WO1996022605A1 - Nuclear power plant and method for operating the same - Google Patents

Nuclear power plant and method for operating the same Download PDF

Info

Publication number
WO1996022605A1
WO1996022605A1 PCT/JP1995/000040 JP9500040W WO9622605A1 WO 1996022605 A1 WO1996022605 A1 WO 1996022605A1 JP 9500040 W JP9500040 W JP 9500040W WO 9622605 A1 WO9622605 A1 WO 9622605A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
concentration
nuclear power
power plant
coolant
Prior art date
Application number
PCT/JP1995/000040
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Uetake
Hideyuki Hosokawa
Makoto Nagase
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP52215396A priority Critical patent/JP3179500B2/en
Priority to PCT/JP1995/000040 priority patent/WO1996022605A1/en
Publication of WO1996022605A1 publication Critical patent/WO1996022605A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a plant operating method, and more particularly to a plant operating method suitable for a nuclear plant using light water or heavy water as a coolant, and a nuclear plant implementing the plant.
  • radionuclides generated by neutron irradiation in a nuclear reactor adhere to the primary cooling system piping, etc., and cause workers to be exposed to radiation during regular inspections. For this reason, various methods are being studied to prevent the attachment of radionuclides to pipes.
  • Japanese Patent Application Laid-Open No. 62-24195 discloses a technique in which a stable preliminary oxide film is formed on the inner surface of a pipe in advance under a certain condition.
  • this method has a disadvantage that the effect of pre-oxidation decreases with time because the oxide film grows even during the operation of the reactor. Further, the pre-oxidation treatment has a disadvantage that it takes time.
  • JP-A-63-172999 discloses a method of using zinc in which Zn-64, which is a parent nuclide of Zn-65, is reduced by isotope separation.
  • this method has high cost of isotopic separation and is economically problematic.
  • An object of the present invention is to reliably reduce the dose of piping at a low cost and to achieve an effect.
  • the above object is achieved by continuously injecting a metal whose oxide has a corundum structure into primary cooling water during reactor operation.
  • Fig. 3 schematically shows this adhesion mechanism.
  • the problem at the time of routine inspection is the radioisotopes of Co-58 and C0-60 cobalt, which have relatively long elimination periods.
  • Most of these radionuclides exist as cobalt divalent ions in reactor water.
  • iron divalent ion is oxidized by dissolved oxygen in water to form iron trivalent ions.
  • ',' Because the solubility of iron trivalent ion is extremely low, it becomes oxide solid again and becomes a pipe surface. To be deposited.
  • Ferrites are mainly composed of nickel ferrite formed by the reaction with nickel ions, which are the divalent metal ions that are the most abundant in the reactor water. Causes nuclides to adhere to pipes. Since zinc ions are also divalent ions, the ability to form ferrite is relatively low, and their stability is relatively low, so they dissolve immediately upon precipitation, and as a result, the amount of adhesion as a fluoride decreases. I do.
  • Metal ions forming such corundum-type oxides include aluminum trivalent ion, gallium trivalent ion, chromium trivalent ion, titanium trivalent ion, vanadium trivalent ion, iron trivalent ion, and rhodium trivalent ion. Etc. Of these, iron trivalent ions are a source of the ferrite described above, and are therefore not preferred as the implanted metal of the present invention. In addition, titanium trivalent ion, vanadium trivalent ion and rhodium trivalent ion do not have very good stability of corundum-type oxides.
  • chromium trivalent ions do not have good stability in the reactor water and immediately change to chromate ions (corresponding to chromium hexavalent ions). It must be shared with a reducing agent that reduces chromium trivalent ions or used in a reducing atmosphere.
  • metal ions added to the reactor water are activated in the reactor core, they will remain in the hematite, which is a random-type oxide, and adhere to the pipes, causing an increase in pipe dose. Therefore, it is necessary to select metal ions to be added that do not have such a problem of secondary radionuclide generation.
  • Fig. 8 shows the nuclear properties of metals that easily become corundum-type oxides in comparison with zinc. As shown in Fig. 8, chromium has a relatively long half-life of the generated nuclide produced by activation (27.8 days). (2.24 minutes, G a is 14.1 hours)
  • nuclides with a long half-life will not be produced by neutron activation.
  • the cost is very low because isotope separation is not required and the abundance as a resource is large.
  • aluminum has a short half-life of product nuclides, and high-purity aluminum can be obtained at low cost.
  • injection does not cause any new problems.
  • chromium can be adequately applied to brands where a half-life of less than one month is acceptable.
  • titanium, vanadium, and rhodium have sufficiently short half-lives of 5.76 minutes, 3.75 minutes, and 42.3 seconds, respectively. If acceptable, enough Applicable to
  • the injection amount may be controlled so that the ratio with respect to the concentration of divalent metal ions contributing to the precipitation of ferrite is a certain value or more (at least 1 or more).
  • the main component of divalent metal ions in the reactor water is The ratio of nickel ions to metal ions to be implanted may be used as an index. If the injection amount is too large, the service life of the primary cooling water purification device containing ion-exchange resin etc. will be shortened, so the injection amount must be as small as possible within the effective range. It is also possible to directly measure the dose of piping that causes exposure, and control the amount of injection based on the rate of increase. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing a first embodiment in which the present invention is applied to a boiling water nuclear power plant.
  • FIG. 2 is a diagram showing an aluminum electrolytic device of the first embodiment.
  • Fig. 3 is a diagram illustrating the mechanism of attachment of radionuclides to piping in a nuclear plant.
  • FIG. 4 is a diagram for explaining the mechanism of precipitation of corundum-type oxide on the piping of a nuclear power plant.
  • FIG. 5 is a diagram showing a change over time in the amount of radioactivity adhering to a pipe.
  • FIG. 6 is a diagram showing a second embodiment in which the present invention is applied to a boiling water nuclear power plant.
  • FIG. 7 is a diagram showing a third embodiment in which the present invention is applied to a pressurized water nuclear power plant.
  • FIG. 8 is a diagram showing nuclear properties of a metal that easily becomes a corundum oxide.
  • Fig. 1 shows a first embodiment of the present invention applied to a boiling water nuclear power plant: Nuclear fuel 25, turbine 21, condenser ⁇ , condensate purifier 23 , Feed water heater 24, recirculation system 26, reactor water purification device 27, aluminum injection device, etc.
  • the steam exiting the turbine 21 is returned to liquid by the condenser 22, and the condensate exiting the condenser 22 is removed by the condensate purification device 23.
  • the condensate purified by the condensate purifier 23 is ripened by the feed water ripener 24. ',' At that time, metal corrosion products are generated due to the corrosion of the piping of the feed water ripener 24. This is brought into the furnace together with the water supply.
  • the metal corrosion product brought into the reactor adheres to the surface of the boiling part of the fuel rod of nuclear fuel 2 ⁇ , where it is activated by irradiation with neutrons generated by the fission of nuclear fuel 25, resulting in radionuclide Become.
  • Some of the radionuclides generated on the surface of the nuclear fuel 25 are eluted again into the reactor water.
  • the reactor water purifier 27 removes the remainder of the radionuclides eluted in the reactor water, while the remainder is oxidized as the oxidation of the pipe surface progresses while circulating through the recirculation system 26. It is taken in and causes an increase in the pipe dose rate.
  • an aluminum solution tank 29 and an aluminum injection pump 28 were provided as an aluminum injection device, and a condensate purification device 23 and a feedwater heater 24 were provided.
  • aluminum is injected continuously or intermittently during operation of the reactor.
  • the continuous presence of aluminum ions that easily form a corundum structure in the reactor water allows the divalent cobalt ions, cobalt-60 and cobalt-158, which are the main nuclides to be exposed, to be exposed. Since it is possible to prevent the formation of the cobalt-containing light and adhere to the inner surface of the pipe, it is possible to surely reduce the dose of the pipe.
  • the aluminum to be injected is supplied to the aluminum solution tank 29 in the form of a suspension of aluminum hydroxide, and is injected at a rate such that the aluminum concentration in the reactor water becomes about 50 ppb.
  • an aluminum electrolytic device 33 As another form of aluminum to be injected, there is a method using an aluminum electrolytic device 33 as shown in Fig. 3: In this device, a metal aluminum electrode 31 is placed on the anode side of a DC power supply, and platinum is placed on the cathode side. The electrode 32 is connected to generate a solution containing aluminum ions to be implanted by electrolysis. This aluminum electrolytic device 33 can be used in place of the aluminum solution tank 29.
  • Cobalt-58 a radionuclide
  • a loop device that circulates high-temperature water simulating reactor water conditions, and zinc ions were continuously injected so that the zinc ion concentration in the reactor water simulator became 5 O ppb.
  • the aluminum ion concentration in the reactor water simulator was kept at 5 O ppb, aluminum ions were continuously injected, and when the reactor water simulator was not implanted, the cobalt ion was transferred to stainless steel piping.
  • Fig. 4 shows an example of measuring the amount of adhesion of No. 8. From FIG. 4, it can be seen that the presence of aluminum ions in the simulated reactor water reduces the amount of cobalt-158 adhering to the pipe surface to the same extent as the presence of zinc ions.
  • Aluminum to be injected include aqueous solutions, solutions with organic solvents, and suspensions with water using aluminum organometallic compounds such as aluminum ethoxide, aluminum isopropoxide, and aluminum lactate. Or in the form of a suspension with an organic solvent.
  • aluminum organometallic compounds such as aluminum ethoxide, aluminum isopropoxide, and aluminum lactate.
  • aluminum organometallic compounds such as aluminum ethoxide, aluminum isopropoxide, and aluminum lactate.
  • aluminum organometallic compounds such as aluminum ethoxide, aluminum isopropoxide, and aluminum lactate.
  • the concentration of divalent metal ions in the reactor water should be higher than the standard.
  • Nickel ions can be considered as the main component of the divalent metal ion in the reactor water. Therefore, if the aluminum concentration is controlled to be equal to or higher than the nickel concentration, the pipe dose can be reduced.
  • the nickel concentration in the reactor water is about 2 to 3 ppb during the start-up operation of the reactor, and about 0.2 to 0.3 ppb during the commercial operation of the reactor (during normal operation). Therefore, it is sufficient to control the aluminum concentration in the reactor water according to such an operation state.
  • FIG. 1 differs from the first embodiment shown in FIG. 1 in that an element analyzer 51 for analyzing the aluminum concentration in the reactor water and an aluminum injection pump 2 based on the analysis results of the element analyzer 51 are provided. That is, a control device 53 that controls the motor 8 is provided.
  • a sampling line 50 is provided upstream of the reactor water purification device 27.
  • the aluminum concentration is analyzed by an elemental analyzer 51 such as an ion chromatograph or ICP-MS, and a signal corresponding to the aluminum concentration is transmitted to the controller 3.
  • the control device 53 controls the aluminum injection pump 28 based on the signal corresponding to the aluminum concentration and the amount of change thereof, so that the aluminum solution tank 29 is controlled so that the aluminum concentration in the reactor water falls within a predetermined range. Control the aluminum injection speed.
  • FIG. 1 The elemental analyzer 51 analyzes both the aluminum concentration and the nickel concentration in the reactor water and sends signals corresponding to the aluminum concentration and the nickel concentration to the controller 53.
  • the controller 53 The concentration ratio between aluminum and nickel in the water is determined, and based on this concentration ratio, the aluminum injection pump 28 is controlled, and the aluminum injection speed from the aluminum solution tank 29 is controlled so that the concentration ratio falls within a predetermined range. Control.
  • the concentration ratio of aluminum and nickel in the reactor water can be adjusted within a predetermined range, effectively preventing cobalt from adhering to the piping, and minimizing the injection amount of aluminum. it can.
  • the surface dose rate of the recirculation system 26 is measured by the radiation measuring device 55 shown in FIG. 6, and the control device 53 is adapted to this surface dose rate.
  • the corresponding signal is input from the radiation measurement device 55, and the rate of change of the surface dose rate is determined based on this signal. If the rate of change becomes too large beyond the predetermined allowable range, the controller 53 controls the aluminum injection pump 28 to increase the amount of aluminum injected from the aluminum solution tank 29. .
  • the location where the surface dose rate is measured may be other than the recirculation system 26, for example, the upstream side of the reactor water purification device 27.
  • This plant consists of a pressure vessel 60, a pressurizer 62, a nuclear fuel 63, a steam generator 64, a purifier 65, a boric acid water injection system 66, a dilute water injection system 67, and an aluminum injection system 68 Etc.
  • the primary cooling water 61 is pressurized by the pressurizer 62 so as not to boil.
  • This primary cooling water 6 1 is used for nuclear fuel 6 3 in pressure vessel 60.
  • the water that has been ripened and heated by heat is subjected to heat exchange in the steam generator 64, and the heat is passed to the secondary cooling water 69 and returned to the pressure vessel # 0 again.
  • a part of the primary system cooling water 61 is guided to the reactor water purification system, and impurities are removed by the purification device G5.
  • the steam generated by the steam generator 64 is used for power generation in the turbine 21, and is returned to water by the condenser 22.
  • the reaction of the nuclear fuel 63 is controlled using both the flow rate of the primary cooling water 61 and the concentration of boric acid in the primary cooling water 61.
  • a borate water injection system 6 G and a dilution water injection system G 7 are connected.
  • an aluminum injection system 68 is provided, and the injection position for the primary cooling water 61 is provided between the purification device 65 and the pressure vessel 60. Inject aluminum continuously or intermittently during reactor operation.
  • the continuous presence of aluminum ions that easily form a corundum structure in the reactor water makes it possible to obtain the divalent cations of cobalt 160 and cobalt 588, which are the main nuclides for exposure. Since the cobalt ions can form a ferrite containing the cobalt and prevent the cobalt ions from adhering to the inner surface of the pipe, the pipe dose can be reliably reduced:
  • a suspension of aluminum hydroxide, an aluminum organometallic compound, or the like can be used as a form of the aluminum to be injected.
  • the primary system cooling water was sampled from a position other than between the purifier 65 and the aluminum injection position to measure the concentration of elements such as aluminum nickel, and the amount of aluminum injection was determined based on the measurement results.
  • the amount of aluminum injected is kept to a minimum and the dose rate of piping is reduced by configuring a control system that controls can do.
  • a method of operating a nuclear power plant and a nuclear power plant can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

A metallic ion easily forming a corundum construction is continuously left in a primary system cooling water during the operation of a nuclear reactor so as to prevent the deposition on the internal surface of a primary system cooling water piping of a divalent cobalt ion of cobalt-60 or cobalt-58 which is a main constituent of a radioactive nuclide which deposits on the piping when it forms a ferrite containing cobalt, thereby making it possible to securely reduce the dose of the piping.

Description

明 細 書  Specification
原子力ブラン 卜及びその運転方法 技術分野  Nuclear plant and its operation method
本発明はプラン 卜の運転方法に係り、 特に軽水または重水を冷却材と して用いる原子力プラン 卜に好適なプラン 卜の運転方法、 及びこれを実 施する原子力プラン 卜に関する。 背景技術  The present invention relates to a plant operating method, and more particularly to a plant operating method suitable for a nuclear plant using light water or heavy water as a coolant, and a nuclear plant implementing the plant. Background art
原子力プラン 卜では、 原子炉内において中性子照射によリ生じた放射 性核種が一次冷却系配管などに付着し、 定検時に作業者の放射線被曝の 原因となる。 このため、 配管への放射性核種の付着を防止する様々な方 法が検討されている。  In a nuclear power plant, radionuclides generated by neutron irradiation in a nuclear reactor adhere to the primary cooling system piping, etc., and cause workers to be exposed to radiation during regular inspections. For this reason, various methods are being studied to prevent the attachment of radionuclides to pipes.
このような方法の一つとして、 一定条件下で予め安定な予備酸化被膜 を配管内面に形成させておく技術が特開昭 62— 24 1 95 号公報に記載され ている。 しかし、 この方法では、 通常でも原子炉運転中に酸化膜が成長 するため、 予備酸化の効果が時間とともに小さくなる欠点がある。 また、 予備酸化処理は時間がかかる欠点がある。  As one of such methods, Japanese Patent Application Laid-Open No. 62-24195 discloses a technique in which a stable preliminary oxide film is formed on the inner surface of a pipe in advance under a certain condition. However, this method has a disadvantage that the effect of pre-oxidation decreases with time because the oxide film grows even during the operation of the reactor. Further, the pre-oxidation treatment has a disadvantage that it takes time.
一方、 炉水中に亜鉛 ( Z n ) を注入して放射性核種の配管への付着を 防止する技術が特開昭 60— 20 1 295号公報に記載されている。 しかし、 こ の方法では、 注入した亜鉛が放射化して Z n — 6 5 (半減期 2 4 4 曰) を生成し、 配管線量がかえって上昇してしまう場合がある。 この対策と して、 Z n — 6 5の親核種である Z n — 6 4 を同位体分離して減らした 亜鉛を用いる方法が特開昭 63— 1 72999号公報に記載されている。 しかし, この方法では、 同位体分離のコス 卜が高く経済的に問題がある。  On the other hand, a technique for injecting zinc (Zn) into reactor water to prevent radionuclides from adhering to piping is described in Japanese Patent Application Laid-Open No. 60-201295. However, in this method, the injected zinc may be activated to generate Zn — 65 (half-life 244), which may increase the pipe dose. As a countermeasure, JP-A-63-172999 discloses a method of using zinc in which Zn-64, which is a parent nuclide of Zn-65, is reduced by isotope separation. However, this method has high cost of isotopic separation and is economically problematic.
本発明の目的は、 低コス トで確実に配管線量を低滅でき、 且つ効果の P SUMMARY OF THE INVENTION An object of the present invention is to reliably reduce the dose of piping at a low cost and to achieve an effect. P
持続性を有する原子力プラン 卜及びその運転方法を提供することにある: 発明の開示 DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a sustainable nuclear plant and its operating method.
上記目的は、 酸化物がコランダム構造をとる金属を、 原子炉運転中に 連続的に一次冷却水中に注入することによリ達成される。  The above object is achieved by continuously injecting a metal whose oxide has a corundum structure into primary cooling water during reactor operation.
初めに、 原子力プラン 卜の配管への放射性核種の付着メ力ニズムにつ いて説明する。 第 3図はこの付着メ力ニズムを模式的に示したものであ る。 炉水中の放射性核種で定検時に問題となるのは比較的半滅期の長い C o— 5 8及び C 0— 6 0のコバル卜の放射性同位体である。 これらの 放射性核種はほとんどが炉水中でコバル卜 2価イオンとして存在してい る。 配管として用いられるステンレス鋼等の表面では、 腐食に伴い母材 から鉄が酸化膜を通して溶出し、 鉄 2価イオンとなる。 この鉄 2価ィォ ンは水中の溶存酸素によつて酸化され鉄 3価イオンとなる力'、'、 鉄 3価ィ オンの溶解度は非常に低いために再び酸化物固体となって配管表面に析 出する。  First, the mechanism of attachment of radionuclides to the piping of a nuclear plant will be explained. Fig. 3 schematically shows this adhesion mechanism. Of the radionuclides in the reactor water, the problem at the time of routine inspection is the radioisotopes of Co-58 and C0-60 cobalt, which have relatively long elimination periods. Most of these radionuclides exist as cobalt divalent ions in reactor water. On the surface of stainless steel used as piping, iron elutes from the base material through the oxide film due to corrosion and becomes iron divalent ions. This iron divalent ion is oxidized by dissolved oxygen in water to form iron trivalent ions. ',' Because the solubility of iron trivalent ion is extremely low, it becomes oxide solid again and becomes a pipe surface. To be deposited.
この際、 近くに 2価の金属イオンが存在すると、 鉄 3価イオンの一部 は 2価の金属イオンを含むスピネル型の酸化物であるフェライ 卜  At this time, if divalent metal ions are present in the vicinity, part of iron trivalent ions is ferrite, a spinel-type oxide containing divalent metal ions.
( X F e 24 , Xは 2価の金属イオン) と して析出する。 2価の金属ィ オンが存在しない場合は、 コランダム型の酸化物であるへマタイ 卜 ( α - F e 2 0 3 ) として析出する。 ここで、 スピネル型とは化学式 X Y 2〇 で表わされる酸化物の構造を意味し、 コランダム型とは化学式 Ζ 2 0 3 (XF e 24 , X is a divalent metal ion). If the divalent metal I on is not present, Matthew Bok to an oxide of corundum - deposited as (α F e 2 0 3) . Here, the spinel means structure oxide represented by the chemical formula XY 2 〇, Formula Zeta 2 0 3 and corundum
( Ζは 3価の金属イオン) で表わされる酸化物の構造を意味する。 (Ζ means a trivalent metal ion).
フェライ 卜としては、 炉水中での存在量が最も多い 2価の金属イオン であるニッケルイオンとの反応で形成されるニッケルフェライ 卜が主体 である力、 その他にコバルトイオンも含まれ、 結果として放射性核種の 配管付着を引き起こす。 亜鉛イオンも 2価イオンであるためフェライ ト化する力'、'、 その安定度 が相対的に低いため析出すると直ぐに溶解してしまうので、 結果的にフ 二ライ 卜としての付着量が滅少する。 Ferrites are mainly composed of nickel ferrite formed by the reaction with nickel ions, which are the divalent metal ions that are the most abundant in the reactor water. Causes nuclides to adhere to pipes. Since zinc ions are also divalent ions, the ability to form ferrite is relatively low, and their stability is relatively low, so they dissolve immediately upon precipitation, and as a result, the amount of adhesion as a fluoride decreases. I do.
しかし、 フェライ トとして析出を防ぐ方法はこればかりではない: 発 明者らによる研究の結果、 コランダム型酸化物を形成しやすい金属ィォ ンが鉄と共存する場合には、 鉄はフェライ 卜と しての析出が生じにく く、 コランダム型酸化物であるへマタィ 卜としての析出が生じ易いことが新 しい知見として判明した。  However, this is not the only way to prevent precipitation as ferrite: iron has been found to be ferrite when metal ions that are likely to form corundum oxide coexist with iron as a result of studies by the inventors. It has been found from new findings that precipitation is difficult to occur, and that precipitation as a hematite, which is a corundum oxide, is likely to occur.
これは次のような理由によるものと考えられる。 即ち、 析出初期には 鉄 3価イオンからへマタイ 卜の微小粒子が配管表面に析出する。 析出し たへマタイ 卜はコランダム構造を有するため、 これと結晶構造が類似し ているコランダム型酸化物を形成する 3価の金属イオンが配管表面に付 着し易くなる。 付着した 3価の金属ィオンは配管表面にコランダム型酸 化物 ( Z z 0 3, Zは 3価の金属イオン) として安定に析出するので、 へ マタイ 卜が水中の 2価の金属イオンと結合してフェライ 卜に変化するこ とを防ぐことができる。 This is thought to be due to the following reasons. That is, in the initial stage of precipitation, microparticles of hematite are precipitated from the iron trivalent ions on the pipe surface. Since the precipitated hematite has a corundum structure, trivalent metal ions forming a corundum-type oxide having a crystal structure similar to this are likely to adhere to the pipe surface. Adhesion trivalent metal Ion who is corundum oxides on the pipe surface (Z z 0 3, Z is a metal ion of trivalent) so stably precipitated, to Matthew I bind to divalent metal ions in the water as It can be prevented from changing to ferrite.
この結果、 コバルトを含むフェライ 卜が配管表面に析出することを極 力抑えることができるので、 配管への放射性核種の付着を抑制し、 配管 線量を確実に低減することができる。  As a result, precipitation of cobalt-containing ferrite on the pipe surface can be suppressed as much as possible, so that attachment of radionuclides to the pipe can be suppressed, and the pipe dose can be reliably reduced.
このようなコランダム型酸化物を形成する金属イオンとしては、 アル ミニゥム 3価イオン, ガリウム 3価イオン, クロム 3価イオン, チタン 3価イオン, バナジウム 3価イオン, 鉄 3価イオン, ロジウム 3価ィォ ンなどがある。 このうち、 鉄 3価イオンは前述したフェライ 卜の発生源 となるので、 本発明の注入金属としては好ましくない。 また、 チタン 3 価イオン, バナジウム 3価イオン, ロジウム 3価イオンはコランダム型 酸化物の安定性が余り良くないので、 本発明の注入金属としては、 コラ ンダム型酸化物の安定性が良いアルミニゥム 3価ィオン, ガリゥム 3価 イオン, クロム 3価イオンの方が好ましい。 また、 クロム 3価イオンは 炉水中での安定性が良くなく、 すぐにクロム酸イオン (クロム 6価ィォ ンに相当) に変化してしまうので、 クロムを用いる場合は、 クロム酸ィ オンをクロム 3価イオンに還元する還元剤と共用するか、 還元雰囲気で 用いる必要がある。 Metal ions forming such corundum-type oxides include aluminum trivalent ion, gallium trivalent ion, chromium trivalent ion, titanium trivalent ion, vanadium trivalent ion, iron trivalent ion, and rhodium trivalent ion. Etc. Of these, iron trivalent ions are a source of the ferrite described above, and are therefore not preferred as the implanted metal of the present invention. In addition, titanium trivalent ion, vanadium trivalent ion and rhodium trivalent ion do not have very good stability of corundum-type oxides. Aluminum trivalent ions, gallium trivalent ions, and chromium trivalent ions, which have good stability of the random type oxide, are preferred. In addition, chromium trivalent ions do not have good stability in the reactor water and immediately change to chromate ions (corresponding to chromium hexavalent ions). It must be shared with a reducing agent that reduces chromium trivalent ions or used in a reducing atmosphere.
一方、 炉水中に添加した金属イオンが炉心部で放射化されると、 コラ ンダム型酸化物であるへマタィ 卜中に残留して配管に付着し配管線量を 上昇させる原因になる。 このため、 添加する金属イオンはこのような二 次的な放射性核種の生成の問題がないものを選ぶ必要がある。  On the other hand, if metal ions added to the reactor water are activated in the reactor core, they will remain in the hematite, which is a random-type oxide, and adhere to the pipes, causing an increase in pipe dose. Therefore, it is necessary to select metal ions to be added that do not have such a problem of secondary radionuclide generation.
第 8図はコランダム型酸化物になり易い金属の核特性を亜鉛と比較し て示したものである。 第 8図のように、 クロムは放射化してできる生成 核種の半減期が比較的長い ( 2 7 . 8 日) 力'、'、 アルミニウム及びガリゥ ムは生成核種の半減期が短い し< 1 が 2 . 2 4分、 G aが 1 4 . 1 時間) ため、,減衰が早いので実際上問題とはならない  Fig. 8 shows the nuclear properties of metals that easily become corundum-type oxides in comparison with zinc. As shown in Fig. 8, chromium has a relatively long half-life of the generated nuclide produced by activation (27.8 days). (2.24 minutes, G a is 14.1 hours)
従って、 アルミニウムやガリウムを用いれば中性子による放射化で長 い半減期の核種が生成することもない。 また、 アルミニウムやガリウム の場合、 同位体分離の必要がなく資源としての存在量も多いので、 コス 卜は非常に安く済む。 特にアルミニウムは生成核種の半減期が短く、 高 純度のものが安く得られる。 更に、 アルミニウムはこれまでも炉水中か らその存在が検出されているため、 注入により新たな問題が発生するこ とも少ない。  Therefore, if aluminum or gallium is used, nuclides with a long half-life will not be produced by neutron activation. In the case of aluminum and gallium, the cost is very low because isotope separation is not required and the abundance as a resource is large. In particular, aluminum has a short half-life of product nuclides, and high-purity aluminum can be obtained at low cost. In addition, since aluminum has already been detected in the reactor water, injection does not cause any new problems.
また、 クロムにしても、 一ヶ月弱の半減期が許容されるブラン 卜に対 しては、 充分に適用できる。 更に、 チタン, バナジウム, ロジウムに関 しては、 半減期が夫々 5 . 7 6分, 3 . 7 5分, 4 2 . 3 秒と十分に短い ので、 コランダム型酸化物の安定性の悪さが許容される場合には、 充分 に適用できる。 Also, chromium can be adequately applied to brands where a half-life of less than one month is acceptable. Furthermore, titanium, vanadium, and rhodium have sufficiently short half-lives of 5.76 minutes, 3.75 minutes, and 42.3 seconds, respectively. If acceptable, enough Applicable to
注入量はフェライ 卜の析出に寄与する 2価金属イオン濃度との比が一 定値以上 (少なく とも 1以上) になるように制御すれば良く、 実際上は 炉水中の 2価金属イオンの主成分であるニッケルイオンと注入する金属 イオンとの比を指標とすれば良い。 注入量が多過ぎるとイオン交換樹脂 などを含む一次冷却水浄化装置の寿命を縮めることになるので、 注入量 は効果がある範囲でできるだけ少なくする必要がある。 また、 被曝の原 因となる配管線量を直接測定し、 その上昇率に基づいて注入量を制御し てち良い。 図面の簡単な説明  The injection amount may be controlled so that the ratio with respect to the concentration of divalent metal ions contributing to the precipitation of ferrite is a certain value or more (at least 1 or more). In practice, the main component of divalent metal ions in the reactor water is The ratio of nickel ions to metal ions to be implanted may be used as an index. If the injection amount is too large, the service life of the primary cooling water purification device containing ion-exchange resin etc. will be shortened, so the injection amount must be as small as possible within the effective range. It is also possible to directly measure the dose of piping that causes exposure, and control the amount of injection based on the rate of increase. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明を沸騰水型原子力発電プラン 卜に適用した第 1 の実 施例を示す図である。  FIG. 1 is a diagram showing a first embodiment in which the present invention is applied to a boiling water nuclear power plant.
第 2図は、 第 1 の実施例のアルミニウム電解装置を示す図である。 第 3図は、 原子力プラン 卜の配管への放射性核種の付着メ力二ズムを 説明する図である。  FIG. 2 is a diagram showing an aluminum electrolytic device of the first embodiment. Fig. 3 is a diagram illustrating the mechanism of attachment of radionuclides to piping in a nuclear plant.
第 4図は、 原子力プラン 卜の配管へのコランダム型酸化物の析出メ力 二ズムを説明する図である。  FIG. 4 is a diagram for explaining the mechanism of precipitation of corundum-type oxide on the piping of a nuclear power plant.
第 5図は、 配管に付着する放射能量の経時変化を示す図である- 第 6図は、 本発明を沸騰水型原子力発電プラン 卜に適用した第 2の実 施例を示す図である。  FIG. 5 is a diagram showing a change over time in the amount of radioactivity adhering to a pipe. FIG. 6 is a diagram showing a second embodiment in which the present invention is applied to a boiling water nuclear power plant.
第 7図は、 本発明を加圧水型原子力発電ブラン 卜に適用した第 3の実 施例を示す図である。  FIG. 7 is a diagram showing a third embodiment in which the present invention is applied to a pressurized water nuclear power plant.
第 8図は、 コランダム型酸化物になり易い金属の核特性を示す図であ る。 発明を実施するための最良の形態 FIG. 8 is a diagram showing nuclear properties of a metal that easily becomes a corundum oxide. BEST MODE FOR CARRYING OUT THE INVENTION
第 1 図に本発明を沸騰水型原子力発電プラン 卜に適用した第 1 の実施 例を示す: 本プラン 卜は、 核燃料 2 5, タービン 2 1 , 復水器 'ί , 復 水浄化装置 2 3, 給水加熱器 2 4 , 再循環系 2 6, 炉水浄化装置 2 7, アルミニウム注入装置などで構成される。  Fig. 1 shows a first embodiment of the present invention applied to a boiling water nuclear power plant: Nuclear fuel 25, turbine 21, condenser ί, condensate purifier 23 , Feed water heater 24, recirculation system 26, reactor water purification device 27, aluminum injection device, etc.
タービン 2 1 を出た蒸気は復水器 2 2で液体に戻され、 復水器 2 2 を 出た復水は復水浄化装置 2 3により不純物を除去される。 復水浄化装置 2 3で浄化された復水は給水加熟器 2 4により加熟される力'、'、 その際、 給水加熟器 2 4の配管の腐食に伴い金属腐食生成物が発生し、 これが給 水とともに炉内へ持ち込まれる。  The steam exiting the turbine 21 is returned to liquid by the condenser 22, and the condensate exiting the condenser 22 is removed by the condensate purification device 23. The condensate purified by the condensate purifier 23 is ripened by the feed water ripener 24. ',' At that time, metal corrosion products are generated due to the corrosion of the piping of the feed water ripener 24. This is brought into the furnace together with the water supply.
炉内に持ち込まれた金属腐食生成物は核燃料 2 δの燃料棒の沸騰部表 面に付着し、 そこで核燃料 2 5の核分裂で生じた中性子の照射を受ける 二とにより放射化して、 放射性核種となる。 核燃料 2 5の表面で生成し た放射性核種の一部は、 再び炉水中に溶出する。 炉水中に溶出した放射 性核種のうち、 一部は炉水浄化装置 2 7により除去されるが、 残りは再 循環系 2 6 を循 ί!するうちに配管表面の酸化の進行に伴い酸化皮膜内に 取り込まれ、 配管線量率の上昇原因となる。  The metal corrosion product brought into the reactor adheres to the surface of the boiling part of the fuel rod of nuclear fuel 2δ, where it is activated by irradiation with neutrons generated by the fission of nuclear fuel 25, resulting in radionuclide Become. Some of the radionuclides generated on the surface of the nuclear fuel 25 are eluted again into the reactor water. Of the radionuclides eluted in the reactor water, some are removed by the reactor water purifier 27, while the remainder is oxidized as the oxidation of the pipe surface progresses while circulating through the recirculation system 26. It is taken in and causes an increase in the pipe dose rate.
このような放射性核種の配管への付着を防ぐために、 本実施例ではァ ルミニゥム注入装置としてアルミニウム溶液タ ンク 2 9 とアルミニウム 注入ポンブ 2 8 を設け、 復水浄化装置 2 3 と給水加熱器 2 4の間から、 原子炉の運転中に連続的又は断続的にアルミニゥムを注入するようにし ている。 このようにして炉水中にコランダム構造を形成し易いアルミ二 ゥムイオンを持続的に存在させることにより、 被曝の主要因となる核種 であるコバルト— 6 0及びコバルト一 5 8の 2価のコバルトイオンがコ バルトを含むフヱライ 卜を形成して配管内表面に付着することを妨害で きるので、 配管線量を確実に低減することができる。 注入するアルミニウムは、 水酸化アルミ二ゥムの懸濁液の形態でアル ミニゥム溶液タンク 2 9に供給し、 炉水中のアルミニゥム濃度が約 5 0 ppb となるような速度で注入する。 注入するアルミニウムの他の形態と しては、 第 3図のようなアルミニゥム電解装置 3 3 を用いる方法もある: 本装置では、 直流電源の陽極側に金属アルミニウム電極 3 1 を、 陰極側 に白金電極 3 2 を接続して、 電解により注入するアルミニウムイオンを 含む溶液を生成する。 このアルミニウム電解装置 3 3はアルミニウム溶 液タ ンク 2 9の代わりに使用することもできる。 In order to prevent such radionuclides from adhering to the pipe, in this embodiment, an aluminum solution tank 29 and an aluminum injection pump 28 were provided as an aluminum injection device, and a condensate purification device 23 and a feedwater heater 24 were provided. During this period, aluminum is injected continuously or intermittently during operation of the reactor. In this way, the continuous presence of aluminum ions that easily form a corundum structure in the reactor water allows the divalent cobalt ions, cobalt-60 and cobalt-158, which are the main nuclides to be exposed, to be exposed. Since it is possible to prevent the formation of the cobalt-containing light and adhere to the inner surface of the pipe, it is possible to surely reduce the dose of the pipe. The aluminum to be injected is supplied to the aluminum solution tank 29 in the form of a suspension of aluminum hydroxide, and is injected at a rate such that the aluminum concentration in the reactor water becomes about 50 ppb. As another form of aluminum to be injected, there is a method using an aluminum electrolytic device 33 as shown in Fig. 3: In this device, a metal aluminum electrode 31 is placed on the anode side of a DC power supply, and platinum is placed on the cathode side. The electrode 32 is connected to generate a solution containing aluminum ions to be implanted by electrolysis. This aluminum electrolytic device 33 can be used in place of the aluminum solution tank 29.
炉水条件を模擬した高温水を循環させるループ装置中に放射性核種で あるコバルトー 5 8 を添加し、 更に炉水模擬装置中の亜鉛ィオン濃度が 5 O ppb となるように亜鉛イオンを注入し続けた場合、 炉水模擬装置中 のアルミニウムイオン濃度が 5 O ppb となるようにアルミニウムイオン を注入し続けた場合、 及び何も注入しない場合における炉水模擬装置の ステンレス鋼配管へのコバル卜一 5 8の付着量を測定した例を第 4図に 示す。 第 4図から、 模擬炉水中にアルミニウムイオンを存在させる二と により、 配管表面に付着するコバルト一 5 8の量が、 亜鉛イオンを存在 させた場合と同程度に低減されていることが判る。  Cobalt-58, a radionuclide, was added to a loop device that circulates high-temperature water simulating reactor water conditions, and zinc ions were continuously injected so that the zinc ion concentration in the reactor water simulator became 5 O ppb. In the case where the aluminum ion concentration in the reactor water simulator was kept at 5 O ppb, aluminum ions were continuously injected, and when the reactor water simulator was not implanted, the cobalt ion was transferred to stainless steel piping. Fig. 4 shows an example of measuring the amount of adhesion of No. 8. From FIG. 4, it can be seen that the presence of aluminum ions in the simulated reactor water reduces the amount of cobalt-158 adhering to the pipe surface to the same extent as the presence of zinc ions.
また、 注入するアルミニウムの他の形態としては、 アルミニウムエト キシ ド, アルミニウムイソプロポキシド, 乳酸アルミニウムなどのアル ミニゥムの有機金属化合物を用いて、 水溶液, 有機溶剤との溶液, 水と の懸濁液、 又は有機溶剤との懸濁液とい ό形態でアルミニウム溶液タン ク 2 9に提供することができる。 これらの有機アルミニウム化合物は、 炉内に注入されるとその高温条件や放射線照射のために分解し、 一部は アルミニウムイオンとして炉水中に存在することになる。  Other forms of aluminum to be injected include aqueous solutions, solutions with organic solvents, and suspensions with water using aluminum organometallic compounds such as aluminum ethoxide, aluminum isopropoxide, and aluminum lactate. Or in the form of a suspension with an organic solvent. When these organoaluminum compounds are injected into the furnace, they decompose due to the high temperature conditions and irradiation, and some of them are present in the reactor water as aluminum ions.
尚、 本実施例では炉水中のアルミニウム濃度が約 5 O ppb の例につい て説明したが、 上記した効果を達成するために必要なアルミニウム濃度 としては、 フェライ 卜の発生源となる炉水中の 2価の金属イオンの濃度 以上が目安となる。 炉水中の 2価の金属ィオンの主成分としてはニッケ ルイオンが考えられるので、 アルミニウム濃度が二ッケル濃度以上とな るように制御すれば、 配管線量の低減効果を得ることができる。 具体的 には、 炉水中のニッケル濃度は、 原子炉の起動運転時に 2〜 3 ppb 程度、 原子炉の営業運転時 (通常運転時) に 0 . 2〜 0 . 3 ppb 程度となること が知られており、 このような運転状態に応じて炉水中のアルミニウム濃 度を制御すれば良い。 In this embodiment, an example in which the aluminum concentration in the reactor water is about 5 O ppb has been described. As a guideline, the concentration of divalent metal ions in the reactor water, which is the source of ferrite, should be higher than the standard. Nickel ions can be considered as the main component of the divalent metal ion in the reactor water. Therefore, if the aluminum concentration is controlled to be equal to or higher than the nickel concentration, the pipe dose can be reduced. Specifically, it is known that the nickel concentration in the reactor water is about 2 to 3 ppb during the start-up operation of the reactor, and about 0.2 to 0.3 ppb during the commercial operation of the reactor (during normal operation). Therefore, it is sufficient to control the aluminum concentration in the reactor water according to such an operation state.
次に、 第 6図を用いて本発明を沸騰水型原子力発電ブラン 卜に適用し た第 2の実施例を説明する。 本実施例が第 1 図に示した第 1 の実施例と 異なる点は、 炉水中のアルミニウム濃度を分析する元素分析装置 5 1 と、 元素分析装置 5 1 の分析結果に基づいてアルミニウム注入ポンプ 2 8 を 制御する制御装置 5 3 を備えたことである。  Next, a second embodiment in which the present invention is applied to a boiling water nuclear power plant will be described with reference to FIG. This embodiment differs from the first embodiment shown in FIG. 1 in that an element analyzer 51 for analyzing the aluminum concentration in the reactor water and an aluminum injection pump 2 based on the analysis results of the element analyzer 51 are provided. That is, a control device 53 that controls the motor 8 is provided.
本実施例では、 前述した放射性核種の配管への付着を防ぐために、 炉 水中のアルミニウム濃度を連続してモニタ リ ン ゲするために、 炉水浄化 装置 2 7の上流側にサンプリングライ ン 5 0を設けてイオンクロマ 卜グ ラフや I C P— M S等の元素分析装置 5 1 でアルミニウム濃度を分析し、 アルミニウム濃度に対応する信号が制御装置 ϋ 3に送信される。 制御装 置 5 3は、 アルミニウム濃度に対応する信号及びその変化量に基づいて アルミニウム注入ポンプ 2 8 を制御して、 炉水中のアルミニウム濃度が 所定の範囲内に納まるようにアルミニウム溶液タンク 2 9からのアルミ ニゥム注入速度を制御する。  In this embodiment, in order to continuously monitor and monitor the aluminum concentration in the reactor water in order to prevent the aforementioned radionuclide from adhering to the piping, a sampling line 50 is provided upstream of the reactor water purification device 27. The aluminum concentration is analyzed by an elemental analyzer 51 such as an ion chromatograph or ICP-MS, and a signal corresponding to the aluminum concentration is transmitted to the controller 3. The control device 53 controls the aluminum injection pump 28 based on the signal corresponding to the aluminum concentration and the amount of change thereof, so that the aluminum solution tank 29 is controlled so that the aluminum concentration in the reactor water falls within a predetermined range. Control the aluminum injection speed.
このような制御により、 第 1 の実施例で得られる効果に加えて、 配管 への放射性核種の付着を抑制するために必要な量以上にアルミニウムが 原子炉圧力容器内に持ち込まれることを防止することもできる。  By such control, in addition to the effects obtained in the first embodiment, it is possible to prevent aluminum from being brought into the reactor pressure vessel in an amount more than necessary to suppress the adhesion of radionuclides to pipes. You can also.
本実施例による第 2のアルミニウム注入量の制御方法では、 第 6図の 元素分析装置 5 1 で炉水中のアルミニウム濃度及びニッケル濃度の両方 を分析し、 アルミニウム濃度及び二ッケル濃度に対応する信号を制御装 置 5 3に送信する: この場合、 制御装置 5 3は、 炉水中のアルミニウム とニッケルの濃度比を求め、 この濃度比に基づいてアルミニウム注入ポ ンプ 2 8 を制御して、 濃度比が所定の範囲内に納まるようにアルミニゥ ム溶液タンク 2 9からのアルミニウム注入速度を制御する。 In the second method for controlling the aluminum injection amount according to the present embodiment, FIG. The elemental analyzer 51 analyzes both the aluminum concentration and the nickel concentration in the reactor water and sends signals corresponding to the aluminum concentration and the nickel concentration to the controller 53. In this case, the controller 53 The concentration ratio between aluminum and nickel in the water is determined, and based on this concentration ratio, the aluminum injection pump 28 is controlled, and the aluminum injection speed from the aluminum solution tank 29 is controlled so that the concentration ratio falls within a predetermined range. Control.
このような制御により、 炉水中のアルミニウムとニッケルの濃度比を 所定の範囲内に調節し、 配管へのコバル卜付着を効果的に抑制できると 共に、 アルミニゥム注入量を必要最小限に留めることができる。  With such control, the concentration ratio of aluminum and nickel in the reactor water can be adjusted within a predetermined range, effectively preventing cobalt from adhering to the piping, and minimizing the injection amount of aluminum. it can.
本実施例による第 3のアルミニウム注入量の制御方法では、 第 6図に 示す放射線計測装置 5 5で再循環系 2 6の表面線量率を計測し、 制御装 置 5 3はこの表面線量率に対応する信号を放射線計測装置 5 5から入力 し、 この信号に基づいて表面線量率の変化率を求める。 この変化率が所 定の許容範囲を越えて大きくなり過ぎた場合、 制御装置 5 3はアルミ二 ゥム溶液タンク 2 9からのアルミニウム注入量を増やすように、 アルミ ニゥム注入ポンプ 2 8 を制御する。  In the third method for controlling the aluminum injection amount according to the present embodiment, the surface dose rate of the recirculation system 26 is measured by the radiation measuring device 55 shown in FIG. 6, and the control device 53 is adapted to this surface dose rate. The corresponding signal is input from the radiation measurement device 55, and the rate of change of the surface dose rate is determined based on this signal. If the rate of change becomes too large beyond the predetermined allowable range, the controller 53 controls the aluminum injection pump 28 to increase the amount of aluminum injected from the aluminum solution tank 29. .
このような制御により、 配管へのコバルト付着を効果的に抑制できる と共に、 アルミニウム注入量を必要最小限に留めることができる。 尚、 表面線量率を計測する場所は再循環系 2 6以外でも良く、 例えば炉水浄 化装置 2 7の上流側などでも良い。  With such control, it is possible to effectively suppress the adhesion of cobalt to the piping and to minimize the amount of aluminum to be injected. The location where the surface dose rate is measured may be other than the recirculation system 26, for example, the upstream side of the reactor water purification device 27.
次に、 第 7図を用いて本発明を加圧水型原子力発電プラン 卜に適用し た第 3の実施例を説明する。 本プラン 卜は、 圧力容器 6 0, 加圧器 6 2 , 核燃料 6 3, 蒸気発生器 6 4, 浄化装置 6 5 , ほう酸水注入系 6 6, 希 釈水注入系 6 7 , アルミニウム注入系 6 8などで構成される。  Next, a third embodiment in which the present invention is applied to a pressurized water nuclear power plant will be described with reference to FIG. This plant consists of a pressure vessel 60, a pressurizer 62, a nuclear fuel 63, a steam generator 64, a purifier 65, a boric acid water injection system 66, a dilute water injection system 67, and an aluminum injection system 68 Etc.
本実施例では、 加圧器 6 2で一次系冷却水 6 1 を加圧して沸騰しない ようにしている。 この一次系冷却水 6 1 は圧力容器 6 0内の核燃料 6 3 によって加熟され、 昇温した水は蒸気発生器 6 4で熱交換し、 熱を二次 系冷却水 6 9に渡して再び圧力容器 ΰ 0内に戻る。 この際、 一次系冷却 水 6 1 の一部は炉水浄化系に導かれ浄化装置 G 5で不純物が取り除かれ る。 蒸気発生器 6 4で発生した蒸気は、 タ一ビン 2 1 において発電に利 用され、 復水器 2 2により水に戻される。 また、 加圧水型原子炉では核 燃料 6 3の反応の制御を、 一次系冷却水 6 1 の流量と、 一次系冷却水 6 1 中のほう酸濃度の両者を用いて行うため、 浄化装置 6 5の下流側に ほう酸水注入系 6 G と希釈水注入系 G 7が接続されている。 In the present embodiment, the primary cooling water 61 is pressurized by the pressurizer 62 so as not to boil. This primary cooling water 6 1 is used for nuclear fuel 6 3 in pressure vessel 60. The water that has been ripened and heated by heat is subjected to heat exchange in the steam generator 64, and the heat is passed to the secondary cooling water 69 and returned to the pressure vessel # 0 again. At this time, a part of the primary system cooling water 61 is guided to the reactor water purification system, and impurities are removed by the purification device G5. The steam generated by the steam generator 64 is used for power generation in the turbine 21, and is returned to water by the condenser 22. In the pressurized water reactor, the reaction of the nuclear fuel 63 is controlled using both the flow rate of the primary cooling water 61 and the concentration of boric acid in the primary cooling water 61. On the downstream side, a borate water injection system 6 G and a dilution water injection system G 7 are connected.
このような構成のため加圧水型原子炉では、 一次系冷却水 6 1 と接す る配管に放射性核種が付着して被曝の原因となる。 この放射性核種の配 管への付着を防ぐために、 本実施例ではアルミニゥム注入系 6 8 を設け、 その一次系冷却水 6 1 への注入位置を浄化装置 6 5 と圧力容器 6 0の間 に設け、 原子炉の運転中に連続的または断続的にアルミニウムを注入す る。  Due to such a configuration, in the pressurized water reactor, radionuclides adhere to the piping in contact with the primary cooling water 61 and cause exposure. In order to prevent this radionuclide from adhering to the pipe, in this embodiment, an aluminum injection system 68 is provided, and the injection position for the primary cooling water 61 is provided between the purification device 65 and the pressure vessel 60. Inject aluminum continuously or intermittently during reactor operation.
このようにして、 炉水中にコランダム構造を形成し易いアルミニウム イオンを持続的に存在させることにより、 被曝の主要因となる核種であ るコバル ト一 6 0及びコバル ト— 5 8の 2価のコバル トイオンがコバル 卜を含むフェライ 卜を形成して配管内表面に付着することを妨害できる ので、 配管線量を確実に低減することができる:  In this way, the continuous presence of aluminum ions that easily form a corundum structure in the reactor water makes it possible to obtain the divalent cations of cobalt 160 and cobalt 588, which are the main nuclides for exposure. Since the cobalt ions can form a ferrite containing the cobalt and prevent the cobalt ions from adhering to the inner surface of the pipe, the pipe dose can be reliably reduced:
本実施例においても、 第 1及び第 2の実施例で説明したように、 注入 するアルミニウムの形態として、 水酸化アルミニウムの懸濁液や、 アル ミニゥムの有機金属化合物などを用いることができる。 また、 浄化装置 6 5 とアルミニウム注入位置の間以外の位置から一次系冷却水をサンプ リ ングしてアルミ二ゥムゃニッケルなどの元素濃度を測定し、 この測定 結果に基づいてアルミニウムの注入量を制御する制御系を構成する二と により、 アルミニウム注入量を必要最小限に留めて配管の線量率を低減 することができる。 Also in this embodiment, as described in the first and second embodiments, as a form of the aluminum to be injected, a suspension of aluminum hydroxide, an aluminum organometallic compound, or the like can be used. Also, the primary system cooling water was sampled from a position other than between the purifier 65 and the aluminum injection position to measure the concentration of elements such as aluminum nickel, and the amount of aluminum injection was determined based on the measurement results. The amount of aluminum injected is kept to a minimum and the dose rate of piping is reduced by configuring a control system that controls can do.
尚、 以上の実施例では注入する金属としてアルミニウムを用いた例を 説明した力 この他にガリウムやクロムなどを用いても、 配管の線量率 の低減効果を得ることができる。 産業上の利用可能性  It should be noted that in the above embodiment, the force described in the example in which aluminum is used as the metal to be injected. In addition to this, even if gallium or chromium is used, the effect of reducing the dose rate of the pipe can be obtained. Industrial applicability
本発明によれば予備酸化等の手間がかからず、 効果が持続的であると 共に、 コス トが安く二次的な放射性核種生成のような弊害なしに配管の 線量を確実に低減できるプラン 卜の運転方法及び原子力ブラン 卜を提供 できる。  According to the present invention, there is no need for pre-oxidation, etc., the effect is continuous, and the cost can be reduced, and the dose to the pipe can be surely reduced without adverse effects such as secondary radionuclide production. A method of operating a nuclear power plant and a nuclear power plant can be provided.

Claims

請求の範囲 The scope of the claims
1 . 軽水又は重水を冷却材として用いる原子力プラン 卜において、 酸化物がコランダム構造をとる金属を前記冷却材中に注入する注入手 段と、  1. In a nuclear power plant using light or heavy water as a coolant, an injection means for injecting a metal having an oxide having a corundum structure into the coolant;
原子炉運転中に、 前記金属を連続的に前記冷却材中に注入するように 前記注入手段を制御する制御手段とを備えたこ とを特徴とする原子力プ ラン 卜。  Control means for controlling the injection means so as to continuously inject the metal into the coolant during operation of the nuclear reactor.
2 . 請求の範囲第 1 項において、  2. In claim 1,
前記冷却材中の前記金属の濃度を測定する濃度測定手段を備え、 前記制御手段は、 該濃度測定手段によ り測定される金属濃度が所定の 範囲となるように、 前記注入手段からの前記金属の注入量を制御するこ とを特徴とする原子力プラン 卜。  A concentration measuring unit for measuring a concentration of the metal in the coolant, wherein the control unit controls the concentration of the metal from the injecting unit so that the metal concentration measured by the concentration measuring unit falls within a predetermined range. A nuclear power plant characterized by controlling the amount of metal injected.
3 . 請求の範囲第 1項において、  3. In Claim 1,
前記冷却材中の前記金属の濃度及び二ッゲル';農度を測定する濃度測定 手段を備え、  Concentration measurement means for measuring the concentration of the metal in the coolant and Nigger ';
前記制御手段は、 該濃度測定手段により測定される金属濃度とニッケ ル濃度の比が所定の範囲となるように、 前記注人手段からの注入量を制 御することを特徴とする原子力プラン 卜。  The nuclear power plant, wherein the control means controls an injection amount from the pouring means so that a ratio of a metal concentration and a nickel concentration measured by the concentration measuring means falls within a predetermined range. .
4 . 請求の範囲第 1 項において、  4. In claim 1,
前記冷却材の配管の表面線量率を測定する線量率測定手段を備え、 前記制御手段は、 該線量率測定手段により測定される表面線量率に基 づいて前記注入手段からの注入量を制御することを特徴とする原子カブ ラン 卜 - A dose rate measuring means for measuring a surface dose rate of the coolant pipe, wherein the control means controls an injection amount from the injection means based on the surface dose rate measured by the dose rate measuring means. Atomic cabrant characterized by the following-
5 . 請求の範囲第 4項において、 5. In Claim 4,
前記線量率測定手段は、 前記冷却材を再循環させる再循環系配管又は 前記冷却材を浄化する浄化系配管の表面線量率を測定することを特徴と する原子力プラン 卜。 The dose rate measurement unit measures a surface dose rate of a recirculation pipe for recirculating the coolant or a purification pipe for purifying the coolant. Nuclear power plant.
6 . 原子炉の一次冷却水を浄化する浄化装置を備えた原子力プラン 卜に おいて、  6. At a nuclear power plant equipped with a purification device that purifies the primary cooling water of the reactor,
前記浄化装置よりも下流側の一次冷却水配管に接続され、 酸化物がコ ランダム構造をとる金属を前記一次冷却水中に注入する注入手段と、 原子炉運転中に、 前記金属を連続的に前記一次冷却水中に注入するよ うに前記注入手段を制御する制御手段とを備えたことを特徴とする原子 力プラン ト。  An injection means connected to a primary cooling water pipe downstream of the purification device, wherein an oxide injects a metal having a corundum structure into the primary cooling water; and Control means for controlling the injection means so as to inject the cooling water into primary cooling water.
7 . 請求の範囲第 1項乃至第 6項の何れかにおいて、 前記金属は、 少な く とも金属原子, 金属イオン, 金属化合物のうちの何れかの形態で注入 されることを特徴とする原子力プラン 卜。  7. The nuclear power plant plan according to any one of claims 1 to 6, wherein the metal is injected at least in any form of a metal atom, a metal ion, or a metal compound. Uru.
8 . 請求の範囲第 1項乃至第 6項の何れかにおいて、 前記金属は、 少な く ともアルミニウム, ガリウム, クロムのうちの何れかであることを特 徴とする原子力ブラン 卜。  8. A nuclear power plant according to any one of claims 1 to 6, wherein the metal is at least one of aluminum, gallium, and chromium.
9 . 軽水又は重水を冷却材として用いる原子力プラン 卜の運転方法にお いて、  9. In the operation of nuclear power plant using light or heavy water as coolant,
原子炉運転中に、 酸化物がコランダム構造をとる金属を連続的に炉水 中に注入することを特徴とする原子力ブラン 卜の運転方法。  A method for operating a nuclear power plant, comprising continuously injecting metal having a corundum structure in oxide into reactor water during operation of a nuclear reactor.
1 〇 . 請求の範囲第 9項において、  1 〇. In Claim 9,
前記冷却材中の前記金属の濃度を測定し、 測定された金属濃度が所定 の範囲となるように、 前記金属の注入量を制御することを特徴とする原 子力プラン 卜の運転方法。  A method for operating a nuclear power plant, comprising: measuring a concentration of the metal in the coolant; and controlling an injection amount of the metal such that the measured metal concentration falls within a predetermined range.
1 1 . 請求の範囲第 9項において、  1 1. In claim 9,
前記冷却材中の前記金属の濃度及び二ッケル濃度を測定し、 測定され た金属濃度とニッケル濃度の比が所定の範囲となるように、 前記金属の 注入量を制御することを特徴とする原子力ブラン 卜の運転方法。 Nuclear power, wherein the concentration of the metal and the nickel concentration in the coolant are measured, and the injection amount of the metal is controlled so that the ratio of the measured metal concentration to the nickel concentration is within a predetermined range. How to operate the brand.
1 2 . 請求の範囲第 9項において、 1 2. In claim 9,
前記冷却材の配管の表面線量率を測定し、 測定された表面線量率に基 づいて前記金属の注入量を制御することを特徴とする原子力プラン 卜の 運転方法。  A method for operating a nuclear power plant, comprising: measuring a surface dose rate of a pipe of the coolant; and controlling an injection amount of the metal based on the measured surface dose rate.
1 3 . 原子炉の一次冷却水を浄化する浄化装置を備えた原子力プラン ト の運転方法において、  1 3. In the operation method of a nuclear plant equipped with a purification device that purifies the primary cooling water of a nuclear reactor,
原子炉運転中に、 酸化物がコランダム構造をとる金属を、 前記浄化装 置の下流側の一次冷却水中に、 連続的に注人する二とを特徴とする原子 カブラン 卜の運転方法。  2. A method for operating an atomic cabulin, comprising continuously injecting a metal whose oxide has a corundum structure into primary cooling water downstream of the purification device during operation of the reactor.
1 4 . 請求の範囲第 9項乃至第 1 3項の何れかにおいて、  14. In any one of claims 9 to 13,
前記金属は、 少なく とも金属原子, 金属イオン, 金属化合物のうちの 何れかの形態で注入されることを特徴とする原子力プラン 卜の運転方法, A method for operating a nuclear power plant, wherein the metal is injected at least in any form of a metal atom, a metal ion, or a metal compound;
1 δ . 請求の範囲第 9項乃至第 1 3項の何れかにおいて、 1 δ. In any one of claims 9 to 13,
前記金属は、 少なく ともアルミニウム, ガリウム, クロムのうちの何 れかであることを特徴とする原子力プラン 卜の運転方法。  The method for operating a nuclear power plant, wherein the metal is at least one of aluminum, gallium, and chromium.
PCT/JP1995/000040 1995-01-18 1995-01-18 Nuclear power plant and method for operating the same WO1996022605A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52215396A JP3179500B2 (en) 1995-01-18 1995-01-18 Nuclear power plant and operation method thereof
PCT/JP1995/000040 WO1996022605A1 (en) 1995-01-18 1995-01-18 Nuclear power plant and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000040 WO1996022605A1 (en) 1995-01-18 1995-01-18 Nuclear power plant and method for operating the same

Publications (1)

Publication Number Publication Date
WO1996022605A1 true WO1996022605A1 (en) 1996-07-25

Family

ID=14125564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000040 WO1996022605A1 (en) 1995-01-18 1995-01-18 Nuclear power plant and method for operating the same

Country Status (2)

Country Link
JP (1) JP3179500B2 (en)
WO (1) WO1996022605A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844024B2 (en) 2004-07-22 2010-11-30 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337484A (en) * 1976-09-20 1978-04-06 Hitachi Ltd Monitor for radiant rays
JPS6179194A (en) * 1984-09-27 1986-04-22 株式会社東芝 Reactor water feeder
JPS61170697A (en) * 1985-01-25 1986-08-01 株式会社日立製作所 Nuclear reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337484A (en) * 1976-09-20 1978-04-06 Hitachi Ltd Monitor for radiant rays
JPS6179194A (en) * 1984-09-27 1986-04-22 株式会社東芝 Reactor water feeder
JPS61170697A (en) * 1985-01-25 1986-08-01 株式会社日立製作所 Nuclear reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844024B2 (en) 2004-07-22 2010-11-30 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
US7889828B2 (en) 2004-07-22 2011-02-15 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant and ferrite film formation apparatus
US8457270B2 (en) 2004-07-22 2013-06-04 Hitachi-Ge Nuclear Energy, Ltd. Suppression method of radionuclide deposition on reactor component of nuclear power plant

Also Published As

Publication number Publication date
JP3179500B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
CA3003488C (en) Method of decontaminating metal surfaces in a heavy water cooled and moderated nuclear reactor
US11443863B2 (en) Method for decontaminating metal surfaces of a nuclear facility
US4927598A (en) Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
EP0090512A1 (en) Process for treatment of oxide films prior to chemical cleaning
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
US5024805A (en) Method for decontaminating a pressurized water nuclear reactor system
CA1062590A (en) Reactor decontamination process
US5377245A (en) Method of operating BWR plant, BWR plant and metal element injecting apparatus
Murray A chemical decontamination process for decontaminating and decommissioning nuclear reactors
US5892805A (en) Boiling water reactor and its operating method
US20040152940A1 (en) Method of chemical decontamination
TW200849279A (en) Methods for operating and methods for reducing post-shutdown radiation levels of nuclear reactors
JPH08220293A (en) Operation method for nuclear power plant
JP3709514B2 (en) Nuclear power plant and operation method thereof
WO1996022605A1 (en) Nuclear power plant and method for operating the same
JP7344132B2 (en) Method of adhering precious metals to carbon steel members of a nuclear power plant and method of suppressing adhesion of radionuclides to carbon steel members of a nuclear power plant
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JP3289679B2 (en) Water quality control method for boiling water nuclear power plant
JPH05288893A (en) Control method of concentration of chromium of boiling water nuclear power plant
JP7104616B2 (en) Method of suppressing adhesion of radionuclides to carbon steel components of nuclear power plants
JP3309784B2 (en) Water quality control method for boiling water nuclear power plant
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
JPH0478960B2 (en)
JPH08304584A (en) Radioactive concentration reducing method in reactor primary system water
JP2019191076A (en) Method for controlling adhesion of radionuclides to structural members of nuclear plants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): FI JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase