JPH0317714A - Reference voltage circuit - Google Patents

Reference voltage circuit

Info

Publication number
JPH0317714A
JPH0317714A JP15170189A JP15170189A JPH0317714A JP H0317714 A JPH0317714 A JP H0317714A JP 15170189 A JP15170189 A JP 15170189A JP 15170189 A JP15170189 A JP 15170189A JP H0317714 A JPH0317714 A JP H0317714A
Authority
JP
Japan
Prior art keywords
voltage
fet
mosfet
series
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15170189A
Other languages
Japanese (ja)
Inventor
Jiro Koide
二郎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15170189A priority Critical patent/JPH0317714A/en
Publication of JPH0317714A publication Critical patent/JPH0317714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce the fluctuation of voltage by connecting in series between a p-channel enhancement MOSFET whose gate and grain are connected to each other and a p-channel depletion MOSFET whose gate and source connected to each other, and outputting the potential of the serial connection point. CONSTITUTION:A p-channel enhancement MOSFET 1 and a p-channel depletion MOSFET 2 are serially connected. The gate and the drain of the FET 1 are connected to each other, and the gate and the source of the FET 2 are connected to each other. Then the potential of the serial connection point between both FET 1 and 2 is outputted via a terminal 3. As a result, only the voltage shift value for operation of the gate threshold value which is caused by the injection of ion is outputted. Thus the fluctuation of the power voltage is reduced. Furthermore, the output voltage can be multiplied by an optional integer when plural pieces of FET 1 are connected in series and in plural steps.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明はMOS集積回路における基準電圧回路の構成に
関する. [発明の概要] 本発明はMOS集積回路において、エンハンスメントM
OSFETを飽和接続し、デプリーションMOSFET
のゲートをソースと接続して成る定電流源と直列接続し
、あるいは上記エンハンスメンI−MOSFETの飽和
接続数を複数個直列接続したものと上記デプリーション
定電流源とを直列接続することによって、電源電圧変動
を受けにくく、しかも任意の整数倍出力が得られるよう
な基準電圧回路である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to the configuration of a reference voltage circuit in a MOS integrated circuit. [Summary of the invention] The present invention provides enhancement M in a MOS integrated circuit.
Connect OSFET to saturation and depletion MOSFET
By connecting in series a constant current source formed by connecting the gate to the source, or by connecting in series the depletion constant current source with a plurality of saturated-connected enhancement-men I-MOSFETs in series, This is a reference voltage circuit that is not susceptible to voltage fluctuations and can obtain an output multiple of any integer.

[従来の技術1 従来より基準電圧回路はあった,その例を第3図、第4
図に示す。図中3l、34はPチャネルMOSFET、
32、33はNチャネルMOSFET、35は出力端子
、41は抵抗、42は定電圧ダイオード、43は出力端
子である。
[Conventional technology 1 There have been reference voltage circuits in the past, examples of which are shown in Figures 3 and 4.
As shown in the figure. In the figure, 3l and 34 are P-channel MOSFETs,
32 and 33 are N-channel MOSFETs, 35 is an output terminal, 41 is a resistor, 42 is a constant voltage diode, and 43 is an output terminal.

第3図の例に於いては31のMOSFETと34のMO
SFETのゲート閾値電圧差を出力端子35へ出力する
. 第4図の例では定電圧ダイオードの逆方向降伏電圧を出
力する. ICへの組み込みを想定すると、第3図の従来例が望ま
しい.なぜなら第4図で示した定電圧ダイオードでは逆
方向降伏電圧が十分低くできないため、動作電源電圧が
低い回路へ応用できないこと及び逆方向降伏電圧を制御
することが難かしいためである. 第3図の例ではCMOS構成という点で良好ではあるが
、素子数が多いこと、出力電圧が固定されること、素子
の動作条件を飽和領域へ保つこと等、使用に際して配慮
すべき点がかなり多い。
In the example of Figure 3, there are 31 MOSFETs and 34 MOSFETs.
The SFET gate threshold voltage difference is output to the output terminal 35. In the example shown in Figure 4, the reverse breakdown voltage of a constant voltage diode is output. Assuming integration into an IC, the conventional example shown in Figure 3 is desirable. This is because the voltage regulator diode shown in Figure 4 cannot have a sufficiently low reverse breakdown voltage, so it cannot be applied to circuits with a low operating power supply voltage, and it is difficult to control the reverse breakdown voltage. Although the example in Figure 3 has a good CMOS configuration, there are many points to consider when using it, such as the large number of elements, the fixed output voltage, and keeping the operating conditions of the elements in the saturation region. many.

従って集積化には向くが,低い電圧(特にIV以下)で
動作させようとする場合,制約が大きくなり使用できな
い事がある. [発明が解決しようとする課題] 本発明では低い電源電圧で動作し、しがち構成素子が少
なく、必要に応じて出力電圧を変化させ得るようなMO
S基準電圧回路を提供することを目的としている. 〔課題を解決するための手段〕 本発明は、 (1)第1の導電形エンハンスメントMOSFETと、
第1の導電形デプリーションMOSFETを直列接続し
、前記第1のエンハンスメントMOSFETゲート電極
を同FETのドレイン!極へ接続し、前記第1のデプリ
ーションMOSFETのゲート電極を同FETのソース
電極と接続し、両者の直列接続点電位を出力する. (2)前記第1の導電形エンハンスメントMOSFET
を複数個直列接続し、おのおののFETゲート電極は、
おのおののFETのドレインと接続されることにより任
意の整数倍出力を得る.ということを特徴とする. (実 施 例1 以下具体的構成を示しながら実施例を説明する.第1図
は本発明の基本構成を示す.図中lは?チャネルエンハ
ンスメントMO S F ET、2はPチャネルデプリ
ーションMO S F ET、3は出力端子である. 今各FETの素子定数を次のように定める。
Therefore, it is suitable for integration, but when trying to operate at a low voltage (especially below IV), restrictions become too large and it may not be possible to use it. [Problems to be Solved by the Invention] The present invention provides an MO which operates with a low power supply voltage, has a small number of constituent elements, and can change the output voltage as necessary.
The purpose is to provide an S reference voltage circuit. [Means for Solving the Problems] The present invention comprises: (1) a first conductivity type enhancement MOSFET;
First conductivity type depletion MOSFETs are connected in series, and the gate electrode of the first enhancement MOSFET is connected to the drain of the FET! The gate electrode of the first depletion MOSFET is connected to the source electrode of the first depletion MOSFET, and the potential of their series connection point is output. (2) The first conductivity type enhancement MOSFET
are connected in series, and each FET gate electrode is
By connecting to the drain of each FET, an arbitrary integer multiple output can be obtained. It is characterized by this. (Example 1) An example will be described below while showing a specific configuration. Fig. 1 shows the basic configuration of the present invention. In the figure, 1 is a channel enhancement MOSFET, and 2 is a P channel depletion MO. S FET, 3 is the output terminal. Now, the element constants of each FET are determined as follows.

β1、Vア■・・ lのPチャネルMOSFET定数 β2 * VTP2・・・2のPチャネルM O S 
F E T定数 すると電源電圧Voo側を基準として,出力端子3へは
、 Vo ” VTPI + r丁z / 『一.l ’J
r−xなる電圧が現れる. ココテβ1=Bt . l VTP2 l =K−I 
Vypなる設定(Kはイオン打込みによるシフト電圧)
を施せば V.=K 即ちイオン打込みによって生じるゲート閾値揉作の電圧
シフト量のみが出力されることになる。従って電源電圧
変動を持たない基411圧が得られる. ?2図は出力電圧を任意の整数倍とする場合の接続を示
す.図中lはPチャネルエンハンスメントMOSFET
、2はPチャネルデプリーションM O S F E 
T、4はN個目のPチャネルエンハンスメントMOSF
ET、3は出力端子である。
β1, P-channel MOSFET constant β2 of VA...l * P-channel MOSFET of VTP2...2
Using the FET constant, the voltage to the output terminal 3 is Vo ” VTPI + r dz / ``1.l' J
A voltage r-x appears. Kokote β1=Bt. l VTP2 l =K-I
Vyp setting (K is shift voltage due to ion implantation)
If you apply V. =K That is, only the voltage shift amount due to gate threshold disturbance caused by ion implantation is output. Therefore, base 411 voltage with no fluctuation in power supply voltage can be obtained. ? Figure 2 shows the connection when the output voltage is an arbitrary integer multiple. In the figure, l is a P-channel enhancement MOSFET.
, 2 is P channel depletion M O S F E
T, 4 is the Nth P-channel enhancement MOSF
ET, 3 is an output terminal.

この場合、得られる出力電圧V。は、 Vo ” (VTP+ +”7;”’:フ7丁・l V
TPI I X N=K−N となり、飽和接続されたPチャネルエンハンスメントM
OSFETの接続個数に比例した出力電圧を得る. ここで示した具体的構成は全てPチャネル構成であるが
、そっくりNチャネルMOSFETへ置き換えればV■
基準の出力電圧を同様にして得られる. 〔発明の効果] 本発明によれば、 ■1v以下の電圧でも動作可能. ■電源電圧依存性がない. ■簡素な回路構成である. ■出力電圧値はイオン打込み量のみで定まる。
In this case, the resulting output voltage V.は、Vo」(VTP++』7;」':F7 tō・l V
TPI I
Obtain an output voltage proportional to the number of connected OSFETs. The specific configurations shown here are all P-channel configurations, but if you replace them with N-channel MOSFETs, V
The reference output voltage can be obtained in the same way. [Effects of the Invention] According to the present invention, ① Operation is possible even at a voltage of 1 V or less. ■No dependence on power supply voltage. ■It has a simple circuit configuration. ■The output voltage value is determined only by the amount of ion implantation.

■従って温度特性が小さい. ■必要に応じて任意の整数倍出力電圧を作ることち容易
である. という利点が生じる. 本発明の応用範囲は広い。Mos慎iのため、NMOS
プロセス、CMOSプロセスで製造される集積回路へ同
時集積が可能である。さらにデプリーションMO S 
F ETの電流係数を小さく設定すれば動作ii流も減
少するため、ポータブル指向の電子回路等への利用もで
きる.応用例としては電子時計の電池寿命検出用基準電
圧源、定電圧回路用基準電圧源、温度センサ回路用基準
電圧源、AD変換用基準電圧源等が挙げられる。
■Therefore, the temperature characteristics are small. ■It is easy to create any integer multiple output voltage as needed. This brings about the advantage. The scope of application of the present invention is wide. NMOS for Mos Shini
Simultaneous integration into integrated circuits manufactured by CMOS process and CMOS process is possible. Furthermore, Depletion MO S
If the current coefficient of the FET is set to a small value, the operating current will be reduced, so it can also be used in portable electronic circuits. Application examples include a reference voltage source for battery life detection in electronic watches, a reference voltage source for constant voltage circuits, a reference voltage source for temperature sensor circuits, and a reference voltage source for AD conversion.

MOSFET 2・・・Pチャネルデプリーション MOSFET 3・・・出力端子MOSFET 2...P channel depletion MOSFET 3...Output terminal

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電形エンハンスメントMOSFETと、
第1の導電形デプリーションMOSFETを直列接続し
、前記第1のエンハンスメントMOSFETゲート電極
を同FETドレイン電極へ接続し、前記第1のデプリー
ションMOSFETのゲート電極を同FETのソース電
極と接続し、両者の直列接続点電位を出力することを特
徴とする基準電圧回路。
(1) a first conductivity type enhancement MOSFET;
First conductivity type depletion MOSFETs are connected in series, the gate electrode of the first enhancement MOSFET is connected to the drain electrode of the first enhancement MOSFET, the gate electrode of the first depletion MOSFET is connected to the source electrode of the FET, and both of the depletion MOSFETs are connected in series. A reference voltage circuit characterized by outputting a series connection point potential.
(2)前記第1の導電形エンハンスメントMOSFET
を複数個直列接続し、おのおののFETゲート電極は、
おのおののドレインと接続されることにより任意の整数
倍出力を得ることを特徴とする請求項1記載の基準電圧
回路。
(2) The first conductivity type enhancement MOSFET
are connected in series, and each FET gate electrode is
2. The reference voltage circuit according to claim 1, wherein an arbitrary integer multiple output is obtained by connecting the respective drains.
JP15170189A 1989-06-14 1989-06-14 Reference voltage circuit Pending JPH0317714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15170189A JPH0317714A (en) 1989-06-14 1989-06-14 Reference voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15170189A JPH0317714A (en) 1989-06-14 1989-06-14 Reference voltage circuit

Publications (1)

Publication Number Publication Date
JPH0317714A true JPH0317714A (en) 1991-01-25

Family

ID=15524377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15170189A Pending JPH0317714A (en) 1989-06-14 1989-06-14 Reference voltage circuit

Country Status (1)

Country Link
JP (1) JPH0317714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205902A (en) * 2006-02-02 2007-08-16 Epson Imaging Devices Corp Light detecting circuit, electro-optical device, and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205902A (en) * 2006-02-02 2007-08-16 Epson Imaging Devices Corp Light detecting circuit, electro-optical device, and electronic equipment

Similar Documents

Publication Publication Date Title
US4996443A (en) Integrated circuit for level shift
US5825695A (en) Semiconductor device for reference voltage
US7242241B2 (en) Reference circuit
JP4117780B2 (en) Reference voltage circuit and electronic equipment
US5126603A (en) Circuit utilizes N-channel mos transistors having reduced area dimension for effectively detecting output current of a H-bridge circuit
US6275100B1 (en) Reference voltage generators including first and second transistors of same conductivity type and at least one switch
JPH0317714A (en) Reference voltage circuit
JPH03132115A (en) Semiconductor integrated circuit
JPH04273716A (en) Analog switch
US4947056A (en) MOSFET for producing a constant voltage
SU1097139A1 (en) Field-effect transistors
JP2871309B2 (en) Power supply voltage detection circuit
JPH06265584A (en) Semiconductor device
JPH0350762A (en) Current detecting circuit
JP2637791B2 (en) Blog programmable reference voltage generator
SU1439558A1 (en) D.c. voltage stabilizer
JPS63217718A (en) Logic circuit
JP2771574B2 (en) Semiconductor device
JPS62222713A (en) Cmos inverter circuit for delay
JP2763531B2 (en) MOS constant voltage circuit
JP2541289B2 (en) Output circuit
JP2772069B2 (en) Constant current circuit
JPS5910133B2 (en) Power supply abnormality detection circuit
JPS6272019A (en) Reference voltage generating circuit
JP2550942B2 (en) CMOS type logic integrated circuit