JPH02134596A - Chlorine concentration control of feed water for nuclear power station - Google Patents

Chlorine concentration control of feed water for nuclear power station

Info

Publication number
JPH02134596A
JPH02134596A JP63288408A JP28840888A JPH02134596A JP H02134596 A JPH02134596 A JP H02134596A JP 63288408 A JP63288408 A JP 63288408A JP 28840888 A JP28840888 A JP 28840888A JP H02134596 A JPH02134596 A JP H02134596A
Authority
JP
Japan
Prior art keywords
condensate
condenser
nuclear power
water
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63288408A
Other languages
Japanese (ja)
Inventor
Motohiro Aizawa
元浩 会沢
Yoshitaka Isaka
伊坂 義孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP63288408A priority Critical patent/JPH02134596A/en
Publication of JPH02134596A publication Critical patent/JPH02134596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To enable a prevention of streaming-in of a chlorine ion into a reactor core in case of an accident of sea water leakage by detecting the leakage of sea water into a condenser at an outlet of the condenser and controlling a valve installed at a by-pass system with the detection signal. CONSTITUTION:In case of a sea water (a coolant) leakage into a condenser 8, a conductivity meter 21 provided at an outlet of the condenser 8 detects the leaking, and receiving a detection signal, a regulating valve 22 for a by-pass flow rate installed at a by-pass piping 20 of a condensate purification facility is completely closed. By installing the regulating valve 22 at a periphery of a condensate filter 10, a stored amount of the condensate containing a chlorine ion can be minimized and therefore a demineralizing treatment can be easily conducted. An occurrence of a sea water leakage is judged by a fact whether the detection value is larger than 0.1mu/cm which is a conductivity controlling value, or not. In case that all the condensate passes through the filter 10 and a demineralizer 11 according to the aforementioned system configulation and an operating procedure, any chlorine ion do not enter a nuclear reactor 1 even if a sea water leakage might occur. Therefore, an integrity of constituted equipments can be maintained and a safe operation can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電プラントに係り、特に原子炉への給
水中の鉄濃度を制御するのに好適な制御装置及び方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear power plant, and particularly to a control device and method suitable for controlling iron concentration in water supplied to a nuclear reactor.

〔従来の技術〕[Conventional technology]

沸騰水型(BWR)原子力発電プラントでは。 In boiling water type (BWR) nuclear power plants.

第2図に示すように原子炉1から蒸気を発生させ主蒸気
配管5により高圧タービン6及び低圧タービン7に導き
発電機を駆動する。タービン排気である蒸気は復水器8
で凝縮し復水となる。復水は復水ポンプ9で復水濾過器
10及び復水脱塩器11に送られ復水中に含まれるをF
sを主体とした腐食生成物が除去される。更に濾過脱塩
処理された復水は低圧給水加熱器14及び高圧給水加熱
器15に導かれ、加熱昇温された後原子炉1へ戻る。
As shown in FIG. 2, steam is generated from a nuclear reactor 1 and guided through a main steam pipe 5 to a high pressure turbine 6 and a low pressure turbine 7 to drive a generator. The steam that is the turbine exhaust is sent to the condenser 8
It condenses and becomes condensate. Condensate is sent to a condensate filter 10 and a condensate demineralizer 11 by a condensate pump 9, and the F contained in the condensate is removed.
Corrosion products mainly composed of s are removed. Furthermore, the filtered and desalinated condensate is guided to a low pressure feed water heater 14 and a high pressure feed water heater 15, heated and heated, and then returned to the reactor 1.

原子炉1から発生した蒸気の一部は抽気配管17を介し
て高圧給水加熱器15及び低圧給水加熱器14に導かれ
給水の昇温に用いられた後、給水加熱器凝縮水配管18
を介して復水W8に回収される。沸騰水型(BWR)原
子力発電プラントにおける炉水中の放射能濃度及び配管
機器の各表面線量率の上昇は、プラント構成機器、配管
等より発生した腐食生成物が給水系から原子炉1に混入
し。
A part of the steam generated from the reactor 1 is led to the high-pressure feedwater heater 15 and the low-pressure feedwater heater 14 via the extraction pipe 17 and used to raise the temperature of the feedwater, and then transferred to the feedwater heater condensed water pipe 18.
The water is collected as condensate W8 via the . The increase in radioactivity concentration in reactor water and the surface dose rate of piping equipment in boiling water (BWR) nuclear power plants is due to corrosion products generated from plant components, piping, etc. entering reactor 1 from the water supply system. .

燃料表面で中性子照射により放射化された後、再び一次
系配管例えば原子炉冷却剤再循環系2.原子炉冷却剤浄
化系3に付着することに起因する。
After being activated by neutron irradiation on the fuel surface, it is transferred again to the primary system piping, such as the reactor coolant recirculation system. This is caused by adhesion to the reactor coolant purification system 3.

腐食生成物としては、Fe、Co、Niなどが存在し、
中性子照射によりCOがCo−60,NiがGo−58
核一種となる。Feは燃料表面でNi或いはCoを取り
込みNiFe、04或いはCoFe、04等の複合酸化
物を生成しNi、G。
Corrosion products include Fe, Co, Ni, etc.
Due to neutron irradiation, CO becomes Co-60 and Ni becomes Go-58.
It becomes a type of nucleus. Fe takes in Ni or Co on the fuel surface and forms composite oxides such as NiFe, 04 or CoFe, 04, and Ni, G.

を燃料表面に固定する働きを有することが知られている
。尚、給水系からのFeの流入量が過剰の場合には燃料
表面に付着する腐食生成物の量が多くなり、直接復水中
へ剥離するためFeを主体とする腐食生成物中に含まれ
ているG o −60或いはCo−58も同様剥離し炉
水中の放射能濃度の上昇をもたらす、その結果、放射性
核種を含む腐食生成物が原子炉−次系配管内に蓄積し線
電率の増加をもたらしていた。従って給水系中のFe濃
度を低減するために復水濾過器10と復水脱塩器11を
設は復水中に含まれているFeの除去が強化されてきて
いる。
It is known to have the function of fixing fuel to the surface of the fuel. In addition, if the amount of Fe flowing in from the water supply system is excessive, the amount of corrosion products adhering to the fuel surface will increase, and since it will be directly peeled off into the condensate, it will be contained in the corrosion products mainly composed of Fe. G o -60 or Co-58 in the reactor also flakes off, leading to an increase in the radioactivity concentration in the reactor water.As a result, corrosion products containing radionuclides accumulate in the reactor-subsystem piping, increasing the wire conductivity. It was bringing about. Therefore, in order to reduce the Fe concentration in the water supply system, a condensate filter 10 and a condensate demineralizer 11 are installed to strengthen the removal of Fe contained in the condensate.

ところが、復水濾過器10と復水脱塩器11を有するプ
ラントにおける給水系中のFe濃度は低圧給水加熱器1
4及び高圧給水加熱器15に用いられているステンレス
鋼から主に発生するNi及びGoより低いことがあった
。その際燃料表面上で従来安定であったNiFe、O,
或いはCoFa30、を生成するに必要なFeの量が不
足した為。
However, in a plant having a condensate filter 10 and a condensate demineralizer 11, the Fe concentration in the water supply system is lower than that of the low-pressure feedwater heater 1.
4 and the high-pressure feed water heater 15, which are mainly generated from the stainless steel. At that time, NiFe, O,
Alternatively, the amount of Fe necessary to generate CoFa30 was insufficient.

Ni及びCoの放射化生成物であるGo−58或いはC
o−60の燃料表面からの再溶出社が増加し炉水中の放
射能濃度も従来以上に上昇した。
Go-58 or C which is an activation product of Ni and Co
The number of O-60 re-eluted from the fuel surface has increased, and the radioactivity concentration in the reactor water has also increased higher than before.

これに対して、給水系中のFe濃度を燃料表面上でN 
i F a、0.或いはCo F e、O,を生成する
に十分な値に制御する必要性が出て来た。その為にFe
濃度は給水中に存在するNi及びCO濃度の2倍以上に
維持する方法が従来において用いられている。
On the other hand, the Fe concentration in the water supply system is reduced to N on the fuel surface.
i F a, 0. Alternatively, it has become necessary to control the value to a value sufficient to generate Co Fe,O. For that purpose, Fe
Conventionally, a method has been used to maintain the concentration at least twice the concentration of Ni and CO present in the water supply.

上記給水系中のFe濃度を制御する方法は特開昭61−
148394号公報或いは特開昭62−85897号公
報に開示されているように復水濾過器10及び復水脱塩
器11の各各にバイパス配管を設け、かっ復水濾過器1
0及び復水脱塩器11の各各のバイパス流量を制御する
ことによって復水中に含まれるFeを浄化装置で除去せ
ずに給水中に導き、給水中のFe濃度を制御する方法で
あった。更に特開昭61−148394号公報において
は復水濾過器10と復水脱塩器11を直接バイパスする
方法が開示されている。
The method for controlling the Fe concentration in the water supply system is disclosed in Japanese Patent Application Laid-open No. 61
As disclosed in Japanese Patent Laid-open No. 148394 or Japanese Patent Application Laid-open No. 62-85897, each of the condensate filter 10 and the condensate demineralizer 11 is provided with a bypass pipe, and the condensate filter 1
This was a method of controlling the Fe concentration in the feed water by controlling the bypass flow rates of each of the condensate demineralizer 11 and the condensate demineralizer 11 to introduce Fe contained in the condensate into the feed water without removing it with a purification device. . Further, Japanese Patent Application Laid-open No. 148394/1983 discloses a method of directly bypassing the condensate filter 10 and the condensate desalination device 11.

〔発明が解決しようとする課題〕 上記従来技術は給水中のFe濃度を制御することは可能
となるが、復水器の冷却水に用いている海水のリークに
対する配慮がされておらず、従って復水器の冷却管に損
傷が生じ、海水が復水中に混入した場合には、塩素イオ
ン除去を主目的として設けている復水脱塩器をバイパス
した復水中の塩素イオンが原子炉内へ流入するという問
題があった。JjK子力発電プラントでは塩素イオンの
原子炉内への流入に対しては、ステンレス鋼の応力腐食
割れの発生防止の点から厳しく管理されているので十分
な配慮が必要とされる。
[Problem to be solved by the invention] Although the above-mentioned conventional technology makes it possible to control the Fe concentration in the water supply, it does not take into account the leakage of seawater used as cooling water for the condenser. If the cooling pipes of the condenser are damaged and seawater gets mixed into the condensate, the chlorine ions in the condensate bypass the condensate desalter, which is installed primarily to remove chlorine ions, and enter the reactor. There was a problem with influx. In the JJK nuclear power plant, the inflow of chlorine ions into the reactor is strictly controlled from the viewpoint of preventing stress corrosion cracking of stainless steel, so sufficient consideration is required.

本発明の目的は、給水中のFe濃度を制御するにあたり
復水器において海水のリーク事故が発生した場合に塩素
イオンが原子炉内へ流入することを防止することにある
An object of the present invention is to prevent chlorine ions from flowing into a nuclear reactor when a seawater leakage accident occurs in a condenser when controlling the Fe concentration in water supply.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、タービンからの蒸気を復水とする復水器と
、該復水器からの前記復水を濾過する復水濾過器と、該
復水濾過器からの前記復水を脱塩する復水脱塩器と、前
記復水濾過器と前記復水脱塩器をバイパスするバイパス
系を有する原子力発電所の給水鉄濃度制御装置において
、前記復水器の出口で海水のリークを検出してリーク検
出信号を出力するセンサーと、前記リーク検出信号を入
力して制御信号を出力するコントローラと、前記制御信
号を入力し作動する前記バイパス系に設けたバルブを有
する制御系を設けること、又はタービンからの蒸気を復
水とする復水器と該復水を濾過及び脱塩処理する処理装
置を有する復水系と。
The above object is to provide a condenser that condenses steam from a turbine, a condensate filter that filters the condensate from the condenser, and desalinates the condensate from the condensate filter. In a nuclear power plant feed water iron concentration control device having a condensate demineralizer and a bypass system that bypasses the condensate filter and the condensate demineralizer, a seawater leak is detected at the outlet of the condenser. a control system having a sensor that outputs a leak detection signal, a controller that inputs the leak detection signal and outputs a control signal, and a valve provided in the bypass system that inputs the control signal and operates; A condensate system that includes a condenser that condenses steam from a turbine and a processing device that filters and desalinates the condensate.

前記処理された復水を給水加熱器で加熱して原子炉へ供
給する給水系と、前記給水加熱器に加熱用の蒸気を供給
する抽気系と、前記給水加熱器からの凝縮水を前記復水
器へ導く給水加熱器凝縮水系と、該給水加熱器凝縮水系
からの鉄分を含む凝縮水を前記給水系に注入する凝縮水
注入系と、を備えること、若しくは前記給水加熱器凝縮
水系からの鉄分を含む凝縮水を前記給水系に注入して給
水中の鉄濃度をニッケル及びコバルト濃度の2倍以上に
制御することにより達成される。
a feed water system that heats the treated condensate with a feed water heater and supplies it to the reactor; a bleed system that supplies heating steam to the feed water heater; and a bleed system that supplies the condensed water from the feed water heater to the reactor. a feedwater heater condensate system that leads to the water heater; and a condensate water injection system that injects iron-containing condensate from the feedwater heater condensate system into the water supply system; This is achieved by injecting condensed water containing iron into the water supply system to control the iron concentration in the water supply to at least twice the nickel and cobalt concentrations.

〔作用〕[Effect]

復水器で海水のリークが発生した場合復水の導電率若し
くは塩素イオン濃度が変化するので、導電率計若しくは
塩素イオン電極を用いたセンサでそれを検出し、コント
ローラが復水を濾過及び脱塩処理する処理装置のバイパ
ス系に設けたバルブを閉じるように制御信号を出力し、
バルブを閉じるので復水に混入した塩素イオンは脱塩処
理す4る装置により除去され、原子炉に流入することは
ない、又、給水加熱器凝縮水系からの鉄分を含む凝縮水
を前記給水系に注入すると、復水器で海水のリークが発
生した場合復水に混入した塩素イオンは直ちに脱塩処理
する装置により除去され、原子炉に流入することはなく
、上記のように復水が給水系、原子炉、タービン、抽気
系、給水加熱器凝縮水系を通過する間に鉄分の濃度が最
高となり。
If a seawater leak occurs in the condenser, the conductivity or chlorine ion concentration of the condensate will change, so a sensor using a conductivity meter or chlorine ion electrode will detect this, and the controller will filter and remove the condensate. Outputs a control signal to close the valve installed in the bypass system of the salt processing equipment,
Since the valve is closed, the chlorine ions mixed in the condensate are removed by the desalination equipment and do not flow into the reactor.Furthermore, condensed water containing iron from the feedwater heater condensate system is transferred to the feedwater system. If seawater leaks from the condenser, the chlorine ions mixed in the condensate will be immediately removed by the desalination equipment, and will not flow into the reactor, allowing the condensate to be used as the water supply as described above. The concentration of iron is highest during passage through the condensate system, reactor, turbine, bleed air system, feedwater heater, and condensate system.

給水中の鉄濃度をニッケル及びコバルト濃度の2倍以上
に制御することが出来る。
It is possible to control the iron concentration in the water supply to more than twice the nickel and cobalt concentrations.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を説明する。 An embodiment of the present invention will be described.

本発明は給水中のFe濃度の制御を行うとともに。The present invention not only controls the Fe concentration in water supply.

海水のリーク時に塩素イオンが原子炉に流入することを
防止する系統構成を提供するものである。
This provides a system configuration that prevents chlorine ions from flowing into the nuclear reactor in the event of a seawater leak.

復水中に存在するFeは大部分がFe酸化物(クラッド
と称する)であるためFeの除去能力の点ではビーズ状
イオン交換樹脂を充填した復水脱塩器よりも、粉末イオ
ン交換樹脂或いは中空糸膜を用いた復水濾過器の方が優
れている。しかし。
Most of the Fe present in condensate is Fe oxide (referred to as cladding), so in terms of Fe removal ability, powdered ion exchange resin or hollow condensate demineralizers are better than condensate demineralizers filled with bead-shaped ion exchange resins. Condensate filters using thread membranes are better. but.

復水脱塩器においてもFe酸化物の除去能力を有し、し
かもその除去能力は充填したイオン交換樹脂の特性或い
は既に除去し蓄積したFe酸化物の量等によって変化し
一定していない。
The condensate demineralizer also has the ability to remove Fe oxides, and its removal ability varies depending on the characteristics of the filled ion exchange resin, the amount of Fe oxides that have already been removed and accumulated, and is not constant.

従って海水のリークを考慮して、復水脱塩器をバイパス
しない運転は給水中のFe濃度の制御の点から問題があ
る。
Therefore, in consideration of leakage of seawater, operation without bypassing the condensate demineralizer poses a problem in terms of controlling the Fe concentration in the water supply.

又復水脱塩器をバイパスした場合は、上記のように復水
器における海水のリーク時の対応に配慮が欠ける結果と
なる。
Furthermore, if the condensate demineralizer is bypassed, consideration will not be given to dealing with seawater leaks in the condenser as described above.

以上により復水中のFeを給水系に供給するためには給
水中のFe濃度の制御の点より復水中のFeの除去能力
が大きい復水濾過器と、復水脱塩器にはFeイオンの除
去能力がありその除去能力は塩素イオンの除去の影響を
受け、バラツキがあり制御し難いので復水脱塩器をバイ
パスする系統との併用が不可欠である。同時に海水のリ
ーク時を考慮し、海水のリークを即座に検出するととも
に、少なくとも復水脱塩器のバイパスを中止出来る系統
構成を有することが必要である。
As described above, in order to supply Fe in condensate to the water supply system, a condensate filter with a large ability to remove Fe from condensate and a condensate demineralizer are required from the viewpoint of controlling the Fe concentration in the feed water, and a condensate desalter is required to remove Fe ions. Since the removal ability is affected by the removal of chlorine ions, it varies and is difficult to control, so it is essential to use it in conjunction with a system that bypasses the condensate demineralizer. At the same time, in consideration of seawater leaks, it is necessary to have a system configuration that can immediately detect seawater leaks and at least stop bypassing the condensate desalination device.

具体的には、海水のリークを導電率計又は塩素イオン電
極を用いたセンサーで検出し、その検出信号で復水説塩
裔のバイパス運転を中止する系統構成が効果的である。
Specifically, an effective system configuration is to detect seawater leaks using a conductivity meter or a sensor using a chlorine ion electrode, and use the detection signal to stop bypass operation of the condensation theory salt curd.

一方では、海水のリークが発生した場合にも給水中に塩
素イオンが含まれない系統のFaを注入する方法がある
。それを満足する系統は給水加熱器凝縮水系であり、復
水器に回収される前の給水加熱器凝縮水を給水中に注入
する。
On the other hand, there is a method in which Fa, which does not contain chlorine ions, is injected into the water supply even if a seawater leak occurs. A system that satisfies this requirement is a feedwater heater condensate water system, in which feedwater heater condensate water is injected into the feedwater before being collected in the condenser.

次に図を用いて本実施例を説明する。Next, this embodiment will be explained using figures.

第1図は復水濾過器10と復水脱塩器11をAイパスす
る第1実施例の系統構成を示したものである。給水中の
F e HN l +及びCO濃度を高圧給水加熱器1
5出口の高圧給水加熱器出口サンプリングライン16か
ら採取、濃縮したサンプルを適宜分析する。Ni、及び
CO濃度に対してFe濃度が不足していると判断された
場合は復水浄化装置バイパス配管20を用いて給水系に
通常5〜10ppbのFeを含む復水を直接注入する。
FIG. 1 shows the system configuration of a first embodiment in which a condensate filter 10 and a condensate demineralizer 11 are connected to each other. High-pressure feed water heater 1
The sample collected and concentrated from the high-pressure feed water heater outlet sampling line 16 with 5 outlets is analyzed as appropriate. If it is determined that the Fe concentration is insufficient compared to the Ni and CO concentrations, condensate containing usually 5 to 10 ppb of Fe is directly injected into the water supply system using the condensate purifier bypass piping 20.

ノくイパス流量は高圧給水加熱器出口サンプリングライ
ン16で測定した結果得られるFaの必要濃度と予め復
水ポンプ出口サンプリングライン12で測定されたバイ
パス水のFe濃度より設定される。
The bypass flow rate is set based on the required Fe concentration obtained as a result of measurement at the high-pressure feed water heater outlet sampling line 16 and the Fe concentration of the bypass water previously measured at the condensate pump outlet sampling line 12.

バイパス流量は下記の式で求めることが出来る。The bypass flow rate can be calculated using the following formula.

に:バイパス流量率 〔%〕 M:給水必要Fe濃度 (ppb) ml:バイパス水のFe濃度 (ppb)mzm高圧給
水加熱器出口Fa濃度 (ppb)バイパス流量の設定
は、復水浄化装置バイパス配管20に設けた復水浄化装
置バイパス流量調整弁22の開度調整によって行う。実
際上はバイパスの開始に伴って復水濾過器10及び復水
脱塩器11の線速度が減少するため、各各のFa除去率
がわずかずつ上昇する傾向がある。従って復水濾過器1
0及び復水脱塩器11で処理される復水中のFe濃度の
測定を行いバイパス流量の微調整が必要となってくる。
N: Bypass flow rate [%] M: Necessary Fe concentration in water supply (ppb) ml: Fe concentration in bypass water (ppb) mzm High pressure feed water heater outlet Fa concentration (ppb) Bypass flow rate setting is based on condensate purification device bypass piping This is done by adjusting the opening degree of the condensate purification device bypass flow rate regulating valve 22 provided at 20. Actually, since the linear velocity of the condensate filter 10 and the condensate demineralizer 11 decreases with the start of the bypass, the Fa removal rate of each tends to increase little by little. Therefore condensate filter 1
0 and the Fe concentration in the condensate treated by the condensate demineralizer 11 and fine adjustment of the bypass flow rate becomes necessary.

海水のリークが発生した場合には、直ちに検出出来る復
水器出口に設けた復水器出口導電率計21若しくは塩素
イオン電極を用いたセンサーで検出し、その信号を受け
て復水浄化装置バイパス配管20中の復水浄化装置バイ
パス流量調整弁22が全開となる。この復水浄化装置バ
イパス流量調整弁22を復水浄化装置バイパス配管20
の復水濾過器10近傍に設けることにより、塩素イオン
を含んだ復水の保有量を最少とすることが出来その脱塩
処理が容易となる。海水のリーク発生の判断は、復水脱
塩器11出口の導電率の管理値0.1μs/ cxaを
基準としてそれ以上とすることが望ましい。これらの系
統構成及び運転によって復水濾過器10及び復水脱塩器
11をいバイパスして運転した場合、海水のリークが発
生しても塩素イオンを原子炉1に持ち込むことはない、
従ってプラントを構成する機器の健全性が常に保持され
安全運転が可能になる。
If a seawater leak occurs, it is immediately detected by the condenser outlet conductivity meter 21 installed at the condenser outlet or a sensor using a chlorine ion electrode, and upon receiving the signal, the condensate purification system bypass is performed. The condensate purifier bypass flow regulating valve 22 in the pipe 20 is fully opened. This condensate purification device bypass flow regulating valve 22 is connected to the condensate purification device bypass piping 20.
By providing the condensate near the condensate filter 10, the amount of condensate containing chlorine ions can be minimized and desalination of the condensate can be facilitated. It is desirable to determine the occurrence of seawater leakage based on the control value of conductivity at the outlet of the condensate demineralizer 11 of 0.1 μs/cxa or higher. If the system is operated by bypassing the condensate filter 10 and the condensate demineralizer 11 with these system configurations and operations, even if seawater leaks, chlorine ions will not be brought into the reactor 1.
Therefore, the health of the equipment constituting the plant is always maintained and safe operation is possible.

第3図は復水濾過器10のバイパス運転と、復水脱塩器
11のバイパス運転の組合せである第2実施例を示した
ものである。給水中のFe濃度の制御は第1図に示した
第1実施例のように高圧給水加熱器出口サンプリングラ
イン16と復水ポンプ出口サンプリングライン12で測
定されたFe濃度を基にして復水濾過器バイパス゛配管
23と復水濾過器バイパス流量調整弁25及び復水脱塩
器バイパス配管24と復水脱塩器バイパス流量調整弁2
6を用いて制御する。上記バイパス運転中に海水のリー
クが発生した場合は復水器出口の復水器出口導電率計2
1若しくは塩素イオン電極で検出し、直ちに復水脱塩器
バイパス流電調整弁26を自動全閉する。これによって
バイパス運転時においても海水のリークによる原子炉へ
の塩素イオンの流入が防止出来る。
FIG. 3 shows a second embodiment in which the bypass operation of the condensate filter 10 and the bypass operation of the condensate demineralizer 11 are combined. The Fe concentration in the feed water is controlled by condensate filtration based on the Fe concentration measured at the high pressure feed water heater outlet sampling line 16 and the condensate pump outlet sampling line 12 as in the first embodiment shown in FIG. device bypass pipe 23, condensate filter bypass flow regulating valve 25, condensate demineralizer bypass pipe 24, condensate demineralizer bypass flow regulating valve 2
Control using 6. If seawater leaks during the above bypass operation, use the condenser outlet conductivity meter 2 at the condenser outlet.
1 or the chlorine ion electrode, and the condensate demineralizer bypass current regulating valve 26 is automatically fully closed immediately. This makes it possible to prevent chlorine ions from flowing into the reactor due to seawater leaks even during bypass operation.

第4図は給水加熱器凝縮水を給水に注入することで給水
中のFe濃度を制御する第3実施例を示す、給水中のF
e濃度を制御する為に注入する給水加熱器凝縮水の流量
は高圧給水加熱器出口サンプリングライン16でFa、
Ni、Go濃度を測定した結果と注入する給水加熱器凝
縮水のFe濃度を給水加熱器凝縮水系サンプリングライ
ン27を用いて測定した結果から算出する。給水加熱器
凝縮水の注入は給水加熱器凝縮水配管18から分岐する
給水加熱器凝縮水注入配管28を設け、給水加熱器凝縮
水注入ポンプ29と給水加熱器凝縮水注入流量調整弁3
0を備えた系統となる。海水のリークが発生した場合復
水脱塩器11で復水中の塩素イオンが除去され、給水系
、)M子炉、タービン、抽気系を経由した最もFa濃度
の高い給水加熱器凝縮水なので給水中のFa濃度を給水
中に存在するNi及びGo濃度の2倍以上に制御するこ
とが出来る。
Figure 4 shows a third embodiment in which the Fe concentration in the feed water is controlled by injecting feed water heater condensed water into the feed water.
e The flow rate of the feedwater heater condensate injected to control the concentration is Fa,
The Fe concentration of the feed water heater condensate water to be injected is calculated from the results of measuring the Ni and Go concentrations using the feed water heater condensate system sampling line 27. For the injection of feed water heater condensate water, a feed water heater condensate water injection pipe 28 is provided which branches from the feed water heater condensate water pipe 18, and a feed water heater condensate water injection pump 29 and a feed water heater condensate water injection flow rate adjustment valve 3 are provided.
It becomes a system with 0. When a seawater leak occurs, the condensate demineralizer 11 removes chlorine ions from the condensate, and the condensed water passes through the water supply system, the M reactor, the turbine, and the extraction system to the feedwater heater condensed water, which has the highest concentration of Fa, so the water is supplied. The concentration of Fa in the feed water can be controlled to be more than twice the concentration of Ni and Go present in the water supply.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、復水器において海水のリークが生じた
場合直ちにバイパスを中止して復水を復水脱塩器で脱塩
する手段、或いは常に復水を復水脱塩器で処理し鉄分を
多く含む系統から鉄分を給水中に注入する手段を設ける
ことにより、復水中の塩素イオンを除去できるので、原
子炉への塩素イオンの流入を防止し給水中の鉄分濃度を
制御して原子力発電プラントの健全性を保持出来る効果
がある。
According to the present invention, when seawater leaks in the condenser, the bypass is immediately stopped and the condensate is desalinated in the condensate demineralizer, or the condensate is always treated in the condensate demineralizer. By providing a means to inject iron into the water supply from a system containing a large amount of iron, it is possible to remove chlorine ions from the condensate, thereby preventing the inflow of chlorine ions into the reactor and controlling the iron concentration in the water supply. This has the effect of maintaining the health of the power generation plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例に係る系統を示す線図、第
2図は従来の技術に係る系統を示す線図、第3図は第2
実施例に係る系統を示す線図、第4図は第3実施例に係
る系統を示す線図である。 1・・・原子炉 2・・・原子炉冷却剤再循環系 3・・・原子炉冷却剤浄化系 4・・・原子炉冷却剤浄化装置 5・・・主蒸気配管 6・・・高圧タービン 7・・・低圧タービン 8・・・復水器 9・・・復水ポンプ 10・・・復水濾過器 11・・・復水脱塩器 12・・・復水ポンプ出口サンプリングライン14・・
・低圧給水加熱器 15・・・高圧給水加熱器 16・・・高圧給水加熱器出口サンプリングライン17
・・・抽気配管 18・・・給水加熱器凝縮水配管 19・・・復水器冷却管 20・・・復水浄化装置バイパス配管 21・・・復水器出口導電率計 22・・・復水浄化装置バイパス流量調整弁23・・・
復水濾過器バイパス配管 24・・・復水脱塩器バイパス配管 25・・・復水濾過器バイパス流iIk調整弁26・・
・復水脱塩器バイパス流量調整弁27・・・給水加熱器
凝縮水系サンプリングライン28・・・給水加熱器凝縮
水注入配管 29・・・給水加熱器凝縮水注入ポンプ30・・・給水
加熱器凝縮水注入流量調整弁II 1 図
FIG. 1 is a diagram showing the system according to the first embodiment of the present invention, FIG. 2 is a diagram showing the system according to the conventional technology, and FIG.
Diagram showing the system according to the embodiment. FIG. 4 is a diagram showing the system according to the third embodiment. 1...Reactor 2...Reactor coolant recirculation system 3...Reactor coolant purification system 4...Reactor coolant purification device 5...Main steam piping 6...High pressure turbine 7...Low pressure turbine 8...Condenser 9...Condensate pump 10...Condensate filter 11...Condensate demineralizer 12...Condensate pump outlet sampling line 14...
・Low pressure feed water heater 15...High pressure feed water heater 16...High pressure feed water heater outlet sampling line 17
...Bleed piping 18...Feed water heater condensed water piping 19...Condenser cooling pipe 20...Condensate purification device bypass piping 21...Condenser outlet conductivity meter 22...Condenser cooling pipe 20...Condenser outlet conductivity meter 22... Water purification device bypass flow rate adjustment valve 23...
Condensate filter bypass piping 24... Condensate demineralizer bypass piping 25... Condensate filter bypass flow iIk adjustment valve 26...
- Condensate demineralizer bypass flow adjustment valve 27... Feed water heater Condensed water system sampling line 28... Feed water heater Condensed water injection piping 29... Feed water heater Condensed water injection pump 30... Feed water heater Condensed water injection flow rate adjustment valve II 1 Diagram

Claims (1)

【特許請求の範囲】 1、タービンからの蒸気を復水とする復水器と、該復水
器からの前記復水を濾過する復水濾過器と、該復水濾過
器からの前記復水を脱塩する復水脱塩器と、前記復水濾
過器と前記復水脱塩器をバイパスするバイパス系を有す
る原子力発電所の給水鉄濃度制御装置において、前記復
水器の出口で海水のリークを検出してリーク検出信号を
出力するセンサーと、前記リーク検出信号を入力して制
御信号を出力するコントローラと、前記制御信号を入力
し作動する前記バイパス系に設けたバルブを有する制御
系を設けたことを特徴とする原子力発電所の給水鉄濃度
制御装置。 2、前記センサーが導電率計である請求項1に記載の原
子力発電所の給水鉄濃度制御装置。 3、前記センサーが塩素イオン電極である請求項1に記
載の原子力発電所の給水鉄濃度制御装置。 4、前記バルブを前記バイパス系の前記復水濾過器近傍
に設けた請求項1に記載の原子力発電所の給水鉄濃度制
御装置。 5、タービンからの蒸気を復水とする復水器と該復水を
濾過及び脱塩処理する処理装置を有する復水系と、前記
処理された復水を給水加熱器で加熱して原子炉へ供給す
る給水系と、前記給水加熱器に加熱用の蒸気を供給する
抽気系と、前記給水加熱器からの凝縮水を前記復水器へ
導く給水加熱器凝縮水系と、該給水加熱器凝縮水系から
の鉄分を含む凝縮水を前記給水系に注入する凝縮水注入
系と、を備えた原子力発電プラントの給水鉄濃度制御装
置。 6、前記給水加熱器凝縮水系からの鉄分を含む凝縮水を
前記給水系に注入して給水中の鉄濃度をニッケル及びコ
バルト濃度の2倍以上に制御する請求項5に記載の原子
力発電所の給水鉄濃度制御方法。
[Claims] 1. A condenser that condenses steam from a turbine, a condensate filter that filters the condensate from the condenser, and the condensate from the condensate filter. In a nuclear power plant feed water iron concentration control device having a condensate demineralizer for desalinating seawater, and a bypass system for bypassing the condensate filter and the condensate demineralizer, A control system includes a sensor that detects a leak and outputs a leak detection signal, a controller that inputs the leak detection signal and outputs a control signal, and a valve provided in the bypass system that inputs the control signal and operates. A water supply iron concentration control device for a nuclear power plant, characterized by the following: 2. The feed water iron concentration control device for a nuclear power plant according to claim 1, wherein the sensor is a conductivity meter. 3. The water supply iron concentration control device for a nuclear power plant according to claim 1, wherein the sensor is a chloride ion electrode. 4. The feed water iron concentration control device for a nuclear power plant according to claim 1, wherein the valve is provided near the condensate filter of the bypass system. 5. A condensate system that includes a condenser that uses steam from the turbine as condensate, a processing device that filters and desalinates the condensate, and heats the treated condensate with a feed water heater and sends it to the reactor. a feedwater system for supplying water, a bleed system for supplying heating steam to the feedwater heater, a feedwater heater condensate system that guides condensed water from the feedwater heater to the condenser, and a feedwater heater condensate system a condensed water injection system for injecting condensed water containing iron from a nuclear power plant into the water supply system. 6. The nuclear power plant according to claim 5, wherein condensed water containing iron from the feedwater heater condensate system is injected into the water supply system to control the iron concentration in the feedwater to be more than twice the nickel and cobalt concentration. Method for controlling iron concentration in water supply.
JP63288408A 1988-11-15 1988-11-15 Chlorine concentration control of feed water for nuclear power station Pending JPH02134596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288408A JPH02134596A (en) 1988-11-15 1988-11-15 Chlorine concentration control of feed water for nuclear power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288408A JPH02134596A (en) 1988-11-15 1988-11-15 Chlorine concentration control of feed water for nuclear power station

Publications (1)

Publication Number Publication Date
JPH02134596A true JPH02134596A (en) 1990-05-23

Family

ID=17729823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288408A Pending JPH02134596A (en) 1988-11-15 1988-11-15 Chlorine concentration control of feed water for nuclear power station

Country Status (1)

Country Link
JP (1) JPH02134596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014884A (en) * 2001-07-02 2003-01-15 Mitsubishi Heavy Ind Ltd Supply water purification apparatus and nuclear power facility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148394A (en) * 1984-12-21 1986-07-07 株式会社日立製作所 Method and device for controlling condensate purifying system of boiling water type nuclear power plant
JPH01118799A (en) * 1987-11-02 1989-05-11 Toshiba Corp Method for controlling iron concentration in feed water of nuclear power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148394A (en) * 1984-12-21 1986-07-07 株式会社日立製作所 Method and device for controlling condensate purifying system of boiling water type nuclear power plant
JPH01118799A (en) * 1987-11-02 1989-05-11 Toshiba Corp Method for controlling iron concentration in feed water of nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003014884A (en) * 2001-07-02 2003-01-15 Mitsubishi Heavy Ind Ltd Supply water purification apparatus and nuclear power facility

Similar Documents

Publication Publication Date Title
JPH05264786A (en) Method and equipment for controlling quality of nuclear power plant, and nuclear power plant
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JPH02134596A (en) Chlorine concentration control of feed water for nuclear power station
CA1237203A (en) Ultrafiltration circuit for the primary cooling fluid of a pressurized-water nuclear reactor
JP3289679B2 (en) Water quality control method for boiling water nuclear power plant
JPH0666000B2 (en) Condensate purification system control method for boiling water nuclear power plant
JP4573315B2 (en) Condensate purification system and operation method thereof
JPH0631815B2 (en) Nuclear power plant water supply system
JP2016003940A (en) Method for suppressing adhesion of radionuclides to carbon steel members of nuclear power plant
JP4518695B2 (en) Condensate treatment system and operation method thereof
JPH0634087B2 (en) Nuclear power plant
JP3017858B2 (en) Reactor organic carbon removal system
JPH05215892A (en) Feed water iron concentration control device
JPH01185493A (en) Boiling water type nuclear power plant
JPH01182798A (en) Boiling water type nuclear power plant
JPS5979193A (en) Cleaning device of feedwater heater
JP2597594B2 (en) Feed water heater drain injection device
JPH10160893A (en) Reactor power facility
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant
JPH068684B2 (en) Condensate purification device
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JP2021148478A (en) Chemical decontamination method and chemical decontamination system
JPH0422489A (en) Water treatment method of power plant
JPH0763888A (en) Method and device for filtering reactor water
JPH0721549B2 (en) Water quality control system for reactor water supply / water supply system