JPS62222713A - Cmos inverter circuit for delay - Google Patents

Cmos inverter circuit for delay

Info

Publication number
JPS62222713A
JPS62222713A JP61066423A JP6642386A JPS62222713A JP S62222713 A JPS62222713 A JP S62222713A JP 61066423 A JP61066423 A JP 61066423A JP 6642386 A JP6642386 A JP 6642386A JP S62222713 A JPS62222713 A JP S62222713A
Authority
JP
Japan
Prior art keywords
mosfet
circuit
cmos inverter
inverter circuit
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066423A
Other languages
Japanese (ja)
Inventor
Masami Hashimoto
正美 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61066423A priority Critical patent/JPS62222713A/en
Publication of JPS62222713A publication Critical patent/JPS62222713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pulse Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To decrease the change in the delay due to the fluctuation of power voltage by operating a CMOS inverter circuit while using a constant current circuit comprising MOSFET as a current source in a semiconductor integrated circuit using insulation gate field effect transistor (TR) MOSFET. CONSTITUTION:Gates comprising a P-channel MOSFET 11 and an N-channel MOSFET 12 are connected together to form an input terminal as a CMOS inverter. Further, a depletion type is used for an N-channel MOSFET 13 and the current I1 flowing to the MOSFET 13 is expressed as I1=(1/2)beta.(VTND)<2> because the source and gate of the MOSFET 13 are both connected to -VSS, where beta is a conductance constant and -VTND is a threshold voltage. That is, the current flowing to the MOSFET 13 is constant independently of the fluctuation of power voltage. Since the CMOS inverter circuit comprising the MOSFETs 11, 12 uses the MOSFET 13 as the constant current source, the response speed, that is, the delay time is constant independently of the power voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート電界効果型トランジスタ(以下M 
OS F E Tと略す)を用いた半導体集積回路にお
いて、インバータ回路によって構成される遅延回路の電
圧特性の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an insulated gate field effect transistor (hereinafter referred to as M
The present invention relates to improving the voltage characteristics of a delay circuit constituted by an inverter circuit in a semiconductor integrated circuit using an OS FET (abbreviated as OSFET).

〔従来の技術) 従来のMOSFETを用いた半導体集積回路における遅
延素子のひとつとして第6図に示すようなP型MOSF
ETとN型MOSFETからなるCMOSインバータ回
路をコンダクタンス定数βを小さく設定することにより
、手軽に利用できる遅延回路として用いてきた。
[Prior art] As one of the delay elements in a semiconductor integrated circuit using a conventional MOSFET, a P-type MOSF as shown in Fig. 6 is used.
A CMOS inverter circuit consisting of an ET and an N-type MOSFET has been used as an easily usable delay circuit by setting the conductance constant β to a small value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら第6図に示すようなCMOSインバータ回
路を遅延回路として用いると、電源電圧の変動とともに
遅延時間が変動してしまい、誤動作の原因となったり、
あるいはそれ故に動作電源電圧に制限を受けるという問
題点があった。そこで本発明は以上の問題点を解決すべ
く電源電圧が変動しても遅延量の変化が小さい遅延用イ
ンバータ回路を提供することにあり、ひいては本発明の
遅延用CMOSインバータ回路を用いた半導体集積回路
の動作電源電圧範囲を拡大することを目的とする。
However, if a CMOS inverter circuit as shown in FIG. 6 is used as a delay circuit, the delay time will fluctuate as the power supply voltage fluctuates, which may cause malfunctions.
Alternatively, there is a problem in that the operating power supply voltage is limited. SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a delay inverter circuit in which the amount of delay changes little even when the power supply voltage fluctuates, and further provides a semiconductor integrated circuit using the delay CMOS inverter circuit of the present invention. The purpose is to expand the operating power supply voltage range of the circuit.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の遅延用CMOSインバータ回路はa)MOSF
ETを用いた半導体集積回路において、 b)ゲート及びドレインをそれぞれ共通に接続したP型
MOSFETとN型MOSFETからなるCMOSイン
バータ回路と、 C)片側の電極が前記CMOSインバータ回路の片側の
t流源となるように接続されたM OS FETからな
る定電流回路とによって構成されることを特徴とする。
The delay CMOS inverter circuit of the present invention is a) MOSF
In a semiconductor integrated circuit using ET, b) a CMOS inverter circuit consisting of a P-type MOSFET and an N-type MOSFET whose gates and drains are connected in common, respectively; and C) one electrode is a t current source on one side of the CMOS inverter circuit. A constant current circuit consisting of MOS FETs connected so that

〔作用〕[Effect]

本発明の上記の構成によればCMOSインバータ回路の
応答性は定電流回路の電流値によって支配さね、かつ定
電流回路の電流値は電源電圧の変動があっても一定値を
保つので、CMOSインバータ回路の応答性、つまり遅
延時間は電源電圧が変動しても一定値を保つ。
According to the above configuration of the present invention, the responsiveness of the CMOS inverter circuit is not dominated by the current value of the constant current circuit, and the current value of the constant current circuit remains constant even when the power supply voltage fluctuates. The responsiveness, or delay time, of an inverter circuit remains constant even when the power supply voltage fluctuates.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示す回路図である。第
1図においてP型MOSFETM1のソースは正極の電
源電位である+VDDに接続され、ドレインはN型MO
SFETのドレインに接続されている。P型MOSFE
T11とN型MOSFET12のゲートは互いに接続さ
れCMOSインバータ回路としての入力端子となってい
る。またドレインも互いに接続されCMOSインバータ
回路としての出力端子となっている。N型MO3FET
13のソースとケートは負極の電源電位であるーV8B
 に接続され、ドレインはMOSFET12のソースに
接続されている。またN型MOSFET 13はデプレ
ション型で構成され、コンダクタンス定数をβ、スレッ
ショルド電圧f、 −VTx。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, the source of the P-type MOSFET M1 is connected to +VDD, which is the positive power supply potential, and the drain is connected to the N-type MOSFET M1.
Connected to the drain of SFET. P-type MOSFE
The gates of T11 and N-type MOSFET 12 are connected to each other and serve as input terminals of a CMOS inverter circuit. The drains are also connected to each other and serve as output terminals as a CMOS inverter circuit. N-type MO3FET
The source and gate of 13 are negative power supply potentials - V8B
The drain is connected to the source of MOSFET 12. The N-type MOSFET 13 is a depletion type MOSFET with a conductance constant β and a threshold voltage f, −VTx.

とすればMOSFET 13に流れる電流工、はMOS
FET13のソース及びゲートがともに”−v ssに
接続されているので、 1!=−β・(VtドD)2 と表わされる。つまりMOSFETIsに流れる電流は
電源電圧の変動に影響されず一定値であシ。
Then, the current flowing through MOSFET 13 is MOS
Since the source and gate of FET 13 are both connected to "-vss," it is expressed as 1!=-β・(Vtd)2.In other words, the current flowing through MOSFET Is is not affected by fluctuations in the power supply voltage and remains a constant value. Adashi.

MOSFET 15が定電流源になっていることがわか
る。MOSFET 11.12からなるCMOSインバ
ータ回路はMO8FE’l’13を定電流源としている
ので応答速度、つまシ遅延時間は電源電圧によらない一
定値になる。
It can be seen that MOSFET 15 serves as a constant current source. Since the CMOS inverter circuit consisting of MOSFETs 11 and 12 uses MO8FE'l'13 as a constant current source, the response speed and delay time are constant values independent of the power supply voltage.

第2図は本発明の第2の実施例を示す回路図である。第
2図の回路は定電流回路の構成を変えたものである。第
2図の回路においてN型MOS FET23.25とP
型MOSFET24によって定電流回路が構成されてい
る。P型MOSFET240ソースとゲートは十Vnn
に接続されている。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. The circuit shown in FIG. 2 is a modified version of the constant current circuit. In the circuit shown in Figure 2, N-type MOS FET23.25 and P
A constant current circuit is configured by the type MOSFET 24. P-type MOSFET 240 source and gate are 10Vnn
It is connected to the.

N型MOSFET25のソースは−VS8に接続され、
ゲートとドレインは互いに接続され、かつM OS F
 E T 24のドレインに接続されている。
The source of N-type MOSFET 25 is connected to -VS8,
The gate and drain are connected to each other, and the MOS F
Connected to the drain of E T 24.

N型MOSFET23の7−、<は−VSSに接続され
、ゲートはMOSFET25のドレインに接続されてい
る。P型MOSFET24はデプレション型になってい
てコンダクタンス定数をβPi、スレッショルド電圧を
−VTPDとし、N型MOSFET23.25のコンダ
クタンス定数をそれぞれβNo 、β81とする。また
MO8F’FJT2sのドレイン電位をVatとし5−
Vat1を0電位にと9、MOSFET23.25に流
れる電流をそれぞれIO,Ifとすれば次式が成りたつ
7- and < of the N-type MOSFET 23 are connected to -VSS, and the gate is connected to the drain of the MOSFET 25. The P-type MOSFET 24 is a depletion type with a conductance constant βPi and a threshold voltage -VTPD, and the conductance constants of the N-type MOSFETs 23 and 25 are βNo and β81, respectively. Also, assuming the drain potential of MO8F'FJT2s to be Vat, 5-
If Vat1 is set to 0 potential, and the currents flowing through MOSFETs 23 and 25 are respectively IO and If, the following equation holds true.

以上の式を解くと となる。このIoO式から]V10SFET23は電源
電圧によらない定電流源となっていることがわかる。ま
たP型MOSFET21とN型MOSFET22によっ
てCMOSインバータ回路を構成しておシ、第1図の回
路のP型MOSFET11とN型MOSFET + 2
にそれぞれ相当している。
Solving the above equation gives us. From this IoO equation, it can be seen that the V10SFET 23 serves as a constant current source that is independent of the power supply voltage. In addition, a CMOS inverter circuit is configured by a P-type MOSFET 21 and an N-type MOSFET 22, and the P-type MOSFET 11 and N-type MOSFET + 2 of the circuit shown in
are equivalent to each.

以上より第2図の回路も電源電圧の変動の影響を受けな
い遅延用CMOSインバータ回路を構成していることが
わかる。第2図の回路によって定電流回路の構成の仕方
は様々に存在することがわかる。
From the above, it can be seen that the circuit shown in FIG. 2 also constitutes a delay CMOS inverter circuit that is not affected by fluctuations in the power supply voltage. It can be seen from the circuit of FIG. 2 that there are various ways of configuring the constant current circuit.

第3図は本発明の第3の実施例を示す回路図である。第
3図においてP型MOSFET51とN型MO3FET
32によってCMOSインバータ回路が構成され、P型
デプレションMOSFET63によって定電流回路が構
成されている。定電流源のMOSFET33はPチャネ
ルのデプレション型トランジスタで構成され、+vDD
側を電源としている他は第1図の回路のMOSFET1
3に相当し、またMOSFET31 、32は第1図の
回路のMOSFET 11.12にそれぞれ相当してお
り、原理は第1図の回路と同様である。第5図の回路は
定電流源を+Voo側に構成しても良いことを示す例で
ある。
FIG. 3 is a circuit diagram showing a third embodiment of the present invention. In Fig. 3, P-type MOSFET 51 and N-type MOSFET
32 constitutes a CMOS inverter circuit, and the P-type depletion MOSFET 63 constitutes a constant current circuit. The constant current source MOSFET 33 is composed of a P-channel depletion type transistor, and +vDD
MOSFET 1 of the circuit in Figure 1 except that the side is used as a power supply.
MOSFETs 31 and 32 respectively correspond to MOSFETs 11 and 12 in the circuit of FIG. 1, and the principle is the same as that of the circuit of FIG. The circuit shown in FIG. 5 is an example showing that the constant current source may be configured on the +Voo side.

第4図は本発明の第4の実施例?示す回路図である。第
1図〜第3図においてインバータ回路は1個の例を示し
たが、複数個である場合でも当然適用できるものであっ
て第4図はインバータ回路が2個の場合の例である。第
4図の回路においてP型MOSFET41とN型MOS
FET42によって1個のCMOSインバータ回路が構
成され、P型MOSFET44とN型MOSFET45
によってもう1個のCMOSインバータ回路が構成され
ている。N型MOSFET45は第1図の回路のMOS
FET13に相当する定電流回路であって2個のCMO
Sインバータ回路の共通の定電流源となっている。した
がって第4図の回路も電源電圧の変動の影響を受けにく
い遅延用CMOSインバータ回路を構成している。
Is Fig. 4 the fourth embodiment of the present invention? FIG. Although FIGS. 1 to 3 show an example of one inverter circuit, it is of course applicable to a case of a plurality of inverter circuits, and FIG. 4 shows an example of two inverter circuits. In the circuit shown in Figure 4, P-type MOSFET41 and N-type MOS
One CMOS inverter circuit is configured by FET42, and P-type MOSFET44 and N-type MOSFET45
Another CMOS inverter circuit is configured. N-type MOSFET 45 is the MOS of the circuit in Figure 1.
A constant current circuit corresponding to FET13 with two CMO
It serves as a common constant current source for the S inverter circuit. Therefore, the circuit shown in FIG. 4 also constitutes a delay CMOS inverter circuit that is less susceptible to fluctuations in the power supply voltage.

第5図は本発明の第5の実施例を示す回路図である。第
5図の回路においてP型MOSFET51とN型MOS
FET52によって1個のCMOSインバータ回路が構
成され、P型MOSFET54とN型MOSFET 5
5によってもう1個のCMOSインバータ回路を構成し
ている。N型MOSFET53,56はともにデプレシ
ョン型であって、それぞれ別の定電流回路を構成してい
る。第5図の回路はインバータ回路が複数個存在する場
合、定電流回路も複数個用意した例を示すものである。
FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention. In the circuit shown in Figure 5, P-type MOSFET51 and N-type MOS
One CMOS inverter circuit is configured by the FET 52, and the P-type MOSFET 54 and the N-type MOSFET 5
5 constitutes another CMOS inverter circuit. The N-type MOSFETs 53 and 56 are both depletion type, and constitute separate constant current circuits. The circuit of FIG. 5 shows an example in which a plurality of constant current circuits are also prepared when there are a plurality of inverter circuits.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば定電流回路を電流源としてCMO
Sインバータ回路を動作させているので、電源電圧が変
動しても遅延量の変化の少ない遅延用CMOSインバー
タ回路を提供するという効果がある。また本発明の遅延
用CMOSインバータ回路を用いた半導体集積回路の動
作電源電圧範囲を拡大するという効果がある。また電源
電圧の変動の影響が少ないということは過渡電流等によ
る雑音にも強い遅延用CMOSインバータ回路、及び半
導体集積回路を提供するという効果がある。
As described above, according to the present invention, a constant current circuit is used as a current source in a CMO.
Since the S inverter circuit is operated, there is an effect of providing a delay CMOS inverter circuit in which the amount of delay changes little even if the power supply voltage fluctuates. Further, there is an effect of expanding the operating power supply voltage range of a semiconductor integrated circuit using the delay CMOS inverter circuit of the present invention. Furthermore, the fact that the influence of fluctuations in the power supply voltage is small has the effect of providing a delay CMOS inverter circuit and a semiconductor integrated circuit that are resistant to noise caused by transient currents and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図、第4図、第5図は本発明のそ
れぞれ第1.第2.第6.第4.第5の実施例を示す回
路図、第6図は従来の遅延用インバータ回路の例を示す
回路図である。 11.21,51,41,44,51,54・・・・・
・P型MOSFET 12.22,23,25,32,42,45゜52.5
5・・・・・・N型MOSFET24.33・・・・・
・PWf7’レションMOSFET15 、45 、5
5 、56・・川・N型デプレションMO8FわT 以上 出願人 セイコーエプソン株式会社 夷4の
FIGS. 1, 2, 3, 4, and 5 are the first and second embodiments of the present invention, respectively. Second. 6th. 4th. A circuit diagram showing the fifth embodiment, and FIG. 6 is a circuit diagram showing an example of a conventional delay inverter circuit. 11.21, 51, 41, 44, 51, 54...
・P-type MOSFET 12.22, 23, 25, 32, 42, 45°52.5
5...N-type MOSFET24.33...
・PWf7'resion MOSFET15, 45, 5
5, 56... Kawa-N type depression MO8FwaT Applicant: Seiko Epson Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)a)絶縁ゲート電界効果型トランジスタ(以下M
OSFETと略す)を用いた半導体集積回路において、 b)ゲート及びドレインをそれぞれ共通に接続したP型
MOSFETとN型MOSFETからなるCMOSイン
バータ回路と、 c)片側の電極が前記CMOSインバータ回路の片側の
電流源となるように接続されたMOSFETからなる定
電流回路とによって構成されることを特徴とする遅延用
CMOSインバータ回路。
(1)a) Insulated gate field effect transistor (hereinafter M
b) a CMOS inverter circuit consisting of a P-type MOSFET and an N-type MOSFET whose gates and drains are connected in common, respectively, and c) one electrode of which is connected to one side of the CMOS inverter circuit. 1. A delay CMOS inverter circuit comprising: a constant current circuit including a MOSFET connected to serve as a current source.
JP61066423A 1986-03-25 1986-03-25 Cmos inverter circuit for delay Pending JPS62222713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066423A JPS62222713A (en) 1986-03-25 1986-03-25 Cmos inverter circuit for delay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066423A JPS62222713A (en) 1986-03-25 1986-03-25 Cmos inverter circuit for delay

Publications (1)

Publication Number Publication Date
JPS62222713A true JPS62222713A (en) 1987-09-30

Family

ID=13315366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066423A Pending JPS62222713A (en) 1986-03-25 1986-03-25 Cmos inverter circuit for delay

Country Status (1)

Country Link
JP (1) JPS62222713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321721A (en) * 1988-06-09 1989-12-27 Samsung Electron Co Ltd Semiconductor time delay element
JPH02141853A (en) * 1988-11-22 1990-05-31 Nec Corp Input/output circuit
US5808505A (en) * 1993-05-25 1998-09-15 Nec Corporation Substrate biasing circuit having controllable ring oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321721A (en) * 1988-06-09 1989-12-27 Samsung Electron Co Ltd Semiconductor time delay element
JPH02141853A (en) * 1988-11-22 1990-05-31 Nec Corp Input/output circuit
US5808505A (en) * 1993-05-25 1998-09-15 Nec Corporation Substrate biasing circuit having controllable ring oscillator

Similar Documents

Publication Publication Date Title
JP2616142B2 (en) Output circuit
JPH0629826A (en) Level converting circuit
JP3047869B2 (en) Output amplitude adjustment circuit
JPS61118023A (en) Input gate circuit of mos semiconductor integrated circuit
JP2560018B2 (en) CMOS circuit
JPS5928986B2 (en) semiconductor integrated circuit
JP2872058B2 (en) Output buffer circuit
JPS62222713A (en) Cmos inverter circuit for delay
JPH0685497B2 (en) Semiconductor integrated circuit
JPH03132115A (en) Semiconductor integrated circuit
JPH06275826A (en) Semiconductor device
JPS5937585B2 (en) Complementary MIS logic circuit
JPH0344692B2 (en)
JP2734531B2 (en) Logic circuit
JPH0575205B2 (en)
JP3106593B2 (en) Differential amplifier circuit
JPS639222A (en) Transfer gate circuit
JP2757632B2 (en) Test signal generation circuit
JPH0666656B2 (en) Schmitt trigger circuit
JP2550942B2 (en) CMOS type logic integrated circuit
JPS6130347B2 (en)
JPH04117721A (en) Input circuit with pull-up function
JPS61234622A (en) Semiconductor integrated circuit
JPS61162895A (en) Sense amplifier circuit
JPS6338250A (en) Cmos logic circuit