JPS63149598A - Oxidation processing method after chemical decontamination of nuclear power plant - Google Patents

Oxidation processing method after chemical decontamination of nuclear power plant

Info

Publication number
JPS63149598A
JPS63149598A JP61296449A JP29644986A JPS63149598A JP S63149598 A JPS63149598 A JP S63149598A JP 61296449 A JP61296449 A JP 61296449A JP 29644986 A JP29644986 A JP 29644986A JP S63149598 A JPS63149598 A JP S63149598A
Authority
JP
Japan
Prior art keywords
power plant
nuclear power
oxidation treatment
water
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61296449A
Other languages
Japanese (ja)
Inventor
卓 本田
樫村 栄二
健也 大橋
古谷 保正
大角 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61296449A priority Critical patent/JPS63149598A/en
Publication of JPS63149598A publication Critical patent/JPS63149598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は稼動中の原子力プラントの化学除染後の急速な
再汚染を抑制するための酸化処理に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an oxidation treatment for suppressing rapid recontamination after chemical decontamination of an operating nuclear power plant.

〔従来の技術〕[Conventional technology]

原子力発電所゛の一次冷却水系に使用されている配管、
ポンプ、弁等はステンレス鋼及びステライト等(以下、
構成材と略称する)から構成されている。これらの金属
は長期間使用されると腐食損傷をうけ、構成金属元素が
原子炉−天部油水(以下、−天部油水と略称する)中に
溶出し、原子炉内に持ち込まれる。溶出金属元素は大半
が酸化′吻となって燃料棒に付層し、中性子照射をうけ
る。
Piping used in the primary cooling water system of nuclear power plants,
Pumps, valves, etc. are made of stainless steel, Stellite, etc. (hereinafter referred to as
(abbreviated as "constituent materials"). When these metals are used for a long period of time, they are damaged by corrosion, and the constituent metal elements are eluted into the reactor top oil and water (hereinafter referred to as top oil and water) and brought into the reactor. Most of the eluted metal elements become oxidized and deposited on the fuel rods, where they are exposed to neutron irradiation.

その結果、60Co、  58Co、  51Cr、 
 54Mn等の放射注核樵が生成する。これらの放射性
核種は一次冷却水中に再溶出してイオンあるいは不溶性
固体成分(以下、クラッドと称する)として浮遊する。
As a result, 60Co, 58Co, 51Cr,
54Mn etc. is produced by a radioactive injection nucleator. These radionuclides are re-eluted into the primary cooling water and suspended as ions or insoluble solid components (hereinafter referred to as cladding).

その一部は炉水浄化用の脱塩器等で除去されるが、残り
は一次冷却水系を循環しているうちに構成材表面に付着
する。このため、構成材表面における線量率が高くなり
、保守、点検を実施する際の作業員の放射線被曝が問題
とな′つている。
A part of it is removed by a demineralizer for reactor water purification, but the rest adheres to the surfaces of constituent materials while circulating in the primary cooling water system. For this reason, the dose rate on the surface of the component material increases, and radiation exposure of workers during maintenance and inspection has become a problem.

この場合、とくに崩壊エネルギーが大きく半減期の長い
60COの付着が問題となる。
In this case, the adhesion of 60CO, which has a large decay energy and a long half-life, becomes a problem.

従って、放射性物質の付着量を低減させるため、その源
である前記金属元素の溶出を抑制する方法が提案されて
いる。例えば耐食性のよい材料を構成材に使用すること
、あるいは酸素を給水系内に注入して構成材の腐食を抑
制すること等である。
Therefore, in order to reduce the amount of attached radioactive substances, methods have been proposed for suppressing the elution of the metal elements that are the source of radioactive substances. For example, materials with good corrosion resistance may be used for the constituent materials, or oxygen may be injected into the water supply system to suppress corrosion of the constituent materials.

しかし、いずれの方法を用いても給水系をはじめとし、
−天部却水系の構成材の腐食を十分に抑制することはで
きず、−天部却水中の放射性物質を十分に低減すること
はできないため、構成材への放射性物質の付層による表
面線量率の増力口がやはり問題として残っている。
However, no matter which method is used, the water supply system, etc.
- It is not possible to sufficiently suppress the corrosion of the constituent materials of the ceiling water cooling system, and - it is not possible to sufficiently reduce the radioactive substances in the ceiling water cooling system, so the surface dose due to the layering of radioactive substances on the constituent materials. The rate increase port still remains a problem.

また、構成材に付層した放射性物質を除去する方法が検
討され、実施されている。除去方法には(1)機械的洗
浄、(2)電気分解による洗浄のほか、(3)化学的洗
浄がある。しかし、(1)、 (2)の方法は構成材表
面に強く密着した放射′物質の除去が困磯であり、また
広い範囲を系統的に除染することができない等の問題が
あるため、現状では(3)の方法が広く用いられている
Additionally, methods for removing radioactive substances attached to constituent materials have been studied and implemented. Removal methods include (1) mechanical cleaning, (2) cleaning by electrolysis, and (3) chemical cleaning. However, methods (1) and (2) have problems such as it is difficult to remove radioactive substances that adhere strongly to the surface of the component, and it is not possible to systematically decontaminate a wide area. At present, method (3) is widely used.

(3)の方法は有機酸溶液等の薬剤を用いて化学反応に
よりvA責面の酸化皮膜を溶・屏し、同皮膜中に存在す
る放射性物質を除去するものである。この方法はプラン
トの一部の配管やポンプに適用される場合もあるが、プ
ラント全体の線量率レベルを下げる目的からは原子炉構
造体及び炉回り配管、機器全体へ適用する、いわゆる系
統化学除染が望ましい。なお、化学除染を行うには燃料
集合体を炉心に装荷した状態で行う場合と装荷しない状
態で行う場合の二通りがある。
Method (3) involves dissolving and removing the oxide film on the vA surface through a chemical reaction using a chemical such as an organic acid solution, and removing the radioactive substances present in the film. This method may be applied to some pipes and pumps in a plant, but for the purpose of reducing the dose rate level of the entire plant, it is applied to the entire reactor structure, piping around the reactor, and equipment, so-called systematic chemical removal. Dyed is preferable. There are two ways to perform chemical decontamination: one with fuel assemblies loaded in the core, and one without.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

原子力プラント系統全体への化学除染の適用、すなわち
、系統化学除染は線量率レベルを全体的に下げるに有効
である。しかし、化学除染後は、除染液により酸化皮膜
が除去されていて鋼の活性面が露呈していることから、
プラントの再稼動にともない皮膜の急速な再生により放
射性物質が速かに再蓄積するという問題がある。
Application of chemical decontamination to the entire nuclear power plant system, that is, systematic chemical decontamination, is effective in reducing overall dose rate levels. However, after chemical decontamination, the oxide film is removed by the decontamination solution and the active surface of the steel is exposed.
There is a problem in that radioactive materials rapidly re-accumulate due to the rapid regeneration of the coating as the plant restarts operations.

本発明の目的は、系統化学除染を実施した後の急速な再
汚染を抑制する丸めの手法を提供することにある。
An object of the present invention is to provide a rounding method that suppresses rapid recontamination after performing systematic chemical decontamination.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、原子力プラントを”系統除染したのち、放
射性物質を含む除染級を系外に除去し、プラントの出力
運転前に、核加熱あるいは再循環ポンプの運転による8
口熱により、−天部油水を280℃以上に昇温した状態
で系統内に流し、系統的構成材の接水面を酸化処理した
のち、出力運転に移ることによシ達成される。
The above purpose is to decontaminate the nuclear power plant system, remove the decontamination grade containing radioactive materials from the system, and conduct nuclear heating or recirculation pump operation to
This is achieved by flowing oil and water into the system with the temperature raised to 280° C. or higher due to mouth heat, oxidizing the water contact surfaces of the system components, and then shifting to output operation.

〔作用〕[Effect]

一般に、酸化皮膜でおおわれた鋼材を除染液中に浸漬す
ると皮膜が溶解し、その過程で皮膜中に含有されている
放射性物質が鋼材より除去される。
Generally, when a steel material covered with an oxide film is immersed in a decontamination solution, the film is dissolved, and in the process, the radioactive substances contained in the film are removed from the steel material.

したがって、除染作業終了時においては、皮膜は鋼材よ
シ除去され、金属の活性々表面が露呈する。
Therefore, at the end of the decontamination work, the coating is removed from the steel and the active surface of the metal is exposed.

腐食の見地からは特に金属結晶粒界が露出する点に問題
がある。腐食の起点は結晶粒界のごとく、原子配列が乱
れた欠陥部分にあることが知られている。(たとえば、
大谷著、「金属の塑性と腐食反応JP39、産業図書)
したがって、このよう々状態で鋼材がプラントの再起動
にともない高温の一次冷却水にさらされると、著しい腐
食が生じることになる。
From the viewpoint of corrosion, there is a problem in particular in that metal grain boundaries are exposed. It is known that corrosion starts at defective areas where the atomic arrangement is disordered, such as at grain boundaries. (for example,
Otani, “Plasticity and Corrosion Reaction of Metals JP39, Sangyo Tosho”
Therefore, if the steel material is exposed to high temperature primary cooling water when the plant is restarted under these conditions, significant corrosion will occur.

ところで、炉水に溶存する放射性桟橋はステンレス鋼の
腐食によって表面に形成される酸化皮膜内にその形成過
程で取り込まれる。本発明者らの研究によると、高温水
中では酸化皮膜は主に該皮膜と母材金属との界面におい
て内方向(母材金属側)へ成長し、放射性核種は皮膜内
を内方向へ拡散移動したのち同じ界面で酸化皮膜中に取
り込まれる。
By the way, radioactive piers dissolved in reactor water are incorporated into the oxide film formed on the surface of stainless steel during its formation process. According to the research of the present inventors, in high-temperature water, the oxide film mainly grows inward (toward the base metal side) at the interface between the film and the base metal, and radionuclides diffuse and move inward within the film. It is then incorporated into the oxide film at the same interface.

したがって、放射性核種の蓄漬を抑制するためには放射
性核種の酸化皮膜内の拡散を抑制すればよいことが判る
。また、放射性核種の付着速度は皮膜成長速度と相関関
係を示すので、皮膜成長を抑制することは付着低減につ
ながるであろうと推定される。
Therefore, it can be seen that in order to suppress the accumulation of radionuclides, it is sufficient to suppress the diffusion of radionuclides within the oxide film. Furthermore, since the adhesion rate of radionuclides shows a correlation with the film growth rate, it is presumed that suppressing film growth will lead to reduced adhesion.

即ち、放射性核種の付着速度が皮膜の成長速度と相関関
係を示すのは、放射性核種が皮膜の成長点で取り込まれ
るからである。したがって、皮膜の成長を抑制するとそ
れたり放射性核種が取り込まれる頻度が減少する。即ち
取り込みが抑制さ゛れるのである。
That is, the reason why the deposition rate of the radionuclide shows a correlation with the growth rate of the film is that the radionuclide is taken in at the growth point of the film. Therefore, inhibiting the growth of the film will reduce the frequency of deflection and incorporation of radionuclides. In other words, uptake is suppressed.

一次冷却水中での鉄鋼材料の皮膜量(ホ)の増加は(1
)式に示すように時間(1)との間に対数関係が成り立
つ。
The increase in the film amount (e) of steel materials in the primary cooling water is (1
), a logarithmic relationship holds true with time (1).

m = k、 tag (kg t + 1 )  −
4)ここで、k、、に、は定数である。
m = k, tag (kg t + 1) −
4) Here, k, , is a constant.

すなわち、皮膜の成長とともにその成長速度は小さくな
る。したがって、あらかじめ適当な非放射性の酸化皮膜
を形成しておけば、放射性物質が溶存している液へ浸漬
したのちの新たな皮膜形成を抑制することができ、ひい
ては皮膜形成時の放射性物質の付着を抑制できる。
That is, as the film grows, its growth rate decreases. Therefore, if a suitable non-radioactive oxide film is formed in advance, it is possible to suppress the formation of a new film after immersion in a liquid containing dissolved radioactive substances, and this will also prevent the adhesion of radioactive substances during film formation. can be suppressed.

しかし、鳳子炉水壌境におりる腐食は、金属表面にあら
かじめ形成しておく酸化皮膜の性状により変ってくる。
However, the corrosion that occurs at the Fushi reactor water interface varies depending on the properties of the oxide film that is previously formed on the metal surface.

また、除染液にさらされた後の金、属では表面が活性で
あることから、再形成される酸化皮膜は初期の酸化条件
に大きな影響をうσることになる。したがって、系統化
学除染後の構成材への酸化処理はある特定の適切な方法
で行なうことが必要である。
Furthermore, since the surface of metals and metals is active after being exposed to the decontamination solution, the re-formed oxide film will have a large effect on the initial oxidation conditions. Therefore, it is necessary to perform the oxidation treatment on the constituent materials after systematic chemical decontamination using a certain appropriate method.

本発明の前記の解決手段の項で述べた手段はこのような
系統化学除染後の構成材の酸化処理に適切な方法を提供
するものである。
The means described in the above section of the present invention provides a method suitable for oxidation treatment of constituent materials after such systematic chemical decontamination.

〔実施例〕〔Example〕

本発明は、前述のように、原子炉グ′)/トを系統化学
除染した後に除染液を系外に除去し、出力運転前に、核
加熱または再循環ポンプの運転による加熱により280
℃以上に昇温した一次冷却水を系統内に流すものである
が、この場合次の榮件であることが望ましい0すなわち
、280℃以上の高温の一次冷却水は200±1 o 
o I)I)bの酸素を溶存しており、弱アルカリ性(
pH7,8〜8.6)であるか、あるいは中性で溶存酸
素濃酸が300〜s o o ppbであり、いずれの
場合も流動しており、さらに、処理の時間は150〜3
00時間であることが望ましい。このような条件で、耐
食性の高い保護皮膜が形成される原理は次の通りである
As described above, the present invention removes the decontamination liquid from the system after systematic chemical decontamination of the nuclear reactor, and before power operation, heats the reactor to 280% by heating by nuclear heating or by operating a recirculation pump.
Primary cooling water that has been heated to a temperature of 280°C or higher is passed through the system, but in this case it is desirable that the following conditions be met: 0.
o It has dissolved oxygen of I)I)b and is weakly alkaline (
The pH is 7.8 to 8.6), or the dissolved oxygen concentration is neutral and the dissolved oxygen concentration is 300 to 300 ppb.
00 hours is desirable. The principle behind forming a protective film with high corrosion resistance under such conditions is as follows.

酸素を溶存した高温水でpHが高くなると、ステンレス
鋼母材中のCrはクロメートイオンとして溶出する一方
、Fe及びNiは酸化物として安定化し、溶解度が減少
する。その結果、活性な金属結晶粒界を起点に、金属表
面全体が、FeとNi主体の緻密々酸化皮膜で一様にお
おわれる。沸騰水型原子炉炉水環境は約200 ppb
の!!素を溶存する酸化性雰囲気であシ、一般にCrは
溶出しやすい。
When the pH increases with high-temperature water containing dissolved oxygen, Cr in the stainless steel base material is eluted as chromate ions, while Fe and Ni are stabilized as oxides and their solubility decreases. As a result, the entire metal surface is uniformly covered with a dense oxide film mainly composed of Fe and Ni, starting from the active metal grain boundaries. Boiling water reactor reactor water environment is approximately 200 ppb
of! ! Generally, Cr is easily eluted in an oxidizing atmosphere that dissolves Cr.

したがって、Crの多い皮膜をあらかじめ形成した場合
には、皮膜中のCrがクロメートイオンとして再溶解し
てしまい、皮膜欠陥が増える結果として保護性が損なわ
れる。しかし、前述した処理環境ではFeとNiが主体
でCrの少ない皮膜が形成されるため、この皮膜はBW
R’3境において長期にわたり安定に存在し、保護作用
を示す。なお、pi−iが8.6を越えると、Fe、N
iがいずれも鉄酸、ニッケル酸として溶出しやすく母材
損傷につながるので望ましくない。
Therefore, if a film containing a large amount of Cr is formed in advance, Cr in the film will be redissolved as chromate ions, resulting in increased film defects and loss of protection. However, in the above-mentioned processing environment, a film mainly composed of Fe and Ni with little Cr is formed, so this film is
It exists stably at the R'3 boundary for a long period of time and exhibits a protective effect. In addition, when pi-i exceeds 8.6, Fe, N
Both i are undesirable because they tend to be eluted as ferric acid and nickel acid, leading to damage to the base material.

中性高温水で溶存酸素#夏を高めた場合においても、同
様の現象を生じる。
A similar phenomenon occurs when the dissolved oxygen level is increased in neutral high-temperature water.

いずれの場合においても、液は循環流動していることが
望ましい。なぜならば、水が停滞している場合には酸素
の金属面への拡散が十分性なわれず、皮膜形成が不均一
になる恐れがあるからである。また、処理時間は150
〜300時間が望ましい。これは300時間以上では効
果の増加が認められず、150時間以下では効果が小さ
いからである。
In either case, it is desirable that the liquid circulate and flow. This is because, if water is stagnant, oxygen will not diffuse sufficiently to the metal surface, and there is a risk that the film will be formed non-uniformly. Also, the processing time is 150
~300 hours is desirable. This is because no increase in the effect is observed at 300 hours or more, and the effect is small at 150 hours or less.

次に、−天部油水の溶存酸素a反及びpHを調整する方
法について述べる。溶存酸素87を300ないしs o
 o ppbに調整するためには、原子力プラントの復
水貯蔵タンク内の純水(l@存酸素濃度5ないし8 p
pm )を制御棒駆動水系を介して原子炉内に一定量注
入することが有効である。また、高圧の酸素を含むボン
ベから酸素を直接供与することもできる。PHをアルカ
リに調整するには、いくつかの方法がある。1つは、給
水系、制御棒駆動水系あるいは原子炉水浄化系を介して
アルカリ溶液を直接外部から注入する方法であり、他の
1つは陽イオン交換樹脂にアルカリ元素を負荷さぞ、−
天部却水中の水素イオン濃度との分配平衡を利用して溶
出さぞる方法である。
Next, a method for adjusting the dissolved oxygen a and pH of -Amanbe oil water will be described. Dissolved oxygen 87 to 300 to s o
o In order to adjust to ppb, pure water (l@oxygen concentration 5 to 8 p
It is effective to inject a certain amount of pm) into the reactor via the control rod drive water system. Oxygen can also be provided directly from a cylinder containing oxygen at high pressure. There are several ways to adjust the pH to alkaline. One is to directly inject an alkaline solution from the outside via the water supply system, control rod drive water system, or reactor water purification system, and the other is to load the cation exchange resin with alkali elements.
This is a method that uses the distribution equilibrium with the hydrogen ion concentration in the overhead water to elute.

以上の酸化処理を化学除染後に実施したのちに出力運転
に移ることKよシブラント構成部材の腐食を抑制し、放
射性物質の再付着を抑えることができ、低線址のプラン
トを提供できる。
By performing the above oxidation treatment after chemical decontamination and then proceeding to output operation, it is possible to suppress corrosion of the sybrant components, suppress redeposition of radioactive substances, and provide a plant with low radiation loss.

以下、本発明の各実施例について説明する。Each embodiment of the present invention will be described below.

実施例1 第1図をもとに本発明方法の実機への適用方法を述べる
。FA子炉1、原子炉水再循環系2及び原子炉水浄化系
3内の化学除染を実施したのち、除染液を除去し、再び
系内に純水を満たす。その後燃料4を装荷しない状態で
、再循環ポンプ5t−運転するか、あるいは燃料4を装
荷して、出力をとらない核加熱運転を行なう。この方法
よシ原子炉内の水温を280℃以上に保つ。この場合、
蒸気はタービン6をバイパスさせ、循環水量は定格出力
時の数優にとどめる。この状態において、給水系8、原
子炉水浄化系3あるいは制御棒駆動水系9を介して、酸
素を供与し、原子炉1内の溶存酸素#に度を300〜5
 Q Oppbに調整するか、あるいはアルカリを注入
してpHを768〜8.6に保つ。この状態の運転を1
50〜300時間行ったのち、出力運転に移る。
Example 1 A method of applying the method of the present invention to an actual machine will be described based on FIG. After chemical decontamination of the FA child reactor 1, reactor water recirculation system 2, and reactor water purification system 3, the decontamination liquid is removed and the system is filled with pure water again. Thereafter, the recirculation pump 5t is operated without fuel 4 loaded, or the fuel 4 is loaded and nuclear heating operation is performed without output. This method keeps the water temperature inside the reactor above 280°C. in this case,
The steam bypasses the turbine 6, and the amount of circulating water is kept to just a few points at the rated output. In this state, oxygen is supplied via the water supply system 8, the reactor water purification system 3, or the control rod drive water system 9 to bring the dissolved oxygen in the reactor 1 to 300 to 5 degrees.
Q Adjust to Oppb or inject alkali to maintain pH between 768 and 8.6. Driving in this state 1
After running for 50 to 300 hours, shift to output operation.

実施例2 SUS 304及び316L試料をBWR炉水環境に浸
漬したのち、有機酸を主体とする化学除染液によシ除染
した。その後、除染液を除去し、試料表面を十分に洗浄
し走のち、第1fiに示す条件で酸化処理を実施した。
Example 2 SUS 304 and 316L samples were immersed in a BWR reactor water environment and then decontaminated with a chemical decontamination liquid mainly containing organic acids. Thereafter, the decontamination solution was removed, the surface of the sample was sufficiently washed and washed, and then oxidation treatment was performed under the conditions shown in 1.fi.

その後、再び前記炉水環境に浸漬し%60COの付着量
を従来の未処理材と比較した。結果を第1表に示す。こ
れから明らかなように、未処理材に比べ、本発明による
処理材はいずれも60COの付着量を20〜40チに抑
えることができた。
Thereafter, the material was immersed in the reactor water environment again and the amount of 60% CO deposited was compared with that of conventional untreated material. The results are shown in Table 1. As is clear from this, compared to the untreated material, all of the treated materials according to the present invention were able to suppress the adhesion amount of 60CO to 20 to 40 inches.

第  1  表 実施例3 SUS304及び316Lを対象に、実施例2と同様の
試料を作成後、280〜290℃、溶存酸素濃度150
〜300 ppbの高温水を用い、異なるpHで150
〜300時間酸化処理を行い、BWR炉水環境下での6
0CO付着抑制効果を調べた。結果を第2図に示す。な
お、pHは4〜10の範囲とし、酸性側は硫酸で、アル
カリ性側は水酸化ナトリウムあるいは水酸化リチウムで
調整した。第2図から明らかなように、60Coの付着
量はpi−17,8〜8.6の範囲で調整した酸化処理
によって最も抑制された。
Table 1 Example 3 After preparing samples similar to those in Example 2 for SUS304 and 316L, the temperature was 280-290°C and the dissolved oxygen concentration was 150.
150 at different pH using ~300 ppb hot water.
Oxidation treatment was performed for ~300 hours, and 6
The effect of suppressing 0CO adhesion was investigated. The results are shown in Figure 2. Note that the pH was in the range of 4 to 10, and the acidic side was adjusted with sulfuric acid, and the alkaline side was adjusted with sodium hydroxide or lithium hydroxide. As is clear from FIG. 2, the amount of 60Co deposited was most suppressed by the oxidation treatment adjusted in the range of pi-17.8 to 8.6.

実施例4 SUS a 04及び316Lを対象に、実施例2と同
様の試料を作成後、280〜290℃の中性高温水を用
い、溶存酸素濃度を0〜3000 ppbの範囲で調整
し、150〜300時間酸化処理を行った。その後、B
WR炉水壌境下で浸漬し、60C。
Example 4 Samples similar to those in Example 2 were prepared for SUS a 04 and 316L, and the dissolved oxygen concentration was adjusted in the range of 0 to 3000 ppb using neutral high temperature water of 280 to 290°C. Oxidation treatment was performed for ~300 hours. After that, B
Immersed in WR reactor water at 60C.

付着量を調べた。結果を第3図に示す。同図から明らか
なように、60Coの付着量は溶存酸素l#度300〜
500 pPbの範囲で調整した酸化処理によシ最も抑
制された。
The amount of adhesion was investigated. The results are shown in Figure 3. As is clear from the figure, the amount of 60Co attached is from 300 to 300 l# degree of dissolved oxygen.
The greatest suppression was achieved by oxidation treatment adjusted in the range of 500 pPb.

実施例5 SUS304及び316Lを対象に、実施例2と同様の
試料を作成後、280〜290℃において、溶存酸素4
2を100〜300 pptl:、 P)1を7.8〜
&6に調整した高温水及び中性で溶存酸素濃度を300
〜s o o ppbに調整した高温水を用い、25〜
1000時間の範囲の異なる時間で酸化処理したのち、
BWR炉水項境下で浸清し、60CO付着量を調べた。
Example 5 Samples similar to those in Example 2 were prepared using SUS304 and 316L, and dissolved oxygen was dissolved at 280 to 290°C.
2 to 100~300 pptl:, P) 1 to 7.8~
Dissolved oxygen concentration in high temperature water adjusted to &6 and neutral to 300
Using high temperature water adjusted to ~s o o ppb, 25 ~
After oxidation treatment for different times in the range of 1000 hours,
It was immersed under BWR reactor water conditions and the amount of 60CO deposited was investigated.

結果を第4図に示す。同図から明らかなように、60C
O付着量はいずれの処理においても150時間以上で最
も抑制され、また300時間以上では、長時間実施して
も抑制効果は上がらなかった。
The results are shown in Figure 4. As is clear from the figure, 60C
In any treatment, the amount of O adhesion was most suppressed at 150 hours or more, and at 300 hours or more, the suppressive effect did not increase even if the treatment was carried out for a long time.

実施例6 SUS a O4及び316Lを対象に、実施例2と同
様の試料を作成後、150〜295℃の範囲で酸化処理
を施し、BWR炉水櫃境下での60CO付着量を鯛べた
。酸化処理は溶存酸素$1100〜300ppb 、 
 p)i 7.8〜8.6に調整した高温水及び中性で
溶存酸素#に度を300〜s o o PI)bにfA
整した高温水を用い、処理時間は150〜300時間と
した。結果を第5図に示す。同図から明らかなように、
いずれの処理も、280℃以上で60COの付着が最も
抑制された。
Example 6 Samples similar to those in Example 2 were prepared using SUS aO4 and 316L, and then subjected to oxidation treatment in the range of 150 to 295°C, and the amount of 60CO deposited under the conditions of a BWR reactor water tank was measured. Oxidation treatment: dissolved oxygen $1100-300ppb,
p) i High temperature water adjusted to 7.8-8.6 and neutral dissolved oxygen #300 to so o PI) fA to b
Conditioned high-temperature water was used, and the treatment time was 150 to 300 hours. The results are shown in Figure 5. As is clear from the figure,
In both treatments, the adhesion of 60CO was most suppressed at temperatures above 280°C.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、簡便
な手段によって原子力プラントの系統化学除染後の急速
再汚染を抑制でき、従事者の被曝を低減するのに好適で
あり、実画が容易で実用価値が高い酸化処理が可能とな
る。
As is clear from the above explanation, according to the present invention, rapid recontamination after systematic chemical decontamination of a nuclear power plant can be suppressed by simple means, and it is suitable for reducing radiation exposure of workers. This makes it possible to perform oxidation treatment that is easy and has high practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用されるBWR原子力プラントの系
統図、第2図は60CO付着量と処理pf(の関係図、
第3図は60 Co付着量と処理溶存酸素濃度の関係図
、第4図は60CO付着量と処理時間の関係図、第5図
は60CO付着量と処理温度の関係図である。 1・・・原子炉     2・・・原子炉水浄化系3・
・・原子炉水浄化系  4・・・燃料5・・・再循環ポ
ンプ   6・・・タービン7・・・復水貯蔵タンク 
 8・・・給水系9・・・制御棒駆動水系  10・・
・格納容器11・・・蒸気系。 「°  −コ 「−−コ 谷 浩太部 −1 第1図 4゛−クル      8−絶水系 第2図 処理 pH 第3図 m理し8七@#m 21111度 (ρρb)第4図 処理開開(旧 第5図 処 理 3二庭 (’C)
Figure 1 is a system diagram of a BWR nuclear power plant to which the present invention is applied, and Figure 2 is a diagram of the relationship between 60CO adhesion amount and treatment pf.
FIG. 3 is a diagram showing the relationship between the amount of 60 CO deposited and the treatment dissolved oxygen concentration, FIG. 4 is a diagram of the relationship between the amount of 60 CO deposited and treatment time, and FIG. 5 is a diagram showing the relationship between the amount of 60 CO deposited and the treatment temperature. 1... Nuclear reactor 2... Reactor water purification system 3.
... Reactor water purification system 4 ... Fuel 5 ... Recirculation pump 6 ... Turbine 7 ... Condensate storage tank
8...Water supply system 9...Control rod drive water system 10...
・Containment vessel 11...Steam system. ``° -ko''--Kotani Kotabe -1 Fig. 1 4゛-kuru 8- Waterless system Fig. 2 treatment pH Fig. 3 m treatment 87@#m 21111 degrees (ρρb) Fig. 4 treatment opening Opening (former figure 5 processing 3 two gardens ('C)

Claims (1)

【特許請求の範囲】 1 原子力プラントの一次冷却水に接する原子炉構造体
および原子炉回りの配管、機器よりなる系統を化学除染
した後、除染液を除去し、原子力プラントの出力運転前
に、核加熱または再循 環ポンプの運転による加熱によ
り一次冷却水を280℃以上に昇温した状態で上記系統
に流して該系統の接水面を酸化処理することを特徴とす
る原子力プラントの化学除染後の酸化処理方法。 2 前記酸化処理の際に前記系統に流す280℃以上に
昇温された一次冷却水はpHが7.8〜8.6で且つ溶
存酸素濃度が200±100ppbである特許請求の範
囲第1項記載の原子力プラントの化学除染後の酸化処理
方法。 3 前記酸化処理の際に前記系統に流す280℃以上に
昇温された一次冷却水は中性で且つ溶存酸素濃度が30
0〜500ppbである特許請求の範囲第1項記載の原
子力プラントの化学除染後の酸化処理方法。 4 前記280℃以上に昇温された一次冷却水を前記系
統に150〜300時間流す特許請求の範囲第1項、第
2項又は第3項記載の原子力プラントの化学除染後の酸
化処理方法。
[Scope of Claims] 1. After chemically decontaminating the reactor structure in contact with the primary cooling water of the nuclear power plant and the system consisting of piping and equipment around the reactor, the decontamination liquid is removed and the system is removed before the power operation of the nuclear power plant. The chemistry of a nuclear power plant is characterized in that the primary cooling water is heated to 280°C or higher by heating by nuclear heating or the operation of a recirculation pump, and then flows through the system to oxidize the water contact surface of the system. Oxidation treatment method after decontamination. 2. Claim 1, wherein the primary cooling water heated to 280°C or higher and flowing into the system during the oxidation treatment has a pH of 7.8 to 8.6 and a dissolved oxygen concentration of 200±100 ppb. Oxidation treatment method after chemical decontamination of the described nuclear power plant. 3 The primary cooling water that is heated to 280°C or higher and is flowed into the system during the oxidation treatment is neutral and has a dissolved oxygen concentration of 30°C.
The oxidation treatment method after chemical decontamination of a nuclear power plant according to claim 1, wherein the oxidation treatment method is 0 to 500 ppb. 4. The oxidation treatment method after chemical decontamination of a nuclear power plant according to claim 1, 2, or 3, wherein the primary cooling water heated to 280° C. or higher is passed through the system for 150 to 300 hours. .
JP61296449A 1986-12-12 1986-12-12 Oxidation processing method after chemical decontamination of nuclear power plant Pending JPS63149598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296449A JPS63149598A (en) 1986-12-12 1986-12-12 Oxidation processing method after chemical decontamination of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61296449A JPS63149598A (en) 1986-12-12 1986-12-12 Oxidation processing method after chemical decontamination of nuclear power plant

Publications (1)

Publication Number Publication Date
JPS63149598A true JPS63149598A (en) 1988-06-22

Family

ID=17833690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296449A Pending JPS63149598A (en) 1986-12-12 1986-12-12 Oxidation processing method after chemical decontamination of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS63149598A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038811A (en) * 2004-07-30 2006-02-09 Hitachi Ltd Operation method of nuclear power plant
JP2007024644A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP2007192672A (en) * 2006-01-19 2007-08-02 Hitachi Ltd Method and device for forming ferrite coating film on surface of carbon steel member in nuclear power plant
JP2008180740A (en) * 2008-04-23 2008-08-07 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant constitutive member
JP2008209418A (en) * 2008-04-23 2008-09-11 Hitachi-Ge Nuclear Energy Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038811A (en) * 2004-07-30 2006-02-09 Hitachi Ltd Operation method of nuclear power plant
JP2007024644A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP2007192672A (en) * 2006-01-19 2007-08-02 Hitachi Ltd Method and device for forming ferrite coating film on surface of carbon steel member in nuclear power plant
JP2008180740A (en) * 2008-04-23 2008-08-07 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant constitutive member
JP2008209418A (en) * 2008-04-23 2008-09-11 Hitachi-Ge Nuclear Energy Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method

Similar Documents

Publication Publication Date Title
JPS61111500A (en) Method of reducing radioactivity of nuclear power plant
US20130251086A1 (en) Reactor decontamination process and reagent
JPS5937498A (en) Atomic power plant provided with adhesion preventive function of radioactive material
KR102272949B1 (en) Method of decontamination of metal surface in cooling system of nuclear reactor
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
JPH05215893A (en) Method of prevention and removal of radioactive pollution by cobalt 60 on surface of cooling water circulation system construction of nuclear reactor
JPS63149598A (en) Oxidation processing method after chemical decontamination of nuclear power plant
JP2013164269A (en) Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant
JPS6295498A (en) Constitutional member of nuclear power plant
JPH0480357B2 (en)
JPH03246496A (en) Sticking suppressing method for radioactive material of piping or equipment for nuclear power plant
JP2016003940A (en) Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JPH0430560B2 (en)
JPH0424434B2 (en)
JPH0479439B2 (en)
JPS60111193A (en) Method of removing radioactivity
JPH0478960B2 (en)
JP3266485B2 (en) Boiling water nuclear power plant, method of operating the same, and method of forming oxide film on wetted surface of its component
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant
JPS6117993A (en) Method of inhibiting adhesion of radioactive substance to constitutional member of nuclear power plant and nuclear power plant with treater
Anstine et al. Dilute chemical decontamination program review
JP5645759B2 (en) Dose reduction method for nuclear plant components
JPS5979193A (en) Cleaning device of feedwater heater
JPS61290396A (en) Pre-oxidation treatment system
JP2004191259A (en) Chemical decontamination method