JPH064160A - Mosfet constant current source generation circuit - Google Patents

Mosfet constant current source generation circuit

Info

Publication number
JPH064160A
JPH064160A JP4160863A JP16086392A JPH064160A JP H064160 A JPH064160 A JP H064160A JP 4160863 A JP4160863 A JP 4160863A JP 16086392 A JP16086392 A JP 16086392A JP H064160 A JPH064160 A JP H064160A
Authority
JP
Japan
Prior art keywords
mosfet
source
constant current
type
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4160863A
Other languages
Japanese (ja)
Other versions
JP3314411B2 (en
Inventor
Hitoshi Koyakata
仁 古館
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP16086392A priority Critical patent/JP3314411B2/en
Publication of JPH064160A publication Critical patent/JPH064160A/en
Application granted granted Critical
Publication of JP3314411B2 publication Critical patent/JP3314411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To obtain a MOSFET constant current source generation circuit without being affected by dispersion in the manufacturing process of a MOSFET and capable of supplying a constant current with high reliability. CONSTITUTION:This circuit is comprised of a D type MOSFET 1 whose source is connected to the gate and to the drain of which a plus power source is inputted, an E type MOSFET 2 whose gate and drain are connected to the source of the MOSFET 1, an E type MOSFET 3 whose gate and drain are connected to the source of the MOSFET 2 and whose source is connected to a minus power source, and an E type MOSFET 4 whose source is connected to the minus power source, and whose gate to the source of the MOSFET 1, and which outputs the constant current to the drain, and the MOSFET 1 can be manufactured in specific pattern size and by the implantation of one time of application of donor ion from the MOSFETs 2-4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MOSFET(Met
al Oxide Semiconductor Fi
eld Effect Transistor)を用い
たアナログ回路に係わり、特に、温度特性の制御を容易
にするのに好適なMOSFET定電流源発生回路に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a MOSFET (Met).
al Oxide Semiconductor Fi
The present invention relates to an analog circuit using an eld effect transistor, and particularly to a MOSFET constant current source generation circuit suitable for facilitating control of temperature characteristics.

【0002】[0002]

【従来の技術】MOSFETは、ドレインとソース間の
電圧が変わっても、ドレインとソース間に一定の電流が
流れる特性があり、例えば、CQ出版社編「トランジス
タ技術」(1992年 2月号、CQ出版社発行)の第
390頁に記載の回路に、第394頁に記載のように、
定電流を供給するための定電流素子と用いられる。さら
に、MOSFETを用いて定電流源発生回路を構成する
場合は、定電圧発生回路を用いて得られた定電圧をゲー
ト電圧として、MOSFETの飽和特性を用いて定電流
を得るのが一般的である。
2. Description of the Related Art A MOSFET has a characteristic that a constant current flows between the drain and the source even if the voltage between the drain and the source is changed. For example, "Transistor Technology" edited by CQ Publishing Co. (February 1992, The circuit described on page 390 of the CQ publisher), as described on page 394,
It is used as a constant current element for supplying a constant current. Furthermore, when a constant current source generation circuit is configured using MOSFETs, it is common to obtain a constant current using the saturation characteristics of the MOSFET with the constant voltage obtained using the constant voltage generation circuit as the gate voltage. is there.

【0003】図2は、従来のMOSFETを用いた定電
流源発生回路の構成を示す回路図である。デプレッショ
ン型MOSFET21のゲートとソース間をショートし
て、飽和領域で動作させた電流源(Iref)を得、そ
して、二つの同特性のエンハンスメント型MOSFET
22、23のゲートとゲート間、および、ソースとソー
ス間をショートさせた、いわゆる、カレントミラー回路
24により、この電流源(Iref)を定数倍(n)し
て、定電流源(Icc)を発生させる。
FIG. 2 is a circuit diagram showing the structure of a conventional constant current source generation circuit using a MOSFET. The gate and source of the depletion type MOSFET 21 are short-circuited to obtain a current source (Iref) operated in a saturation region, and two enhancement type MOSFETs having the same characteristics.
This current source (Iref) is multiplied by a constant (n) by a so-called current mirror circuit 24 in which gates 22 and 23 are short-circuited between the gates and between the sources, and a constant current source (Icc) is obtained. generate.

【0004】しかし、この回路の場合、定電流値(Ic
c)が、次の式で示すように、デプレッション型MOS
FET21の二乗特性になっている。 Icc=n×Iref =n×Kd×(Wd/Ld)×|Vtnd|2 但し、VtndとKd、および、Wd、Ldは、それぞ
れ、デプレッション型MOSFET21のスレッショル
ド電圧と導電係数、および、チャネル幅実効値とチャネ
ル長実効値である。
However, in the case of this circuit, a constant current value (Ic
c) is a depletion type MOS as shown in the following equation.
It has the squared characteristic of the FET 21. Icc = n × Iref = n × Kd × (Wd / Ld) × | Vtnd | 2 where Vtnd and Kd, and Wd and Ld are the threshold voltage and conductivity coefficient of the depletion type MOSFET 21, and the channel width effective, respectively. Value and channel length effective value.

【0005】そして、Vtndのウェハ製造プロセスの
バラツキが大きいため、定電流値(Icc)のロットバ
ラツキ、および、次の式(a)で示す温度特性(∂Ic
c/∂T)のロット間バラツキも大きくなる。 (∂Icc/∂T) =∂{Ke×(We/Le)×|Vtnd|2}/∂T =(We/Le)×〔{|Vtnd|2×(∂Ke/∂T)} +{2×|Vtnd|×Ke×(∂|Vtnd|/∂T)}〕(a) 但し、KeとWd、Ldは、それぞれ、エンハンスメン
ト型MOSFET22、23の導電係数と、チャネル幅
実効値、チャネル長実効値である。
Since the Vtnd wafer manufacturing process has a large variation, the lot variation of the constant current value (Icc) and the temperature characteristic (∂Ic) shown by the following equation (a)
The variation between lots of c / ∂T) also increases. (∂Icc / ∂T) = ∂ {Ke × (We / Le) × | Vtnd | 2 } / ∂T = (We / Le) × [{| Vtnd | 2 × (∂Ke / ∂T)} + { 2 × | Vtnd | × Ke × (∂ | Vtnd | / ∂T)}] (a) where Ke, Wd, and Ld are the conductivity coefficient of the enhancement-type MOSFETs 22 and 23, the channel width effective value, and the channel length, respectively. It is an effective value.

【0006】[0006]

【発明が解決しようとする課題】解決しようとする問題
点は、従来の技術では、MOSFETの製造プロセスで
のバラツキに起因する、MOSFET定電流源発生回路
の電流値(Icc)と温度特性(∂Icc/∂T)のロ
ット間バラツキを小さくすることができない点である。
本発明の目的は、これら従来技術の課題を解決し、MO
SFETの製造プロセスでのバラツキに影響されない、
高信頼な定電流の供給を可能とするMOSFET定電流
源発生回路を提供することである。
The problem to be solved is that in the conventional technique, the current value (Icc) and temperature characteristic (∂) of the MOSFET constant current source generation circuit are caused by variations in the MOSFET manufacturing process. It is a point that the variation between lots of Icc / ∂T) cannot be reduced.
The object of the present invention is to solve these problems of the prior art, and
Not affected by variations in the SFET manufacturing process,
It is an object of the present invention to provide a MOSFET constant current source generation circuit that enables highly reliable supply of constant current.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明のMOSFET定電流源発生回路は、(1)
エンハンスメント型の三つのMOSFETと、この三つ
のMOSFETから、1回のドナーイオンのインプラン
テーションのみで作られるデプレッション型の一つのM
OSFETとを、それぞれソースと基板を接続してなる
定電流源発生回路であり、ソースにゲートを接続し、ド
レインにプラス電源を入力するデプレッション型の第1
のMOSFETと、この第1のMOSFETのソースに
ゲートとドレインを接続したエンハンスメント型の第2
のMOSFETと、この第2のMOSFETのソースに
ゲートとドレインを接続し、ソースをマイナス電源に接
続したエンハンスメント型の第3のMOSFETと、ソ
ースをマイナス電源に、ゲートを第1のMOSFETの
ソースにそれぞれ接続し、ドレインに定電流を出力する
エンハンスメント型の第4のMOSFETとを、チャネ
ルの幅と長さの比と導電係数との積からなる第1のMO
SFETのチャネル係数に対する、第2のMOSFET
のチャネル係数、および、第3のMOSFETのチャネ
ル係数のそれぞれの比の平方根の和が1となる物理的寸
法のパターンで接続してなることを特徴とする。
In order to achieve the above object, the MOSFET constant current source generating circuit of the present invention is (1)
Three enhancement-type MOSFETs and one depletion-type M that can be created from these three MOSFETs only by one implantation of donor ions.
A depletion-type first constant current source generation circuit in which an OSFET and a substrate are connected to each other, and a gate is connected to the source and a positive power source is input to the drain.
MOSFET and an enhancement type second MOSFET in which the gate and drain are connected to the source of the first MOSFET.
And the source of the second MOSFET, the enhancement-type third MOSFET in which the gate and the drain are connected to the source of the second MOSFET and the source is connected to the negative power source, the source is the negative power source, and the gate is the source of the first MOSFET. An enhancement-type fourth MOSFET which is connected to each other and outputs a constant current to the drain is connected to a first MO formed by a product of a ratio of a channel width and a length and a conductivity coefficient.
Second MOSFET for channel coefficient of SFET
And the channel coefficient of the third MOSFET and the square roots of the respective ratios of the channel coefficients of the third MOSFET are connected in a pattern of physical dimensions such that the sum of the square roots is 1.

【0008】[0008]

【作用】本発明においては、第1〜第4のMOSFET
を接続するチャネルのサイズを、次の式に示すように、
チャネルの幅と長さの比と導電係数との積からなる第1
のMOSFETのチャネル係数に対する、第2のMOS
FETのチャネル係数、および、第3のMOSFETの
チャネル係数のそれぞれの比の平方根の和が1となる物
理的寸法とする。 √{(Kd×W1/L1)÷(Ke×W2/L2)} +√{(Kd×W1/L1)÷(Ke×W3/L3)} =1 但し、KdとW1、L1は、それぞれ、第1のMOSF
ETの導電係数と、チャネル幅実効値、チャネル長実効
値であり、KeとW2、L2、および、W3、L3は、
それぞれ、第2、第3のMOSFETの導電係数と、チ
ャネル幅実効値、チャネル長実効値である。
In the present invention, first to fourth MOSFETs are provided.
The size of the channel connecting
A first consisting of the product of the ratio of channel width to length and the conductivity coefficient
Second MOS with respect to the channel coefficient of the MOSFET of
The physical dimension is such that the sum of the square roots of the ratio of the channel coefficient of the FET and the channel coefficient of the third MOSFET is 1. √ {(Kd × W1 / L1) ÷ (Ke × W2 / L2)} + √ {(Kd × W1 / L1) ÷ (Ke × W3 / L3)} = 1 However, Kd, W1 and L1 are respectively First MOSF
The conductivity coefficient of ET, the effective value of the channel width, and the effective value of the channel length, and Ke and W2, L2, and W3, L3 are
These are the conductivity coefficient of the second and third MOSFETs, the channel width effective value, and the channel length effective value, respectively.

【0009】このことにより、MOSFET定電流源発
生回路の定電流値(Icc)は、第1のMOSFETの
スレッショルド電圧(Vtnd)と、第4のMOSFE
Tのスレッショルド電圧(Vtne)および導電係数
(Ke)と、チャネル幅実効値(W4)、チャネル長実
効値(L4)とからなる次式となる。 Icc=Ke×(W4/L4)×(|Vtnd|+Vt
ne)2 そして、第1のMOSFETを、第2〜第4のMOSF
ETから、1回のドナーイオンのインプランテーション
のみで作ることにより、打ち込みイオンの総数を、正確
に制御することができ、「|Vtnd|+Vtne」の
製造プロセスでのバラツキを小さくすることができる。
また、この定電流値(Icc)の製造プロセスでのバラ
ツキが小さくなることにより、その温度特性(∂Icc
/∂T)が、(∂Ke/∂T)に比例して変化するもの
となり、特性のコントロールが容易となる。
As a result, the constant current value (Icc) of the MOSFET constant current source generation circuit becomes equal to the threshold voltage (Vtnd) of the first MOSFET and the fourth MOSFET.
The threshold voltage (Vtne) and conductivity coefficient (Ke) of T, the effective value of the channel width (W4), and the effective value of the channel length (L4) are given by the following equation. Icc = Ke × (W4 / L4) × (| Vtnd | + Vt
ne) 2 and the first MOSFET to the second to fourth MOSF
By making only one implantation of donor ions from ET, the total number of implanted ions can be accurately controlled, and variations in the manufacturing process of “| Vtnd | + Vtne” can be reduced.
Further, since the variation in the constant current value (Icc) in the manufacturing process is reduced, the temperature characteristic (∂Icc
/ ∂T) changes in proportion to (∂Ke / ∂T), which facilitates control of characteristics.

【0010】[0010]

【実施例】以下、本発明の実施例を、図面により詳細に
説明する。図1は、本発明のMOSFET定電流源発生
回路の本発明に係わる構成の一実施例を示す回路図であ
る。本図において、1は、Nチャネル型でデプレッショ
ン型の本発明の第1のMOSFETとしてのMOSFE
Tであり、2〜4は、Nチャネル型でエンハンスメント
型の本発明の第2〜4のMOSFETとしてのMOSF
ETである。MOSFET1、および、MOSFET2
〜3は、飽和領域で動作させた場合、そのゲート電圧V
1、V2は、MOSFET1のドレインとソース間の電
圧Vddによらず一定電圧となる。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of the configuration of the MOSFET constant current source generation circuit of the present invention according to the present invention. In the figure, reference numeral 1 denotes an N-channel type and depletion type MOSFET as the first MOSFET of the present invention.
2 is a T, and 2 to 4 are MOS channels as N-channel type enhancement type MOSFETs 2 to 4 of the present invention.
It is ET. MOSFET 1 and MOSFET 2
3 to 3 show the gate voltage V when operated in the saturation region.
1 and V2 are constant voltages regardless of the voltage Vdd between the drain and source of the MOSFET 1.

【0011】このことにより、MOSFET1〜3を流
れる電流(I1)は、 I1=Kd×(W1/L1)×|Vtnd|21=Ke×(W2/L2)×(V1−V2−Vtn
e)21=Ke×(W3/L3)×(V2−Vtne)2 となる。但し、KdとW1、L1は、それぞれ、MOS
FET1の導電係数と、チャネル幅実効値、チャネル長
実効値であり、KeとW2、L2、および、W3、L3
は、それぞれ、MOSFET2、3の導電係数と、チャ
ネル幅実効値、チャネル長実効値である。また、Vtn
dとVtneは、それぞれ、MOSFET1とMOSF
ET2〜4のスレッショルド電圧である。
As a result, the current (I 1 ) flowing through the MOSFETs 1 to 3 is as follows: I 1 = Kd × (W1 / L1) × │Vtnd│ 2 I 1 = Ke × (W2 / L2) × (V1-V2- Vtn
e) 2 I 1 = Ke × (W3 / L3) × (V2-Vtne) 2 . However, Kd, W1, and L1 are respectively MOS
The conductivity coefficient of the FET1, the channel width effective value, and the channel length effective value, and Ke and W2, L2, and W3, L3.
Are the conductivity coefficients of the MOSFETs 2 and 3, the channel width effective value, and the channel length effective value, respectively. Also, Vtn
d and Vtne are MOSFET1 and MOSF, respectively.
It is a threshold voltage of ET2-4.

【0012】これを解くと、 V1=〔√{(Kd×W1/L1)÷(Ke×W2/L2)} +√{(Kd×W1/L1)÷(Ke×W3/L3)}〕 ×|Vtnd|+2×Vtne V2=〔√{(Kd×W1/L1)÷(Ke×W3/L3)}〕 ×|Vtnd|+Vtne となる。Solving this, V1 = [√ {(Kd × W1 / L1) ÷ (Ke × W2 / L2)} + √ {(Kd × W1 / L1) ÷ (Ke × W3 / L3)}] × | Vtnd | + 2 × Vtne V2 = [√ {(Kd × W1 / L1) ÷ (Ke × W3 / L3)}] × | Vtnd | + Vtne.

【0013】ここで、パターンのサイズ設定を、 √{(Kd×W1/L1)÷(Ke×W2/L2)} +√{(Kd×W1/L1)÷(Ke×W3/L3)} =1 とすると、 V1=|Vtnd|+2×Vtne となる。Here, the size of the pattern is set by √ {(Kd × W1 / L1) ÷ (Ke × W2 / L2)} + √ {(Kd × W1 / L1) ÷ (Ke × W3 / L3)} = When it is set to 1, V1 = | Vtnd | + 2 × Vtne.

【0014】このことにより、MOSFET4を、飽和
領域で使用した場合の電流値(Icc)は、 Icc=Ke×(W4/L4)×(V1−Vtne)2 =Ke×(W4/L4)×(|Vtnd|+Vtne)
2 となる。但し、W4とL4は、それぞれ、MOSFET
4のチャネル幅実効値とチャネル長実効値である。
As a result, the current value (Icc) when the MOSFET 4 is used in the saturation region is as follows: Icc = Ke × (W4 / L4) × (V1−Vtne) 2 = Ke × (W4 / L4) × ( | Vtnd | + Vtne)
It becomes 2 . However, W4 and L4 are MOSFETs
4 are the channel width effective value and the channel length effective value.

【0015】ここで、MOSFET1のスレッショルド
電圧Vtndと、MOSFET2〜4のスレッショルド
電圧Vtneのプロセス上の作り方を、下記のようにす
る。pウェル自体の表面濃度を用いてMOSFET2〜
4のスレッショルド電圧Vtneを作り、それから、ド
ナーイオンの打ち込みの一工程で、MOSFET1のス
レッショルド電圧Vtndを作る。このようにすれば、
打ち込みイオンの総数のコントロールは非常に正確にで
きるため、「|Vtnd|+Vtne」は、バラツキを
小さく制御することができる。従って、電流値(Ic
c)の製造プロセスでのバラツキを小さくすることがで
きる。
Here, the method of forming the threshold voltage Vtnd of the MOSFET 1 and the threshold voltage Vtne of the MOSFETs 2 to 4 in the process is as follows. MOSFET 2 to 2 using the surface concentration of the p-well itself
The threshold voltage Vtne of MOSFET 4 is created, and then the threshold voltage Vtnd of MOSFET 1 is created in one step of implanting donor ions. If you do this,
Since the total number of implanted ions can be controlled very accurately, “| Vtnd | + Vtne” can be controlled to have a small variation. Therefore, the current value (Ic
It is possible to reduce variations in the manufacturing process of c).

【0016】また、次の式(b)で示されるその温度特
性(∂Icc/∂T)の製造プロセスでのバラツキも小
さくすることができる。 (∂Icc/∂T) =(W4/L4)×〔(|Vtnd|+Vtne)2 ×(∂Ke/∂T)+2×(|Vtnd|+Vtne) ×Ke×{(∂|Vtnd|/∂T) +(∂Vtne/∂T)}〕 (b)
Further, variations in the temperature characteristic (∂Icc / ∂T) represented by the following equation (b) in the manufacturing process can be reduced. (∂Icc / ∂T) = (W4 / L4) × [(| Vtnd | + Vtne) 2 × (∂Ke / ∂T) + 2 × (| Vtnd | + Vtne) × Ke × {(∂ | Vtnd | / ∂T ) + (∂Vtne / ∂T)}] (b)

【0017】この(b)式により、実験データを用いて
温度特性(∂Icc/∂T)を求めると、例えば、(V
tnd=−0.4v、Vtne=0.2v)の時には、 (W4/L4)×(∂Icc/∂T) =(0.6)2×(−1.0÷106)+2×0.6×204÷106 ×(+1.5÷104−1.3÷104) =−3.6÷107+7.3÷109 ≒−3.6÷107(A/℃) となる。尚、この値は、例えば、Vtndが、標準の
(−0.4v)でも、最大の(−0.25v)でも、最
小の(−0.55v)の場合でも同じである。
When the temperature characteristic (∂Icc / ∂T) is obtained from the experimental data by the equation (b), for example, (V
tnd = −0.4v, Vtne = 0.2v), (W4 / L4) × (∂Icc / ∂T) = (0.6) 2 × (−1.0 ÷ 10 6 ) + 2 × 0. 6 × 204 ÷ 10 6 × (+ 1.5 ÷ 10 4 −1.3 ÷ 10 4 ) = − 3.6 ÷ 10 7 + 7.3 ÷ 10 9 ≈−3.6 ÷ 10 7 (A / ° C.) Become. Note that this value is the same whether Vtnd is standard (-0.4v), maximum (-0.25v), or minimum (-0.55v).

【0018】ここで、従来技術の(a)式を用い、同一
条件での従来のMOSFETを用いた定電流源発生回路
の温度特性を計算する。まず、Vtnd=−0.4v
(Typ/標準)の場合は、 (Le/We)×(∂Icc/∂T) =(0.4)2×(−1.0÷106) +2×0.4×204÷106×(+1.6÷104) =−1.6÷107+2.6÷108 ≒−1.3÷107(A/℃) となる。
Here, the temperature characteristic of the constant current source generating circuit using the conventional MOSFET under the same conditions is calculated using the equation (a) of the conventional technique. First, Vtnd = -0.4v
In the case of (Typ / standard), (Le / We) × (∂Icc / ∂T) = (0.4) 2 × (−1.0 ÷ 10 6 ) + 2 × 0.4 × 204 ÷ 10 6 × (+ 1.6 ÷ 10 4 ) = − 1.6 ÷ 10 7 + 2.6 ÷ 10 8 ≈−1.3 ÷ 10 7 (A / ° C.).

【0019】次に、Vtnd=−0.55v(Min/
最小)の場合は、 (Le/We)×(∂Icc/∂T) =(0.55)2×(−1.05÷106) +2×0.55×213÷106×(+1.7÷104) =−3.2÷107+4.0÷108 ≒−2.8÷107(A/℃) となる。
Next, Vtnd = -0.55v (Min /
In the case of (minimum), (Le / We) × (∂Icc / ∂T) = (0.55) 2 × (−1.05 ÷ 10 6 ) + 2 × 0.55 × 213 ÷ 10 6 × (+1. 7 ÷ 10 4 ) = − 3.2 ÷ 10 7 + 4.0 ÷ 10 8 ≈−2.8 ÷ 10 7 (A / ° C.).

【0020】さらに、Vtnd=−0.25v(Max
/最大)の場合は、 (Le/We)×(∂Icc/∂T) =(0.25)2×(−0.95÷106) +2×0.25×195÷106×(+1.5÷104) =−5.9÷108+1.5÷108 ≒−0.44÷107(A/℃) となる。この結果からわかるように、本実施例のMOS
FET定電流源発生回路で発生する電流値(Icc)の
温度特性は、大きくなるが、ほぼ、「∂Ke/∂T」に
比例して変化することになり、特性のコントロールが容
易となる。
Further, Vtnd = -0.25v (Max
In the case of / maximum), (Le / We) × (∂Icc / ∂T) = (0.25) 2 × (−0.95 ÷ 10 6 ) + 2 × 0.25 × 195 ÷ 10 6 × (+1 0.5 ÷ 10 4 ) = − 5.9 ÷ 10 8 + 1.5 ÷ 10 8 ≈−0.44 ÷ 10 7 (A / ° C.). As can be seen from this result, the MOS of this embodiment is
Although the temperature characteristic of the current value (Icc) generated in the FET constant current source generation circuit becomes large, it changes almost in proportion to "∂Ke / ∂T", and the control of the characteristic becomes easy.

【0021】以上、図1を用いて説明したように、本実
施例のMOSFET定電流源発生回路では、MOSFE
T1〜4のパターンを特定のサイズとし、MOSFET
1を、MOSFET2〜4から、1回のドナーイオンの
インプランテーションのみで作る。このことにより、打
ち込みイオンの総数を、正確に制御することができ、定
電流値(Icc)の製造プロセスでのバラツキを小さく
することができる。また、その温度特性(∂Icc/∂
T)が、(∂Ke/∂T)に比例して変化するものとな
り、特性のコントロールが容易となる。
As described above with reference to FIG. 1, in the MOSFET constant current source generation circuit of this embodiment, the MOSFE
The pattern of T1 to 4 is set to a specific size, and the MOSFET is
1 is made from MOSFETs 2 to 4 by only one implantation of donor ions. This makes it possible to accurately control the total number of implanted ions and reduce variations in the constant current value (Icc) in the manufacturing process. In addition, the temperature characteristic (∂Icc / ∂
T) changes in proportion to (∂Ke / ∂T), which makes it easy to control the characteristics.

【0022】尚、本発明は、図1を用いて説明した実施
例に限定されるものではない。例えば、本実施例では、
nチャネル型のMOSFETを用いて説明しているが、
pチャネル型のMOSFETを用いても良い。
The present invention is not limited to the embodiment described with reference to FIG. For example, in this embodiment,
Although an n-channel MOSFET is used for explanation,
A p-channel type MOSFET may be used.

【0023】[0023]

【発明の効果】本発明によれば、MOSFETの製造プ
ロセスでのバラツキに起因する、MOSFET定電流源
発生回路の電流値(Icc)と温度特性(∂Icc/∂
T)のロット間バラツキを小さくすることができ、MO
SFETの製造プロセスでのバラツキに影響されない、
高信頼な定電流を供給することが可能である。
According to the present invention, the current value (Icc) and temperature characteristic (∂Icc / ∂) of the MOSFET constant current source generation circuit due to variations in the MOSFET manufacturing process.
T) variation between lots can be reduced, and MO
Not affected by variations in the SFET manufacturing process,
It is possible to supply a highly reliable constant current.

【0024】[0024]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMOSFET定電流源発生回路の本発
明に係わる構成の一実施例を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a configuration according to the present invention of a MOSFET constant current source generation circuit of the present invention.

【図2】従来のMOSFETを用いた定電流源発生回路
の構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of a constant current source generation circuit using a conventional MOSFET.

【符号の説明】[Explanation of symbols]

1 Nチャネルデプレッション型MOSFET 2〜4 Nチャネルエンハンスメント型MOSFET 21 デプレッション型MOSFET 22、23 エンハンスメント型MOSFET 24 カレントミラー回路 DESCRIPTION OF SYMBOLS 1 N-channel depletion type MOSFET 2 to 4 N-channel enhancement type MOSFET 21 Depletion type MOSFET 22, 23 Enhancement type MOSFET 24 Current mirror circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンハンスメント型の三つのMOSFE
Tと、該三つのMOSFETから、1回のドナーイオン
のインプランテーションのみで作られるデプレッション
型の一つのMOSFETとを、それぞれソースと基板を
接続してなる定電流源発生回路であり、上記ソースにゲ
ートを接続し、ドレインにプラス電源を入力する上記デ
プレッション型の第1のMOSFETと、該第1のMO
SFETのソースにゲートとドレインを接続した上記エ
ンハンスメント型の第2のMOSFETと、該第2のM
OSFETのソースにゲートとドレインを接続し、ソー
スをマイナス電源に接続した上記エンハンスメント型の
第3のMOSFETと、ソースを上記マイナス電源に、
ゲートを上記第1のMOSFETのソースにそれぞれ接
続し、ドレインに定電流を出力する上記エンハンスメン
ト型の第4のMOSFETとを、チャネルの幅と長さの
比と導電係数との積からなる上記第1のMOSFETの
チャネル係数に対する、上記第2のMOSFETのチャ
ネル係数、および、上記第3のMOSFETのチャネル
係数のそれぞれの比の平方根の和が1となる物理的寸法
のパターンで接続してなることを特徴とするMOSFE
T定電流源発生回路。
1. An enhancement type three MOSFE
A constant current source generating circuit in which a source and a substrate are respectively connected to T and one depletion type MOSFET which is formed by only one implantation of donor ions from the three MOSFETs, and The depletion-type first MOSFET having the gate connected to it and the positive power source inputted to the drain, and the first MO
The enhancement-type second MOSFET in which the gate and the drain are connected to the source of the SFET, and the second M-type MOSFET.
A third MOSFET of the enhancement type in which the gate and the drain are connected to the source of the OSFET and the source is connected to the negative power source; and the source is the negative power source,
The enhancement-type fourth MOSFET having a gate connected to the source of the first MOSFET and a constant current output to the drain, and the enhancement-type fourth MOSFET, which is formed by a product of a ratio of a width and a length of a channel and a conductivity coefficient. Connection in a pattern of physical dimensions such that the sum of the square roots of the ratios of the channel coefficient of the second MOSFET and the channel coefficient of the third MOSFET to the channel coefficient of the first MOSFET is 1. MOSFE characterized by
T constant current source generation circuit.
JP16086392A 1992-06-19 1992-06-19 MOSFET constant current source generation circuit Expired - Fee Related JP3314411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16086392A JP3314411B2 (en) 1992-06-19 1992-06-19 MOSFET constant current source generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16086392A JP3314411B2 (en) 1992-06-19 1992-06-19 MOSFET constant current source generation circuit

Publications (2)

Publication Number Publication Date
JPH064160A true JPH064160A (en) 1994-01-14
JP3314411B2 JP3314411B2 (en) 2002-08-12

Family

ID=15724010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16086392A Expired - Fee Related JP3314411B2 (en) 1992-06-19 1992-06-19 MOSFET constant current source generation circuit

Country Status (1)

Country Link
JP (1) JP3314411B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301409A (en) * 2004-04-07 2005-10-27 Ricoh Co Ltd Constant current circuit
JP2006260412A (en) * 2005-03-18 2006-09-28 Mitsumi Electric Co Ltd Power supply circuit and device
JP2007188245A (en) * 2006-01-12 2007-07-26 Toshiba Corp Reference voltage generating circuit and semiconductor integrated device
JP2007226710A (en) * 2006-02-27 2007-09-06 Ricoh Co Ltd Constant current circuit and constant voltage circuit
KR20130105438A (en) * 2012-03-13 2013-09-25 세이코 인스트루 가부시키가이샤 Reference voltage circuit
JP2015177328A (en) * 2014-03-14 2015-10-05 富士電機株式会社 semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301409A (en) * 2004-04-07 2005-10-27 Ricoh Co Ltd Constant current circuit
JP2006260412A (en) * 2005-03-18 2006-09-28 Mitsumi Electric Co Ltd Power supply circuit and device
JP2007188245A (en) * 2006-01-12 2007-07-26 Toshiba Corp Reference voltage generating circuit and semiconductor integrated device
JP4703406B2 (en) * 2006-01-12 2011-06-15 株式会社東芝 Reference voltage generation circuit and semiconductor integrated device
JP2007226710A (en) * 2006-02-27 2007-09-06 Ricoh Co Ltd Constant current circuit and constant voltage circuit
KR20130105438A (en) * 2012-03-13 2013-09-25 세이코 인스트루 가부시키가이샤 Reference voltage circuit
JP2013190933A (en) * 2012-03-13 2013-09-26 Seiko Instruments Inc Reference voltage circuit
TWI569125B (en) * 2012-03-13 2017-02-01 Sii Semiconductor Corp Reference voltage circuit
JP2015177328A (en) * 2014-03-14 2015-10-05 富士電機株式会社 semiconductor device

Also Published As

Publication number Publication date
JP3314411B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
KR940001251B1 (en) Voltage control circuit
US4583037A (en) High swing CMOS cascode current mirror
JPH0613820A (en) Enhancement/depletion mode cascode current mirror
JPH0465546B2 (en)
US10585447B1 (en) Voltage generator
US7242241B2 (en) Reference circuit
US5936433A (en) Comparator including a transconducting inverter biased to operate in subthreshold
US4135102A (en) High performance inverter circuits
JP2674669B2 (en) Semiconductor integrated circuit
JP3523462B2 (en) MOS semiconductor integrated circuit
US20060125547A1 (en) Adjustable and programmable temperature coefficient-proportional to absolute temperature (APTC-PTAT) circuit
JP3314411B2 (en) MOSFET constant current source generation circuit
JPH0786917A (en) Inverter circuit
US6815997B2 (en) Field effect transistor square multiplier
US4740714A (en) Enhancement-depletion CMOS circuit with fixed output
JPH0794988A (en) Mos type semiconductor clamping circuit
JPH03102412A (en) Mos integrated circuit
US4947056A (en) MOSFET for producing a constant voltage
JPH1127065A (en) Semiconductor integrated circuit
JP3322357B2 (en) Constant voltage generator
JP2555046Y2 (en) Output buffer circuit
JPH1126598A (en) Semiconductor integrated circuit
JPH07153911A (en) Thershold reference voltage circuit
JPS6272019A (en) Reference voltage generating circuit
JPS6273755A (en) Power source voltage dropping circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees