JPS62271458A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS62271458A
JPS62271458A JP61115578A JP11557886A JPS62271458A JP S62271458 A JPS62271458 A JP S62271458A JP 61115578 A JP61115578 A JP 61115578A JP 11557886 A JP11557886 A JP 11557886A JP S62271458 A JPS62271458 A JP S62271458A
Authority
JP
Japan
Prior art keywords
gate
mos transistor
layer
transistor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61115578A
Other languages
Japanese (ja)
Other versions
JP2557846B2 (en
Inventor
Yoshihiro Hayakawa
早川 良広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP61115578A priority Critical patent/JP2557846B2/en
Publication of JPS62271458A publication Critical patent/JPS62271458A/en
Application granted granted Critical
Publication of JP2557846B2 publication Critical patent/JP2557846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To attain the stable operation of a circuit by equalizing the ratio of gate length to gate width between both MOS transistors and forming an impurity implantation layer in the same quantity of the state just under a gate. CONSTITUTION:A p well layer 2 is formed onto an n-type substrate 1, and a source follower circuit is shaped into the layer 2. An input MOS transistor 20 is constituted of a gate 3 and n<+> semiconductor layers 6, 7 forming source- drain, and a load MOS transistor 30 is organized of a gate 4 and n<+> semiconductor layers 7, 8 shaping source-drain. The integrated source follower circuit is constructed so that the ratio of gate length to gate width is equalized in the input MOS transistor 20 and the load MOS transistor 30. An n<-> layer 9 brought to the same state as an n-layer 5 shaped just under the gate 4 is also formed just under the gate 3. Accordingly, even when there is variability with respect to potential wells just under the gates, the variability has no effect on the characteristics of transistor circuits.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明は半導体基板上に構成された半導体集積回路に関
する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to a semiconductor integrated circuit constructed on a semiconductor substrate.

(従来の技術) 第2図は第3図に示すような直列接続された2つのnチ
ャネルMOSトランジスタ20および30よりなるソー
スフォロア回路を集積化した例を示す断面図である。n
型基板1上にpウェル層2を形成し、このpウェル層2
内にソースフォロア回路が形成される。通常pウェル層
2と基板1との間には逆バイアスTiaioが接続され
ている。
(Prior Art) FIG. 2 is a sectional view showing an example of an integrated source follower circuit consisting of two n-channel MOS transistors 20 and 30 connected in series as shown in FIG. n
A p-well layer 2 is formed on a mold substrate 1, and this p-well layer 2
A source follower circuit is formed inside. Normally, a reverse bias Tiaio is connected between the p-well layer 2 and the substrate 1.

入力MOSトランジスタ20はゲート3とソース・ドレ
インを形成づるn+半導体層6,7から構成され、負荷
MoSトランジスタ30はゲート4とソース・ドレイン
な形成するn°半導体層7゜8とから構成される。負荷
MO8)−ランジスタ30のゲート4とn+半導体層8
とは共通接続されて接地されている。
The input MOS transistor 20 is composed of a gate 3 and n+ semiconductor layers 6 and 7 forming a source and drain, and the load MoS transistor 30 is composed of a gate 4 and an n° semiconductor layer 78 forming a source and drain. . Load MO8) - gate 4 of transistor 30 and n+ semiconductor layer 8
and are commonly connected and grounded.

また入力MOSトランジスタ2oのn+半導体層6には
正の電圧例えば+12Vが印加される。
Further, a positive voltage, for example, +12V is applied to the n+ semiconductor layer 6 of the input MOS transistor 2o.

ゲート3は入力端子V1Nとして、n+半導体層7は出
力端子V。Ulとして取り出される。このような従来構
成されてきたソースフォロア回路においては、入力Mo
Sトランジスタ2oの入力ゲート3の直下には不純物拡
散層は形成されていないのが通常であり、負荷MOSト
ランジスタ30のゲート4の直下にはディプレッション
領域を形成するためのイオンインプランテーションを行
なって、n−半導体層5を形成するのが通常であった。
The gate 3 serves as an input terminal V1N, and the n+ semiconductor layer 7 serves as an output terminal V. It is taken out as Ul. In such a conventionally configured source follower circuit, the input Mo
Normally, no impurity diffusion layer is formed directly under the input gate 3 of the S transistor 2o, and ion implantation is performed to form a depletion region directly under the gate 4 of the load MOS transistor 30. It was usual to form an n-semiconductor layer 5.

またMOSトランジスタのゲート長とゲート幅との比は
入力MOSトランジスタ20と負荷MOSトランジスタ
とで異なっているのが一般的である。これはゲート長と
ゲート幅との比は通常のソースフォロア回路の周波数特
性や消費電力が所望の値になるように設定するように選
ばれるためである。
Further, the ratio between the gate length and gate width of the MOS transistor is generally different between the input MOS transistor 20 and the load MOS transistor. This is because the ratio of gate length to gate width is selected so that the frequency characteristics and power consumption of a normal source follower circuit are set to desired values.

このような半導体装置において、入力ゲート3に電圧を
印加し、その時できるボテフシ1フル井戸との間の変調
度をmとするとゲート3に入力電圧■ を印加した時の
ポテンシャル井戸はmVINとN なる。また負荷MOSトランジスタ30のゲート4は接
地されているため、このゲート4の直下にできるポテン
シャル井戸を■PWI!ニジてソースフォロア回路の動
作を説明する。n+半導体層(ソース)8を接地したこ
とにより、その電源から供給された電荷は負荷MOSト
ランジスタ30のゲート4を通りさらに入力MOSトラ
ンジスタ20のゲート3を通って、正電圧例えば12V
を印加したn+半導体層(ドレイン)6に流れこむ。
In such a semiconductor device, when a voltage is applied to the input gate 3, and the degree of modulation between the voltage and the full well formed at that time is m, the potential well when the input voltage ■ is applied to the gate 3 becomes mVIN and N. . Also, since the gate 4 of the load MOS transistor 30 is grounded, a potential well formed directly under the gate 4 is created by ■PWI! Next, the operation of the source follower circuit will be explained. By grounding the n+ semiconductor layer (source) 8, the charge supplied from the power supply passes through the gate 4 of the load MOS transistor 30, and further passes through the gate 3 of the input MOS transistor 20, and becomes a positive voltage, for example, 12V.
flows into the n+ semiconductor layer (drain) 6 to which is applied.

ここで負荷MOSトランジスタ300ゲート4の長さを
L 1幅をWlとし、入力MOSトランジスタ30のゲ
ート3の長さをし 、幅をW2とすると負荷MOSトラ
ンジスタ30のゲート4の下を流れる電流は、 と表わされる。なおKは比例定数を表わす。またゲート
3直下の電圧降下をXとするとゲート3直下に流れる電
流は、 と書ける。ここで負荷MOSトランジスタ30のゲート
4と入力MOSトランジスタ20のゲート3の直下を流
れる゛電流はそれぞれ等しい(11=12)ので、 となる。したがって出力■。U、は、 と表わされる。(4)式より明らかなようにオフセット
電圧に2つのばらつき要素があることがわかる。その1
つは′f!L″J1度mであり、もう1つはポテンシャ
ル井戸の深さv、Wr−ある。この両者は酸化膜厚や基
板抵抗あるいはプロセスのばらつき等により変動する。
Here, if the length of the gate 4 of the load MOS transistor 300 is L, the width of the gate 4 is Wl, the length of the gate 3 of the input MOS transistor 30 is taken, and the width is W2, the current flowing under the gate 4 of the load MOS transistor 30 is , is expressed as . Note that K represents a proportionality constant. Also, if the voltage drop directly under the gate 3 is X, the current flowing directly under the gate 3 can be written as follows. Here, since the currents flowing directly under the gate 4 of the load MOS transistor 30 and the gate 3 of the input MOS transistor 20 are equal (11=12), the following equation is obtained. Therefore the output ■. U, is expressed as . As is clear from equation (4), there are two variation factors in the offset voltage. Part 1
One is 'f! L''J is 1 degree m, and the other is the potential well depth v, Wr-. Both of these vary depending on the oxide film thickness, substrate resistance, process variations, etc.

変調度mはボテンシi?ル井戸特性の勾配であるため変
動は小さい。しかしポテンシャル井戸の深さ■PWはポ
テンシャル井戸特性の電圧値自体であるため変動が大き
く、ソースフォロア回路のオフセットのばらつきに大き
な影響を与えるという問題を生じている。
Is the modulation degree m equal to the potency i? The fluctuation is small because it is a slope of the well characteristics. However, since the potential well depth (PW) is the voltage value itself of the potential well characteristics, it fluctuates greatly, causing a problem in that it has a large effect on the offset variation of the source follower circuit.

(発明が解決しようとする問題点) このように従来の半導体集積回路ではボテンシVル井戸
の深さvP−影響によるオフセット電圧の変動が発生す
るため、ソースフォロア回路の出力信号を処理する後段
の回路のダイナミックレンジを大きく設計する必要が生
じ、回路全体が複雑化してしまうという欠点がある。
(Problems to be Solved by the Invention) In this way, in conventional semiconductor integrated circuits, fluctuations in offset voltage occur due to the effect of the depth vP of the voltage well. This has the disadvantage that it is necessary to design a circuit with a large dynamic range, making the entire circuit complicated.

そこで本発明は負荷MOSトランジスタのゲート直下の
ポテンシャル井戸にばらつきが生じてもオフセット電圧
にバラツキを生じないソースフォロア回路を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a source follower circuit that does not cause variations in offset voltage even if variations occur in the potential well directly under the gate of a load MOS transistor.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明にかかる半導体集積回路では動作MOSトランジ
スタと負荷MOSトランジスタとを結合した回路を半導
体基板上に集積化してなる半導体集積回路において、ゲ
ート長とゲート幅との比を両MO8l−ランジスタ間で
同一とし、かつ両MOSトランジスタのゲート直Fに同
−状態量の不純物注入層を形成したことを特徴としてい
る。
(Means for Solving the Problems) In a semiconductor integrated circuit according to the present invention, a gate length and a gate width are The ratio of MOS transistors is the same between both MO8l transistors, and an impurity implantation layer with the same state amount is formed directly at the gates of both MOS transistors.

(作 用) このようにゲート長とゲート幅との比を負荷MOSトラ
ンジスタと動作MO8t−ランジスタとで同一とし、両
MO3t−ランジスタのゲート直下に同一状態の不1I
IIvA注入層を形成すると、出力voutがポテンシ
ャル井戸の深さVpt4に関係しない式として表わされ
る。したがってポテンシャル井戸の深さがばらついても
ソースフォロア回路においてはオフセット電圧のばらつ
きに大きな影響を与えない。
(Function) In this way, the ratio of the gate length to the gate width is made the same for the load MOS transistor and the operating MO8t-transistor, and an inverter in the same state is placed directly under the gate of both MO3t-transistors.
When the IIvA injection layer is formed, the output vout can be expressed as an equation that is not related to the depth Vpt4 of the potential well. Therefore, even if the depth of the potential well varies, it does not significantly affect the variation in offset voltage in the source follower circuit.

(実施例) 以下本発明の一実施例を第1図に示す図面を参照して詳
細に説明する。
(Embodiment) An embodiment of the present invention will be described in detail below with reference to the drawing shown in FIG.

第1図は本発明の一実施例にかかる集積化ソースフォロ
ア回路の断面図である。なお第2図に示した従来の構成
と同一部分には同一符号を付しその説明は省略する。
FIG. 1 is a cross-sectional view of an integrated source follower circuit according to an embodiment of the present invention. Note that the same parts as those in the conventional configuration shown in FIG. 2 are given the same reference numerals, and the explanation thereof will be omitted.

この集積化ソースフォロア回路においてはゲート長とゲ
ート幅との比を入力MOSトランジスタ20と負荷MO
8l−ランジスタ30と同一となるように構成する。さ
らに負荷MOSトランジスタ30のゲート4の直下に形
成されるn−15と同一状態になったn一層9を入力M
O8l−ランジスタ20のゲート3の直下にも形成して
いる。すなわちゲート4直下に形成されるn−半導体5
とゲート3直下に形成されるn−半導体層9とは同一工
程で形成され不純物ドーズ吊が同一であり濃度が同一と
なっている。
In this integrated source follower circuit, the ratio of the gate length to the gate width is determined between the input MOS transistor 20 and the load MO.
The configuration is the same as that of the 8l-transistor 30. Furthermore, input M
It is also formed directly under the gate 3 of the O8l-transistor 20. In other words, the n-semiconductor 5 formed directly under the gate 4
The n-semiconductor layer 9 formed immediately below the gate 3 is formed in the same process, has the same impurity dose, and has the same concentration.

この不純物拡散層の形成はイオンインプランテーション
によりゲート酸化膜を介して同時に注入し、熱処理によ
り拡散を行なえばよい。他の構成は第2図に示す従来の
装置と同様である。
This impurity diffusion layer may be formed by simultaneously implanting the impurity through the gate oxide film by ion implantation, and then performing the diffusion by heat treatment. The other configurations are similar to the conventional device shown in FIG.

このように同一の状態量の不純物層を入力MOSトラン
ジスタ20と負荷MO8t−ランジスタ30のゲート直
下に注入したことにより、人力ゲート3に入力vIMを
印加した時のポテンシャル井戸はm・■IHに、負荷M
O8l−ランジスタ30のゲート4を接地した時のポテ
ンシャル井戸■BWを加えたものとなる。接地電位から
ゲート4.3を介して流れる電流は、 と書ける。なおここでKは比例定数、Lはゲート長、W
はゲート幅を示す。
By injecting the impurity layer with the same state amount directly under the gates of the input MOS transistor 20 and the load MO8t-transistor 30 in this way, the potential well when the input vIM is applied to the human-powered gate 3 becomes m·■IH, Load M
O8l - Potential well BW when the gate 4 of the transistor 30 is grounded. The current flowing from the ground potential through the gate 4.3 can be written as. Note that here, K is a proportionality constant, L is the gate length, and W
indicates the gate width.

ここでトランジスタ20とトランジスタ30とのゲート
長とゲート幅との比は同一であるのでW/Lは一定値と
なり、ゲート3およびゲート4とを流れる電流は等しく
なる。そしてその出力vou℃は・ V   = (m−V  +V  )−VP、=m−V
INOUT      IN   PW ・・・・・・(6) と書ける。(6)式かられかるように負荷MOSトラン
ジスタ30のゲート4の直下に形成されるボテンシt!
ル井戸の深さvPWがばらついてもその影響は出力■。
Here, since the gate length and gate width ratios of transistors 20 and 30 are the same, W/L is a constant value, and the currents flowing through gates 3 and 4 are equal. And its output vou℃ is V = (m-V +V)-VP, = m-V
It can be written as INOUT IN PW (6). As can be seen from equation (6), the potential t! formed directly below the gate 4 of the load MOS transistor 30!
Even if the well depth vPW varies, the effect is on the output ■.

olにまったく表わされることはない。It is never expressed in ol.

以上の実施例ではMo8 l−ランジスタの回路として
ソースフォロア回路を取り上げているが、動作トランジ
スタと負荷トランジスタよりなる他の回路でもよい。
In the above embodiment, a source follower circuit is used as the circuit of the Mo8 l-transistor, but other circuits consisting of operating transistors and load transistors may be used.

またソースフォロア回路の場合第4図に示すような入力
トランジスタ20,40.115よび負荷トランジスタ
30.50を有する2段のソースフォロア回路にも本発
明を適用することができる。
In the case of a source follower circuit, the present invention can also be applied to a two-stage source follower circuit having input transistors 20, 40, 115 and load transistors 30, 50 as shown in FIG.

(発明の効果) 以上実施例に基づいて詳細に説明したように本発明では
負荷MoSトランジスタのゲート直下のポテンシャル井
戸にばらつきがあってもそれがトランジスタ回路の特性
には全り影響を与えることがない。したがって回路の安
定した動作が可能となる。
(Effects of the Invention) As described above in detail based on the embodiments, in the present invention, even if there is variation in the potential well directly under the gate of the load MoS transistor, it does not affect the characteristics of the transistor circuit at all. do not have. Therefore, stable operation of the circuit is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す集積化ソースフォロア
回路の構成断面図、第2図は従来の構成断面図、第3図
および第4図は本発明を適用すべき回路を示す回路図で
ある。 3・・・入力MOSトランジスタのゲート、4・・・負
荷MoSトランジスタのゲート、5・・・n−半導体層
、9・・・n−半導体層、20・・・入力MOSトラン
ジスタ、30・・・負荷MOSトランジスタ。
FIG. 1 is a sectional view of the structure of an integrated source follower circuit showing an embodiment of the present invention, FIG. 2 is a sectional view of a conventional structure, and FIGS. 3 and 4 are circuits showing circuits to which the present invention is applied. It is a diagram. 3... Gate of input MOS transistor, 4... Gate of load MoS transistor, 5... n-semiconductor layer, 9... n-semiconductor layer, 20... input MOS transistor, 30... Load MOS transistor.

Claims (1)

【特許請求の範囲】 1、動作MOSトランジスタと負荷MOSトランジスタ
とを結合した回路を半導体基板上に集積化してなる半導
体集積回路において、ゲート長とゲート幅との比が前記
両MOSトランジスタ間で同一であり、かつ前記両MO
Sトランジスタのゲート直下に同一状態の不純物注入層
を形成してなる半導体集積回路。 2、不純物注入層が同一工程のイオンインプランテーシ
ョンにより形成されたものである特許請求の範囲第1項
記載の半導体集積回路。 3、動作MOSトランジスタと負荷MOSトランジスタ
の結合回路がソースフォロア回路である特許請求の範囲
第1項または第2項記載の半導体集積回路。
[Claims] 1. In a semiconductor integrated circuit formed by integrating a circuit in which an operating MOS transistor and a load MOS transistor are combined on a semiconductor substrate, the ratio of gate length to gate width is the same between the two MOS transistors. and both MOs
A semiconductor integrated circuit in which an impurity implantation layer in the same state is formed directly under the gate of an S transistor. 2. The semiconductor integrated circuit according to claim 1, wherein the impurity implantation layer is formed by ion implantation in the same process. 3. The semiconductor integrated circuit according to claim 1 or 2, wherein the coupling circuit of the operating MOS transistor and the load MOS transistor is a source follower circuit.
JP61115578A 1986-05-20 1986-05-20 Semiconductor integrated circuit Expired - Lifetime JP2557846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115578A JP2557846B2 (en) 1986-05-20 1986-05-20 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115578A JP2557846B2 (en) 1986-05-20 1986-05-20 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS62271458A true JPS62271458A (en) 1987-11-25
JP2557846B2 JP2557846B2 (en) 1996-11-27

Family

ID=14666049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115578A Expired - Lifetime JP2557846B2 (en) 1986-05-20 1986-05-20 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2557846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009838A1 (en) * 2014-07-15 2016-01-21 ソニー株式会社 Amplifying device, semiconductor device, production method and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151365A (en) * 1979-05-14 1980-11-25 Semiconductor Res Found Insulated gate type transistor and semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151365A (en) * 1979-05-14 1980-11-25 Semiconductor Res Found Insulated gate type transistor and semiconductor integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009838A1 (en) * 2014-07-15 2016-01-21 ソニー株式会社 Amplifying device, semiconductor device, production method and electronic device

Also Published As

Publication number Publication date
JP2557846B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US5825695A (en) Semiconductor device for reference voltage
US4472871A (en) Method of making a plurality of MOSFETs having different threshold voltages
US3874955A (en) Method of manufacturing an mos integrated circuit
US4451744A (en) Monolithic integrated reference voltage source
JPH04312107A (en) Constant voltage circuit
US20020171468A1 (en) Apparatus for biasing ultra-low voltage logic circuits
JPH01321721A (en) Semiconductor time delay element
US4135102A (en) High performance inverter circuits
JP3470133B2 (en) Method for manufacturing semiconductor device
US4956691A (en) NMOS driver circuit for CMOS circuitry
EP0292270A2 (en) Voltage detection circuit
JPS62271458A (en) Semiconductor integrated circuit
JPH05136355A (en) Semiconductor device
JPH0794988A (en) Mos type semiconductor clamping circuit
JPH064160A (en) Mosfet constant current source generation circuit
JP3569354B2 (en) Semiconductor booster circuit
JP2003197764A (en) Semiconductor device, reference voltage generator circuit and its manufacturing method
JPS59130475A (en) Manufacture of semiconductor memory circuit device
JPS5923607A (en) Bias circuit
JP3171948B2 (en) Threshold voltage variation correction method
JPH02122315A (en) Semiconductor device
JPS58221418A (en) Device for generating reference voltage
JPH02226760A (en) Semiconductor logic circuit
JPS6074559A (en) Generator for reference voltage
JPH02234462A (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term