JPS5910133B2 - Power supply abnormality detection circuit - Google Patents

Power supply abnormality detection circuit

Info

Publication number
JPS5910133B2
JPS5910133B2 JP51008136A JP813676A JPS5910133B2 JP S5910133 B2 JPS5910133 B2 JP S5910133B2 JP 51008136 A JP51008136 A JP 51008136A JP 813676 A JP813676 A JP 813676A JP S5910133 B2 JPS5910133 B2 JP S5910133B2
Authority
JP
Japan
Prior art keywords
circuit
power supply
abnormality detection
switching transistor
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51008136A
Other languages
Japanese (ja)
Other versions
JPS5291601A (en
Inventor
俊郎 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51008136A priority Critical patent/JPS5910133B2/en
Publication of JPS5291601A publication Critical patent/JPS5291601A/en
Publication of JPS5910133B2 publication Critical patent/JPS5910133B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electromechanical Clocks (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Description

【発明の詳細な説明】 この発明は小型かつ簡単な構成でもつてたとえば電池電
源等の電圧低下を検出する電源異常検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply abnormality detection circuit that has a small and simple configuration and detects a voltage drop in, for example, a battery power supply.

電気時計では、電源電圧が低下すると時計回路や発振回
路の動作が停止しあるいは機能が損われ正確な時刻表示
ができなくなるから、電源電圧を常に監視している必要
がある。
In electric watches, if the power supply voltage drops, the clock circuit or oscillation circuit will stop operating or become impaired, making it impossible to display accurate time, so it is necessary to constantly monitor the power supply voltage.

また電気時計に限らず、ある種の電子機器でも電池電源
等の電圧低下を検出して速やかに電源異常に対処する必
要がありうる。近年、半導体集積回路技術の向上により
低消費電力の電池式時計が開発されているが、これに見
合つて低消費電力でかつ小型な電源異常検出回路も必要
となる。しかもたとえば電子式の腕時計はその電池交換
が容易には行なえない構造となつている現状では、簡単
な構成の電源異常検出回路を電子式時計内に組込んで常
に電源状態を監視しなくてはならない。この発明は上記
事情に鑑みなされたもので、電池電源あるいは商用電源
等の異常を確実に検出でき、回路構成素子数が少なくし
かも電力消費の小さな電源異常検出回路を提供すること
を目的としている。
Furthermore, not only electric watches but also certain types of electronic equipment may need to detect a voltage drop in a battery power source or the like and promptly deal with a power supply abnormality. In recent years, battery-powered watches with low power consumption have been developed due to improvements in semiconductor integrated circuit technology, but a correspondingly low power consumption and compact power supply abnormality detection circuit is also required. Furthermore, electronic watches, for example, have a structure that makes it difficult to easily replace their batteries, so it is necessary to incorporate a simple power supply abnormality detection circuit into the electronic watch to constantly monitor the power status. No. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a power supply abnormality detection circuit that can reliably detect abnormalities in a battery power source, a commercial power source, etc., has a small number of circuit components, and has low power consumption.

以下、”図面を参照してこの発明の一実施例を説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、端子1、丁は被検出電源回路(図示せ
ず)の電源端子であり、一方の端子1には+VDD電源
としてoボルト(接地電位)、他方の端子丁には−Vs
s電源が接地され4これら電源端子1、1’間には、ス
イッチングトランジスタたとえぱp千ャネル型の電界効
果トランジスタ(以下、pFETと略記する)3、検出
電圧調整用の可変抵抗回路2、およびnチャンネル型の
電界効果トランジスタ(以下、nFETと略記する)1
4(第1トランジスタ)を直列接続した直列回路が接続
される。また、この直列回路と並列にnF■4とpFE
T5とを直列接続したインバータ回路6が設けられる。
上記pFET3と可変抵抗回路2との。接続点には、イ
ンバータ回路Iの入力端子すなわちnFET4とpFE
T5との各ゲート電極を共通接続した点が接続され、ま
たインバータ回路旦の出力端子すなわち各FET4、5
の共通接続されたドレイン電極は帰還ループTを介して
上記pFET3のゲート電極に接続されている。上記p
FET3にはPFETl3が並列接続される。このPF
ETl3および上記NFETl4はサンプリング回路を
構成しており、これらFETl3,l4のゲート電極は
、デユーテイ一の小さいサンプリングパルス信号が入力
される信号入力端子12に接続されて成る。なお、11
は電源異常を検出するための検出端子である。次に、上
記のような構成において動作を説明する。
In Fig. 1, terminals 1 and 2 are power supply terminals of the power supply circuit to be detected (not shown), one terminal 1 has o volts (ground potential) as a +VDD power supply, and the other terminal has -Vs.
A switching transistor (hereinafter abbreviated as pFET) 3, a variable resistance circuit 2 for adjusting the detection voltage, and N-channel field effect transistor (hereinafter abbreviated as nFET) 1
A series circuit in which four (first transistors) are connected in series is connected. In addition, nF■4 and pFE are connected in parallel with this series circuit.
An inverter circuit 6 is provided which is connected in series with T5.
of the pFET 3 and the variable resistance circuit 2. At the connection point, the input terminals of the inverter circuit I, that is, nFET4 and pFE
The point where each gate electrode is commonly connected to T5 is connected, and the output terminal of the inverter circuit, that is, each FET 4, 5 is connected.
The commonly connected drain electrodes of the transistors are connected to the gate electrode of the pFET 3 via a feedback loop T. above p
PFETl3 is connected in parallel to FET3. This PF
ETl3 and the NFETl4 constitute a sampling circuit, and the gate electrodes of these FETsl3 and l4 are connected to a signal input terminal 12 to which a sampling pulse signal with a small duty is input. In addition, 11
is a detection terminal for detecting power supply abnormality. Next, the operation in the above configuration will be explained.

前記信号入力端子12には、例えば時計回路からデユー
テイの小さいサンプリングパルス信号が導入されており
、このパルス信号のハイCHつレベルの期間上記NFE
Tl4はオンし、PFETl3はオフする。従つて、イ
ンバータ回路旦への入力信号レベルは、PFET3のオ
ン抵抗と、可変抵抗回路2の設定抵抗値とNFETl4
のオン抵抗の和との比で決まる。ここで、PFET3の
オン抵抗に対してPFETl3,nFETl4のオン抵
抗は十分に小さく設定する。一方、サンプリング信号が
ロー(6L7)レベルの期間はPFETl3がオンし、
NFETl4がオフすることによつて電源電圧は検出さ
れない。従つて、サンプリングパルス信号の小さいデユ
ーテイに対応するサンプリング期間だけ、被検出電源回
路の出力電圧(−Ss)が「正常」か「異常]かの検出
がなされる。今、サンプリングパルス信号が6H″レベ
ルであるとすると、上述したようにPFETl3はオフ
し、NFETl4はオンする。また、NFETl4のオ
ンによつてPFET3の巾が大きくなるのでこのPFE
T3もオンする。NFETl4のオン抵抗はPFETに
比べて十分小さいので、インバータ回路旦の入力信号レ
ベルは上記PFET3のオン抵抗と可変抵抗回路2との
抵抗分割比によつてほぼ決定される。従つて、検出電圧
調整用の可変抵抗回路2がこの入力信号レベルを゛H”
レベルにする様に設定されていれば、NFET4はオン
、PFET5はオフしてインバータ回路旦の出力信号レ
ベル″L1レベルとなつて「正常」状態を示す。すなわ
ち、第2図bに示すように、被検出電源回路の出力電圧
レベルが正常状態時には、検出端子11の電位ばL”レ
ベルが維持される。ところが被検出電源回路の電源端子
1,『間の電圧が低下すると(この時サンプリングパル
ス信号は6H1レベルとする)PFET3のVGSが小
さくなつてオン抵抗が増大し、このPFET3のVDS
も大きくなる。従つて、PFET3と可変抵抗回路2と
の接続点の電位は6L1レベルとなり、インバータ回路
旦の出力信号レベルばH″レベルすなわち+DD電位(
0ボルト)に近ずき、この出力信号レベルが帰還ループ
7を介してPFET3のゲート電極にフイードバツクさ
れて検出端子11の電位は急速に6H1レベルに反転す
る。次にサンプリングパルス信号が8L゛レベルになる
とPFETl3がオンし、NFETl4がオフするので
電源電圧は検出されないので、検出端子11からは第2
図bに示すような異常信号が得られる。この「異常]の
基準となる検出電圧レベルは、勿論可変抵抗回路2によ
つて調整される。このように上記実施例は、PFETl
3と0FET14からなるサンプリング回路を付加する
ことによつて電源電圧の異常検出が間欠的に行なわれる
ことになり、電池電源の出力電圧低下を少ない消費電流
で監視し検出することができる。
A sampling pulse signal with a small duty is introduced into the signal input terminal 12 from, for example, a clock circuit, and during the high CH level of this pulse signal, the NFE
Tl4 is turned on and PFETl3 is turned off. Therefore, the input signal level to the inverter circuit is determined by the on-resistance of PFET3, the set resistance value of variable resistance circuit 2, and NFET14.
It is determined by the ratio to the sum of the on-resistances. Here, the on-resistances of PFET13 and nFET14 are set to be sufficiently smaller than the on-resistance of PFET3. On the other hand, during the period when the sampling signal is at the low (6L7) level, PFETl3 is turned on.
Since NFET14 is turned off, the power supply voltage is not detected. Therefore, it is detected whether the output voltage (-Ss) of the detected power supply circuit is "normal" or "abnormal" only during the sampling period corresponding to the small duty of the sampling pulse signal.Now, the sampling pulse signal is 6H'' If it is at the level, PFETl3 is turned off and NFETl4 is turned on as described above. Also, since the width of PFET3 increases when NFETl4 is turned on, this PFE
T3 is also turned on. Since the on-resistance of the NFET 14 is sufficiently smaller than that of the PFET, the input signal level of the inverter circuit is approximately determined by the resistance division ratio between the on-resistance of the PFET 3 and the variable resistance circuit 2. Therefore, the variable resistance circuit 2 for adjusting the detection voltage adjusts the input signal level to 'H'.
If it is set to the level, NFET4 is turned on and PFET5 is turned off, and the output signal level of the inverter circuit becomes the "L1 level", indicating a "normal" state. That is, as shown in FIG. 2b, when the output voltage level of the power supply circuit to be detected is in a normal state, the potential of the detection terminal 11 is maintained at the L'' level. When the voltage of PFET3 decreases (at this time, the sampling pulse signal is at the 6H1 level), the VGS of PFET3 decreases, the on-resistance increases, and the VDS of this PFET3 decreases.
also becomes larger. Therefore, the potential at the connection point between PFET 3 and variable resistance circuit 2 becomes 6L1 level, and the output signal level of the inverter circuit becomes H'' level, that is, +DD potential (
0 volt), this output signal level is fed back to the gate electrode of PFET 3 via feedback loop 7, and the potential of detection terminal 11 is rapidly inverted to 6H1 level. Next, when the sampling pulse signal reaches the 8L level, PFETl3 is turned on and NFETl4 is turned off, so the power supply voltage is not detected.
An abnormal signal as shown in Figure b is obtained. The detection voltage level that serves as a reference for this "abnormality" is of course adjusted by the variable resistance circuit 2. In this way, the above embodiment has a PFET l
By adding a sampling circuit consisting of FET 14 and FET 14, abnormality detection of the power supply voltage is performed intermittently, and a drop in the output voltage of the battery power supply can be monitored and detected with less current consumption.

すなわち、帰還ループ7によつてインバータ回路旦の状
態をフリツプフロツプ動作させて設定させていて、過渡
電流を低く抑えることが可能になつている。なお、被検
出電源回路の接続極性は反対であつてもよく、FETの
チヤネル型もpあるいはnを適宜に選定しうるっまたい
ずれの実施例もCMOS集積回路で構成する時計回路に
組込んで使用する場合には、素子数が少なく回路面積も
小さいから有効に電源異常の検出を行なえる。しかしも
ちろん、この発明は時計以外にも適用することができる
。以上詳述した様に、この発明によれば電源電圧が低下
したり変動した場合にその電源異常を検出できる新規な
電源異常検出回路を提供でき、かつ相補対称型のMOS
集積回路に組込んで使用するときに構成素子数が少なく
電力消費が小さいから電子時計など小型な電子機器に適
用するに好都合である。
That is, the feedback loop 7 sets the current state of the inverter circuit by performing flip-flop operation, making it possible to suppress transient current to a low level. Incidentally, the connection polarity of the power supply circuit to be detected may be reversed, and the channel type FET may also have p or n selected as appropriate.Also, any of the embodiments may be incorporated into a clock circuit constituted by a CMOS integrated circuit. When used, power supply abnormalities can be detected effectively because the number of elements is small and the circuit area is small. But of course, this invention can be applied to other things besides watches. As described in detail above, according to the present invention, it is possible to provide a novel power supply abnormality detection circuit that can detect a power supply abnormality when the power supply voltage decreases or fluctuates, and a complementary symmetrical MOS
When incorporated into an integrated circuit, the number of components is small and power consumption is low, so it is convenient for application to small electronic devices such as electronic watches.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る電源異常検出回路を
示す回路構成図、第2図は同実施例の動作を説明するた
めの入出力波形図である。 1,『・・・・・・電源端子、3・・・・・・スイツチ
ングトランジスタ、2・・・・・・可変抵抗回路、14
・・・・・・第1トランジスタ、旦・・・・・・インバ
ータ回路、7・・・・・・帰還ループ、11・・・・・
・検出端子(インバータ回路の出力端)。
FIG. 1 is a circuit configuration diagram showing a power abnormality detection circuit according to an embodiment of the present invention, and FIG. 2 is an input/output waveform diagram for explaining the operation of the embodiment. 1, ``...Power terminal, 3...Switching transistor, 2...Variable resistance circuit, 14
...First transistor, Dan...Inverter circuit, 7...Feedback loop, 11...
・Detection terminal (output terminal of inverter circuit).

Claims (1)

【特許請求の範囲】[Claims] 1 被検出電源回路に接続され、スイッチングトランジ
スタ、抵抗回路および第1トランジスタから成る直列回
路と、上記スイッチングトランジスタと抵抗回路との接
続点の電圧で入力信号レベルが決定されるインバータ回
路と、このインバータ回路の出力信号レベルに応じて上
記スイッチングトランジスタを導通制御するように配線
された帰還ループと、上記スイッチングトランジスタに
並列接続される第2トランジスタとを備え、上記第1、
第2トランジスタはそれぞれサンプリングパルス信号が
供給されて交互に導通制御されるサンプリング回路を構
成して成り、上記被検出電源回路の出力電圧低下時に上
記インバータ回路の出力端から異常信号を得るように構
成したことを特徴とする電源異常検出回路。
1. A series circuit connected to the detected power supply circuit and consisting of a switching transistor, a resistance circuit, and a first transistor, an inverter circuit whose input signal level is determined by the voltage at the connection point of the switching transistor and the resistance circuit, and this inverter. a feedback loop wired to control conduction of the switching transistor according to an output signal level of the circuit; and a second transistor connected in parallel to the switching transistor;
The second transistors each constitute a sampling circuit that is supplied with a sampling pulse signal and whose conduction is controlled alternately, and is configured to obtain an abnormal signal from the output terminal of the inverter circuit when the output voltage of the detected power supply circuit decreases. A power supply abnormality detection circuit characterized by:
JP51008136A 1976-01-28 1976-01-28 Power supply abnormality detection circuit Expired JPS5910133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51008136A JPS5910133B2 (en) 1976-01-28 1976-01-28 Power supply abnormality detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51008136A JPS5910133B2 (en) 1976-01-28 1976-01-28 Power supply abnormality detection circuit

Publications (2)

Publication Number Publication Date
JPS5291601A JPS5291601A (en) 1977-08-02
JPS5910133B2 true JPS5910133B2 (en) 1984-03-07

Family

ID=11684865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51008136A Expired JPS5910133B2 (en) 1976-01-28 1976-01-28 Power supply abnormality detection circuit

Country Status (1)

Country Link
JP (1) JPS5910133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528254B2 (en) * 2005-11-25 2010-08-18 富士通セミコンダクター株式会社 Power supply voltage detection circuit

Also Published As

Publication number Publication date
JPS5291601A (en) 1977-08-02

Similar Documents

Publication Publication Date Title
KR940001251B1 (en) Voltage control circuit
US7005881B2 (en) Current sensing for power MOSFET operable in linear and saturated regions
JPS5915216B2 (en) voltage level shifter
US4205369A (en) Voltage dropping circuit
JPS6232846B2 (en)
JPS5910133B2 (en) Power supply abnormality detection circuit
JPS6113248B2 (en)
JPS5835613A (en) Electronic circuit
JPH0437387B2 (en)
US4175375A (en) Electronic watch having improved level setting circuit
GB1587028A (en) Voltage comparator
JPH0650816B2 (en) Gate circuit
JPH0317714A (en) Reference voltage circuit
JPH03131916A (en) Constant voltage circuit
RU2057391C1 (en) Crystal oscillator
RU1687003C (en) Quartz generator
JPS62222314A (en) Constant current circuit for temperature sensor
JPH0736505B2 (en) Schmitt trigger circuit
JPH02264518A (en) Output circuit for semiconductor integrated circuit element
JPS62181632A (en) Battery saving circuit
JPH07271460A (en) Dc power source feeding circuit
JPS61170130A (en) Through-current preventing circuit of output inverter
KR830001559B1 (en) Complementary MIS Amplifier Circuit
SU1200408A1 (en) Selector switch
KR930006229B1 (en) Time delay power off circuit