JPS6272019A - Reference voltage generating circuit - Google Patents

Reference voltage generating circuit

Info

Publication number
JPS6272019A
JPS6272019A JP60212945A JP21294585A JPS6272019A JP S6272019 A JPS6272019 A JP S6272019A JP 60212945 A JP60212945 A JP 60212945A JP 21294585 A JP21294585 A JP 21294585A JP S6272019 A JPS6272019 A JP S6272019A
Authority
JP
Japan
Prior art keywords
mosfet
voltage
channel
gate
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60212945A
Other languages
Japanese (ja)
Inventor
Ichiro Yamada
一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP60212945A priority Critical patent/JPS6272019A/en
Publication of JPS6272019A publication Critical patent/JPS6272019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate a reference voltage being stable against the variation in source voltage, a change in manufacture condition, and the variation in temperature even when the source voltage is low by providing the 1st MOSFET, the 2nd MOSFET, the 3rd MOSFET, and the 4th MOSFET which are cascaded to a power source in series respectively, and using a depletion type as the 2nd MOSFET and an enhancement type as the 1st, the 3rd, and the 4th MOSFETs. CONSTITUTION:A P channel MOSFET is a depletion type and its gate is connected to the source. The gates of N channel MOSFETs 102 and 104 are connected in common and also connected to the drain of the FET 102. Further, the gate of a P channel MOSFET is connectedd to the drain. Other MOSFETs except a MOSFET 101 are an enhancement type. Consequently, the sum of the absolute values of a normal threshold voltage and the threshold voltage of the depletion type MOSFET is obtained, so variations threshold value with temperature cancel each other and the reference voltage is generated very stably against the temperature variations.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基$電圧を発生する回路構成に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a circuit configuration for generating a base voltage.

〔発明の概要〕[Summary of the invention]

本発明の基進電圧発生回路はエンハンスメント型とデプ
レッション型の各々のスレソホールト電圧の絶対値の和
を発生する構成で、電源電圧変動や温度変動さらに製造
条件の変動の影!#を受けないようにしたものである。
The base voltage generation circuit of the present invention is configured to generate the sum of the absolute values of the enhancement type and depletion type threshold voltages, and is free from the influence of power supply voltage fluctuations, temperature fluctuations, and manufacturing condition fluctuations. # is not received.

〔従来の技術〕[Conventional technology]

従来の差率電圧発生回路として第4図にその一例を示す
。第4図においてPチャンネルMOSFETIiO+と
405のスレシホールド電圧と導電係数はそれぞれ相等
しく、NチャンネルMOIEFET402のスレシホー
ルド電圧をVAO2,導電係数をβ402.Nチャンネ
ルMOSFKT404のスレシホールド電圧をv404
、導電係数をβ404とすると、端子405にはβ40
2=β404で、V 402)V a OaQ時Vd0
2−V4Q4 の電圧が発生する。この電圧は、NチャンネルMO6F
I!:7MO2と404のスレゾホールド電圧の差とな
っているため、電源電圧や温度の変動に依存しない電圧
となる。
An example of a conventional differential ratio voltage generating circuit is shown in FIG. In FIG. 4, the threshold voltage and conduction coefficient of P-channel MOSFET IiO+ and 405 are equal to each other, the threshold voltage of N-channel MOIEFET 402 is VAO2, and the conduction coefficient is β402. Set the threshold voltage of N-channel MOSFKT404 to v404.
, the conductivity coefficient is β404, the terminal 405 has β40
2=β404, V 402) Vd0 at V a OaQ
A voltage of 2-V4Q4 is generated. This voltage is N-channel MO6F
I! : Since it is the difference between the threshold voltages of 7MO2 and 404, it becomes a voltage that does not depend on fluctuations in power supply voltage or temperature.

〔発明が解決しようとする問題点及び目的〕しかし従来
の基進電圧発生回路では、その出力電圧を大きくしよう
とすると、電源電圧を十分大きくしなければならないと
いう問題点を有していた。すなわち第4図において、V
d02−7404x 1. Q V t−希望した場合
、例えばV 402−1.4v、vaoa=α4vとな
り、NチャンネルM 08IPKT402が動作するた
めには、電源電圧を1.4v以上としなければならない
。また、v404は小さくしすぎると、高温においてデ
プレッション型となシ、回路が安定に動作しなくなる。
[Problems and Objectives to be Solved by the Invention] However, the conventional basic voltage generation circuit has a problem in that in order to increase its output voltage, the power supply voltage must be sufficiently increased. That is, in FIG. 4, V
d02-7404x 1. Q V t - If desired, for example, V 402 - 1.4v, vaoa = α4v, and in order for the N-channel M08IPKT402 to operate, the power supply voltage must be 1.4v or higher. Furthermore, if v404 is made too small, the circuit will not operate stably because it will become a depression type at high temperatures.

またNチャンネル1i10SFICT402に流れるI
E流が電源電圧変動により変化し、回路の動作点が変わ
シ出力電圧が変イヒする可能性を有している。
Also, I flowing to N channel 1i10SFICT402
There is a possibility that the E current changes due to fluctuations in the power supply voltage, the operating point of the circuit changes, and the output voltage changes.

本発明は以上の問題点を解決するもので、電源電圧変動
や製造条件変動さらには温度変動に対して安定な基準電
圧を、低い電源電圧でも発生することができる回路を得
ることを目的とする。
The present invention solves the above problems, and aims to provide a circuit that can generate a reference voltage that is stable against power supply voltage fluctuations, manufacturing condition fluctuations, and temperature fluctuations even at a low power supply voltage. .

〔間@を解決するための手段〕[Means for resolving the gap @]

本発明の基蕩電圧発生回路は、電源に直列に縦続接続さ
れた第1のMOSFETと第2のMOSFET、電源に
直列に縦続接続された第3のMOSFETと第4のMO
SF1nTを有し、前記第1のMOSFETOゲートは
前記第17)MOEIFETのドレインと前記@3のM
O13FETのゲートとに接続され、前記第2のMOS
FB:Tのゲートは@2のMOSFI!:Tのソースと
接続され、前記第4のMOSFETのゲートは第4のM
OSFETのトレインと接続され、前記第1のMO日F
InTと第3のMOSFETの導電型は同じで、前記第
2のMOSFETと第4のMOSIFKTの導電型は前
記11g1及び第3のMOSFETの導電型とは異なっ
ている構成で、前記第2のMOSFETはデプレッショ
ン型であり、前記第+、第3.第4のMOSFETはエ
ンハンスメント型であることを特徴とする。
The basic voltage generation circuit of the present invention includes a first MOSFET and a second MOSFET connected in series to the power supply, a third MOSFET and a fourth MOSFET connected in series to the power supply.
SF1nT, and the first MOSFET gate is connected to the drain of the 17th) MOEIFET and the @3 M
connected to the gate of the O13FET, and the second MOS
FB: T gate is @2 MOSFI! : connected to the source of the fourth MOSFET, and the gate of the fourth MOSFET is connected to the source of the fourth MOSFET
connected to the train of OSFETs, said first MO day F
The conductivity types of the InT and the third MOSFET are the same, and the conductivity types of the second MOSFET and the fourth MOSFET are different from those of the 11g1 and the third MOSFET, and the second MOSFET is a depression type, and the above-mentioned +, 3. The fourth MOSFET is characterized by being of an enhancement type.

〔作用〕[Effect]

第2のMOSFETはデプレッション型であるため、定
電流効果により11源電圧変動に対し、安定した動作を
する。また温度変動や製造条件変動の影響は互いにキャ
ンセルするため受けない。さらにスレシホールド電圧も
従来例はど大きくないため、低這源電圧で動作可能であ
る。
Since the second MOSFET is of the depletion type, it operates stably against source voltage fluctuations due to the constant current effect. Furthermore, the effects of temperature fluctuations and manufacturing condition fluctuations are not affected because they cancel each other out. Furthermore, since the threshold voltage is not so large as in the conventional example, it is possible to operate with a low supply voltage.

〔実施例〕〔Example〕

本発明の実施例を第1図に示す。第1図において、Pチ
ャンネルuosyxTHデプレッション型であシ、その
ゲートはソースに接続されている。
An embodiment of the invention is shown in FIG. In FIG. 1, it is a P-channel uosyxTH depletion type, and its gate is connected to its source.

NチャンネルMOSFET+02と104はゲートが共
通で、FKTI02のドレインと接続されている。また
PチャンネルMOSIPETのゲートはドレインに接続
されている。MOSFET +01ヲ除く他のMOEI
FETはエンハンスメント型である。
N-channel MOSFET+02 and 104 have a common gate and are connected to the drain of FKTI02. Further, the gate of the P-channel MOSIPET is connected to the drain. MOSFET Other MOEI except +01
FET is an enhancement type.

さて今MOSIFET I O+のスレシホールド電圧
(以下Vthと略す) k V+1)11導電係a(以
下βと略す)全βp、MOSFKT I 05のvth
をV+p、 。
Now, the threshold voltage of MOSIFET I O+ (hereinafter abbreviated as Vth) k V+1) 11 conductivity coefficient a (hereinafter abbreviated as β) total βp, vth of MOSFET I 05
V+p, .

βをβ、、MOSFIICT +02と104のvth
 、βを各k V+M、 、β、 、 V+114.β
4 とする。全MOSFETが飽和動作するとすれば、 ’h (V+P、 )z−7!j(V、 −V+M、 
)”     +11’l(VD D−V、 −V+P
、 )−ム(v、−v+y4)”  f21ここでV、
はMOSFKTI02のドレイン電圧、v、はMOSI
FFiT l 0517)ドレイン電圧、VDDはt源
電圧である。
β to β, MOSFIICT +02 and 104 vth
, β for each k V+M, , β, , V+114. β
4. If all MOSFETs operate in saturation, 'h (V+P, )z-7! j(V, -V+M,
)"+11'l(VD D-V, -V+P
, )−mu(v,−v+y4)” f21 where V,
is the drain voltage of MOSFKTI02, v, is MOSI
FFiT l 0517) Drain voltage, VDD is the t source voltage.

式nl +21よね ここでV++、xV++4=V+M、β−β8.β−β
4とすればVDD−V、 = V+P、 + I V+
P、 +             +51となる。
Formula nl +21 where V++, xV++4=V+M, β-β8. β−β
If it is 4, then VDD-V, = V+P, + I V+
P, + +51.

今MOSF’ET I Olのvthを最初v+p、に
しておいて後イオン打込みでV十F、を作るよう製造す
れば V+P、=V+P、−ΔV  (AV>V+P、)ΔV
はイオン打込みによるvth変fヒ分よって VDD−V! = v+p、+ l V+P、−ΔV 
l! V+P、 +ΔV −V+P、=ΔV     
   +61となり、イオン打込み量のみで決する値と
なる。
Now, if the vth of MOSF'ET I Ol is initially set to v+p and then manufactured to make V0F by ion implantation, V+P, = V+P, -ΔV (AV>V+P,)ΔV
is VDD-V! due to the vth change f due to ion implantation! = v+p, + l V+P, -ΔV
l! V+P, +ΔV −V+P, =ΔV
+61, which is a value determined only by the amount of ion implantation.

MOSFET I OlとMOSFET I 04を飽
和で動作させるには、簡単な計算によりβ、〈 β。
To operate MOSFET I Ol and MOSFET I 04 in saturation, a simple calculation shows that β, 〈 β.

とすればよいことがわかる。You can see that it is sufficient to do this.

式(6)が示すように本発明の基醜電圧発生回路はエン
ハンスメントのvthトテフレツゾヨンのvthの絶対
値の和を出力するので、l[変化に対して安定となる。
As shown in equation (6), the basic voltage generation circuit of the present invention outputs the sum of the absolute values of vth of the enhancement vth toteflex, so it is stable against changes in l[.

またデプレッションIMOSFF2T101に流れるt
R,で、回路の1作点が足するため、?!源電電圧変動
よる動作点の変動はなく、出力電圧が安定となる。さら
に比較的精度のよいイオン打込み技術を用いることによ
り製造条件変動の影響を受けにくくすることができる。
Also, t flowing to depression IMOSFF2T101
In R, one crop point of the circuit is added, so ? ! There is no fluctuation in the operating point due to fluctuations in the power supply voltage, and the output voltage is stable. Furthermore, by using a relatively accurate ion implantation technique, it can be made less susceptible to variations in manufacturing conditions.

さらにPチャンネルMOBFET+0IftP  ’f
−ト、PチャンネルMOSIPET105全N1ゲート
トシ両トランジスタに同じイオン打込みを行なってPチ
ャンネルMOSFET IQ I’i)デプレッション
型とすることにより、シリコンの仕事関数差約1.07
7の電圧を発生することもできる。この場合は、イオン
打込み技的のみを用いた前述の構成よシも製造条件変動
による電圧変動をさらに小さくすることができる。
Furthermore, P channel MOBFET+0IftP 'f
- By performing the same ion implantation on both transistors of P-channel MOSFET 105 and making it a depletion type P-channel MOSFET, the silicon work function difference is approximately 1.07.
It is also possible to generate a voltage of 7. In this case, voltage fluctuations due to variations in manufacturing conditions can be further reduced compared to the above-described configuration using only the ion implantation technique.

第2図に本発明の基進電圧発生回路を用いた電圧検出回
路の一例を示す。基s電圧発生回路201の出力電圧と
電源電圧を抵抗分圧回路205により分圧した電圧とを
コンパレータ202により比較する回路である。基m@
電圧発生回路01の出力電圧がポリシリコンの仕事関数
差約1.077となる様に構成した場合、従来の回路で
は電源電圧1.6v以上でないと、動作しなかったが、
本発明の基菰−圧発生回路を用いた第2図の回路では電
源電圧1,2vまで動作させることができる。
FIG. 2 shows an example of a voltage detection circuit using the basic voltage generation circuit of the present invention. This is a circuit in which a comparator 202 compares the output voltage of the base s voltage generation circuit 201 and the voltage obtained by dividing the power supply voltage by a resistive voltage dividing circuit 205. Base m@
When the output voltage of voltage generating circuit 01 is configured to have a work function difference of about 1.077 between polysilicon, the conventional circuit did not operate unless the power supply voltage was 1.6 V or higher.
The circuit of FIG. 2 using the basic pressure generating circuit of the present invention can be operated up to a power supply voltage of 1.2 V.

第3図には本発明の他の実施列を示しである。FIG. 3 shows another embodiment of the invention.

第3図においては、基本的に第1図の回路の各MOSF
ETの導電型を反対にしたもので、NチャンネルM O
S F E T 502ノVthノ絶対値と、Nチャン
ネルMO6FKT 504のVthとの和の電圧が、O
vを基漁にして、NチャンネルMO6yETso4のド
レインに発生する構成である。
In Figure 3, basically each MOSF of the circuit in Figure 1 is
The conductivity type of ET is reversed, and N-channel MO
The voltage of the sum of the absolute value of Vth of S F E T 502 and the Vth of N-channel MO6FKT 504 is O
This is a configuration in which the current is generated at the drain of the N-channel MO6yETso4 using v as the base fishing.

〔発明の効果〕〔Effect of the invention〕

本発明の差遣電圧発生回路は、通常のスレシホールド電
圧と、デプレッション型MOSFETのスレシホールド
電圧の絶対値との和を得ることがで★るため、温度変動
に対してのスレシホールドの変動分が互いに打消し合い
、温度変動に対して非常に安定である。また通常のスレ
シホールド電圧以上のスレゾホールド電圧を持つMOS
FETが存在しないため、NチャンネルとPチャンネル
各エンハンスメントIMOSFETのスレシホールド電
圧の和以上の電源電圧があれば動作可能となる。さらに
、デプレッション型MOS?ETIC流れるt流で、回
路の動作点が定まるため、電源電圧変動に対しても非常
に安定な羞悪電圧を得ることができる。
Since the differential voltage generation circuit of the present invention can obtain the sum of the normal threshold voltage and the absolute value of the threshold voltage of the depletion type MOSFET, The fluctuations cancel each other out, making it extremely stable against temperature fluctuations. Also, MOS with a threshold voltage higher than the normal threshold voltage.
Since there is no FET, operation is possible as long as there is a power supply voltage equal to or higher than the sum of the threshold voltages of the N-channel and P-channel enhancement IMOSFETs. Furthermore, depression type MOS? Since the operating point of the circuit is determined by the ETIC current, it is possible to obtain a very stable voltage even in the face of power supply voltage fluctuations.

以上の利点により、時計用IC等低電s電圧駆動の電子
回路における各種電圧検出や定電圧回路などく利用でき
、その効果は多大である。
Due to the above advantages, the present invention can be used for various voltage detection and constant voltage circuits in low-voltage driven electronic circuits such as ICs for watches, and its effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の差遣電圧発生回路の実施例の回路図。 第2図は本発明の基m%電圧発生回路用いた電圧検出回
路の回路図。 季5図は本発明の基品電圧発生回路の他の実施例の回路
図。 第6図は従来の水差電圧発生回路の回路図。 101・・・Pチャンネルテフレソンヨン型MOSET 105・・・Pチャンネルエンハンスメント型MOFK
T 102.104・・・Nチャンネルエンハンスメント型
MO3FET Sol、505・・・Pチャンネルエンハンスメント型
MOSFKT S02・・・NチャンネルテフレソンヨンfiMOSE
T 504・・・N−’f−ヤンネルエンハンスメント型M
OFKT 401.405・・・Pチャンネルエンハンスメント型
MOEfF’KT 402.404・・・Nチャンネルエンハンスメント型
MOSIJj;T :11図 第2図 水内に麿生回路め邸副 第3図
FIG. 1 is a circuit diagram of an embodiment of the differential voltage generating circuit of the present invention. FIG. 2 is a circuit diagram of a voltage detection circuit using the base m% voltage generation circuit of the present invention. Figure 5 is a circuit diagram of another embodiment of the base voltage generation circuit of the present invention. FIG. 6 is a circuit diagram of a conventional water difference voltage generation circuit. 101...P channel Teflon type MOSET 105...P channel enhancement type MOFK
T 102.104...N channel enhancement type MO3FET Sol, 505...P channel enhancement type MOSFKT S02...N channel Teflon fiMOSE
T 504...N-'f-Yannel enhancement type M
OFKT 401.405...P channel enhancement type MOEfF'KT 402.404...N channel enhancement type MOSIJj;

Claims (3)

【特許請求の範囲】[Claims] (1)相補型MOS集積回路において、電源に直列に縦
続接続された第1のMOSFETと第2のMOSFET
、電源に直列に縦続接続された第3のMOSFETと第
4のMOSFETを有し、前記第1のMOSFETのゲ
ートは前記第1のMOSFETのドレインと前記第3の
MOSFETのゲートとに接続され、前記第2のMOS
FETのゲートは第2のMOSFETのソースと接続さ
れ、前記第4のMOSFETのゲートは第4のMOSF
ETのドレインと接続され、前記第1のMOSFETと
第3のMOSFETの導電型は同じで、前記第2のMO
SFETと第4のMOSFETの導電型は前記第1及び
第3のMOSFETの導電型とは異なつている構成で、
前記第2のMOSFETはデプレッション型であり、前
記第1、第3、第4のMOSFETはエンハンスメント
型であることを特徴とする基進電圧発生回路。
(1) In a complementary MOS integrated circuit, a first MOSFET and a second MOSFET are connected in series to a power supply.
, having a third MOSFET and a fourth MOSFET connected in series to a power supply, the gate of the first MOSFET being connected to the drain of the first MOSFET and the gate of the third MOSFET, the second MOS
The gate of the FET is connected to the source of the second MOSFET, and the gate of the fourth MOSFET is connected to the source of the fourth MOSFET.
The first MOSFET and the third MOSFET have the same conductivity type, and the second MOSFET is connected to the drain of the second MOSFET.
The conductivity types of the SFET and the fourth MOSFET are different from the conductivity types of the first and third MOSFETs,
A radical voltage generation circuit characterized in that the second MOSFET is of a depletion type, and the first, third, and fourth MOSFETs are of an enhancement type.
(2)第2のMOSFETはイオン打込みによりデプレ
ッション型としたことを特徴とする特許請求の範囲第1
項記載の基準電圧発生回路。
(2) Claim 1, characterized in that the second MOSFET is made into a depression type by ion implantation.
Reference voltage generation circuit described in section.
(3)第2のMOSFETはゲート材料を変更すること
によりデプレッション型としたことを特徴とする特許請
求の範囲第1項記載の基準電圧発生回路。
(3) The reference voltage generating circuit according to claim 1, wherein the second MOSFET is made into a depression type by changing the gate material.
JP60212945A 1985-09-26 1985-09-26 Reference voltage generating circuit Pending JPS6272019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212945A JPS6272019A (en) 1985-09-26 1985-09-26 Reference voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212945A JPS6272019A (en) 1985-09-26 1985-09-26 Reference voltage generating circuit

Publications (1)

Publication Number Publication Date
JPS6272019A true JPS6272019A (en) 1987-04-02

Family

ID=16630895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212945A Pending JPS6272019A (en) 1985-09-26 1985-09-26 Reference voltage generating circuit

Country Status (1)

Country Link
JP (1) JPS6272019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259036A (en) * 2010-06-04 2011-12-22 Fuji Electric Co Ltd Comparator circuit
JP2013065358A (en) * 2013-01-16 2013-04-11 Seiko Epson Corp Voltage generating circuit, constant voltage circuit and current detecting method of voltage generating circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259036A (en) * 2010-06-04 2011-12-22 Fuji Electric Co Ltd Comparator circuit
US8598914B2 (en) 2010-06-04 2013-12-03 Fuji Electric Co., Ltd. Comparator circuit with current mirror
JP2013065358A (en) * 2013-01-16 2013-04-11 Seiko Epson Corp Voltage generating circuit, constant voltage circuit and current detecting method of voltage generating circuit

Similar Documents

Publication Publication Date Title
US4663584A (en) Intermediate potential generation circuit
US4583037A (en) High swing CMOS cascode current mirror
JPH08335122A (en) Semiconductor device for reference voltage
JPS6435799A (en) Semiconductor integrated circuit
JPH1188072A (en) Mos semiconductor integrated circuit
JPS6272019A (en) Reference voltage generating circuit
JPS6070822A (en) Semiconductor integrated circuit
JP3314411B2 (en) MOSFET constant current source generation circuit
US4947056A (en) MOSFET for producing a constant voltage
JPH0794988A (en) Mos type semiconductor clamping circuit
JPS62103719A (en) Reference voltage generating circuit
JPS61237515A (en) Inverter circuit
JPH02161817A (en) Inverter circuit
JPS61138318A (en) Reference voltage generating circuit
JPH027088B2 (en)
JPH07225626A (en) Reference voltage generating circuit
JPH06161581A (en) Constant voltage generating circuit
JPS639222A (en) Transfer gate circuit
JPS58221418A (en) Device for generating reference voltage
JPS6162230A (en) Interface circuit
JP2550942B2 (en) CMOS type logic integrated circuit
JPH028486B2 (en)
JPH0378012A (en) Reference voltage generating circuit
JPS62122317A (en) Hysteresis circuit
JPH0317714A (en) Reference voltage circuit