉末状にした場合にお
いても同様な結果が得ることができる。
The decontamination test device in which the effectiveness of the present invention was investigated is shown in FIG. 3. The device shown in FIG. This is a study of the dyeing effect. The test equipment is roughly divided into potentiometer 16 and reaction tank 17.
.. It is composed of a heating heater 8. The decontamination liquid 19 was heated to 90° C. and degassed by injecting Ar gas through the injection pipe 2o. A saturated material reference electrode 21 is installed to measure the potential of the constituent materials and the test piece, and a potentiometer 16 is installed.
The potential was measured using In this test, the decontamination solution used was a solution whose main components were a complexing agent and an organic acid. The amount of dissolved metal oxide was quantified using an atomic absorption spectrophotometer. FIG. 4 shows a summary of test results using a simulated test piece (FeaOa) from the viewpoint of potential dependence. In FIG. 4, the vertical axis shows the dissolved amount of Fe+sO+ (g/%), and the horizontal axis shows the potential (Vvs, S CE ). As shown in the figure, the amount of FegOa dissolved shows potential dependence, and as the potential becomes more base than the natural potential, the amount of FegOa dissolved tends to increase. Under these conditions, the potential of the test piece FeaO4 is around -0.1 V at the saturated material electrode. On the other hand, carbon steel, which is an electrode, has a potential of around -0.7V, and by contacting or connecting it to Faao, which is the object to be decontaminated, it can be shifted to the potential in the dissolution range of FaagO. . As a result, better decontamination effects can be obtained even at low temperatures (below 100° C.) compared to ordinary chemical decontamination. Similar results can be obtained when this electrode is made into particles or powder.

また1本発明の有効性をさらに実証するために実機の原
子カプラントより撤去した配管試験片を用いて同一条件
で従来の化学除染法と比較した。
In addition, in order to further demonstrate the effectiveness of the present invention, a comparison was made with a conventional chemical decontamination method under the same conditions using a piping test piece removed from an actual atomic couplant.

試験条件及び装置は、模擬試験片を用いた実験と同一と
した。除染効果はGe (Li)半導体検出器で測定し
、線量の寄与が大きい放射性核種BOCOの除去率(%
)で評価した。その結果を第5図に示す、炭素鋼電極を
接触させた場合をa、従来の化学除染をbに示す、従来
の化学除染の様に、単純に除染液中に浸漬した場合には
、低温(100℃以下)の条件下では、”Co除去速度
が遅く除染効率が低い。これに対し、従来の化学除染に
炭素鋼の電極を接触させる操作を加えることにより、短
時間に高い6°Go除去率を得ることができる。
The test conditions and equipment were the same as in the experiment using the mock test piece. The decontamination effect was measured using a Ge (Li) semiconductor detector, and the removal rate (%) of the radionuclide BOCO, which has a large contribution to the dose
) was evaluated. The results are shown in Figure 5. Figure 5 shows the case in which carbon steel electrodes are in contact with each other, and Figure 5 shows the case in which carbon steel electrodes are in contact with each other. Figure 5 shows conventional chemical decontamination in Figure 5. Under low temperature conditions (below 100°C), the Co removal rate is slow and the decontamination efficiency is low.In contrast, by adding an operation in which carbon steel electrodes are brought into contact with conventional chemical decontamination, A high 6° Go removal rate can be obtained.

本発明は、酸化性雰囲気の条件下で形成した金属酸化物
FeaOa(マグネタイト)及びα−Fezes(ヘマ
タイト)または、Niを含むスピネル型の酸化物を溶解
除去するものであり、原子カプラントの一次系配管系の
除染はもとより、火力プラント並びに産業用プラントの
配管系の除染にも広く適用できる。
The present invention is for dissolving and removing metal oxides FeaOa (magnetite) and α-Fezes (hematite) formed under oxidizing atmosphere conditions, or spinel-type oxides containing Ni, and for removing the primary system of atomic couplants. It can be widely applied not only to the decontamination of piping systems, but also to the decontamination of piping systems in thermal power plants and industrial plants.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、配管内表面に付着した金属酸化物を容
易に効率的に溶解除去することができる。
According to the present invention, metal oxides attached to the inner surface of the pipe can be easily and efficiently dissolved and removed.

特に原子カプラントの一次系配管においては、放射性核
種を含有する金属酸化物を効率的に溶解除去することが
でき、配管の線量を下げることができると共に除染時の
母材の腐食を抑制することができる。また、除染温度1
00℃以下でも従来の化学除染法に比べ高除去率を得る
ことができ、除染装置自体も100℃以下の温度で除染
を行うため許認可上及び経済性の面からも適している。
In particular, in the primary system piping of an atomic couplant, metal oxides containing radionuclides can be efficiently dissolved and removed, reducing the radiation dose of the piping and suppressing corrosion of the base material during decontamination. I can do it. Also, decontamination temperature 1
It is possible to obtain a higher removal rate than conventional chemical decontamination methods even at temperatures below 100°C, and the decontamination equipment itself decontaminates at temperatures below 100°C, making it suitable from the standpoint of licensing and economic efficiency.

従って、原子カプラントの分解・点検並びに原子カプラ
ントの定期定検作業に際して、作業員の受ける線量の低
減にもつながり、作業の信頼性及びプラントの信頼性の
向上も計れる。
Therefore, during the disassembly and inspection of the atomic coupler and periodic inspection work of the atomic coupler, the radiation dose received by the workers can be reduced, and the reliability of the work and the reliability of the plant can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の一実施例の本装置を実機プラ
ントへ適用した場合の系統図、第3図は本発明の有効性
を実証するための試験装置の概略図、第4図は電位とF
eaOa溶解量の関係を示す線図、第5図は本発明の除
染方法と従来の化学除染法の除染効果を示す線図である
。 1・・・除染対象物、2・・・線状電極、4・・・除染
液タンク、5・・・ヒータ、7・・・循環ポンプ、8・
・・フィルタ#1 図 /−*fn*a    z−tiイメ;七−一極3−f
8にf−ソ(4−−一 戸仁筆ソ5タン7仁−″!#〜
オ沸」柑社塔 Rz回 答4m σ−1,0−a、g   −6,6−a、4  −a、
Z    09ll   (Vvs3CE〕
FIGS. 1 and 2 are system diagrams when this device according to an embodiment of the present invention is applied to an actual plant, FIG. 3 is a schematic diagram of a test device for demonstrating the effectiveness of the present invention, and FIG. The figure shows potential and F
FIG. 5 is a diagram showing the relationship between the amount of dissolved eaOa, and FIG. 5 is a diagram showing the decontamination effects of the decontamination method of the present invention and the conventional chemical decontamination method. DESCRIPTION OF SYMBOLS 1... Decontamination target object, 2... Linear electrode, 4... Decontamination liquid tank, 5... Heater, 7... Circulation pump, 8...
...Filter #1 Figure/-*fn*a z-ti image; 7-single pole 3-f
8 to f-so (4--1 To Hitoshi So 5 tan 7 Jin-''!#~
Ofutsu” Kanshato Rz answer 4m σ-1,0-a, g -6,6-a, 4-a,
Z 09ll (Vvs3CE)

Claims (1)

【特許請求の範囲】[Claims] 1、配管及び機器より構成される配管系の配管及び機器
内表面に付着した金属酸化物の溶解除去にあたつて化学
除染対象配管系に対し除染ループを構成して成る化学除
染方法において、除染対象配管と当該配管内に設置した
線状あるいは板状の電極の間で電気回路を形成させるこ
とを特徴とする配管の除染方法。
1. A chemical decontamination method that consists of configuring a decontamination loop for the piping system to be chemically decontaminated to dissolve and remove metal oxides attached to the internal surfaces of piping and equipment in a piping system consisting of piping and equipment. A method for decontaminating piping, which comprises forming an electric circuit between the piping to be decontaminated and a linear or plate-shaped electrode installed in the piping.
JP5250986A 1986-03-12 1986-03-12 Method of decontaminating piping Pending JPS62211597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250986A JPS62211597A (en) 1986-03-12 1986-03-12 Method of decontaminating piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250986A JPS62211597A (en) 1986-03-12 1986-03-12 Method of decontaminating piping

Publications (1)

Publication Number Publication Date
JPS62211597A true JPS62211597A (en) 1987-09-17

Family

ID=12916700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250986A Pending JPS62211597A (en) 1986-03-12 1986-03-12 Method of decontaminating piping

Country Status (1)

Country Link
JP (1) JPS62211597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216576A (en) * 2008-03-11 2009-09-24 Hitachi-Ge Nuclear Energy Ltd Removal method of machined layer, residual stress improvement method of nuclear structure member, and core shroud replacement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216576A (en) * 2008-03-11 2009-09-24 Hitachi-Ge Nuclear Energy Ltd Removal method of machined layer, residual stress improvement method of nuclear structure member, and core shroud replacement method

Similar Documents

Publication Publication Date Title
CA1224025A (en) Decontamination of metal surfaces in nuclear power reactors
US7166758B2 (en) Foam and gel methods for the decontamination of metallic surfaces
US4731124A (en) Application technique for the descaling of surfaces
TW529041B (en) Chemical decontamination method and treatment method and apparatus of chemical decontamination solution
US20130251086A1 (en) Reactor decontamination process and reagent
JPS608479B2 (en) Method of chemical decontamination of nuclear reactor structural parts
WO2000078403A1 (en) Method for the decontamination of metallic surfaces
JP4551843B2 (en) Chemical decontamination method
Murray A chemical decontamination process for decontaminating and decommissioning nuclear reactors
US10340050B2 (en) Method of decontaminating metal surfaces in a cooling system of a nuclear reactor
KR20180040017A (en) Electrolytic decontamination method capable of regenerative electrolyte
JPS62211597A (en) Method of decontaminating piping
Murray et al. Dilute chemical decontamination process for pressurized and boiling water reactor applications
RU2397558C1 (en) Method of cleaning and decontamination of equipment on nuclear power plants (versions)
Nunez et al. Foam and gel methods for the decontamination of metallic surfaces
Murray Modeling nuclear decontamination processes
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JPS62130396A (en) Method of removing oxide film containing radioactive substance
Kaminski et al. Metal surface decontamination using 1-hydroxyethane-1, 1-diphosphonic acid
JP2854706B2 (en) Chemical decontamination waste liquid treatment method
JPS6267500A (en) Method and device for chemically decontaminating radioactivecontaminant
JPS5860296A (en) Method of removing cobalt of light water reactor
JPS63188799A (en) Decontaminating method of radioactive metallic waste
JPH04190197A (en) Decontamination of radioactive contaminated metal
JPS5965297A (en) Method of suppressing adhesion of radioactive material to atomic power plant