JPH0650816B2 - Gate circuit - Google Patents

Gate circuit

Info

Publication number
JPH0650816B2
JPH0650816B2 JP61181613A JP18161386A JPH0650816B2 JP H0650816 B2 JPH0650816 B2 JP H0650816B2 JP 61181613 A JP61181613 A JP 61181613A JP 18161386 A JP18161386 A JP 18161386A JP H0650816 B2 JPH0650816 B2 JP H0650816B2
Authority
JP
Japan
Prior art keywords
mosfet
electrode
power supply
output terminal
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61181613A
Other languages
Japanese (ja)
Other versions
JPS6337716A (en
Inventor
益規 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61181613A priority Critical patent/JPH0650816B2/en
Publication of JPS6337716A publication Critical patent/JPS6337716A/en
Publication of JPH0650816B2 publication Critical patent/JPH0650816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00315Modifications for increasing the reliability for protection in field-effect transistor circuits

Landscapes

  • Logic Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MOSFET集積回路で用いられるゲート回
路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gate circuit used in a MOSFET integrated circuit.

(従来の技術) MOSFET集積回路が高密度化されるにつれ、それを
構成するMOSFETも微細になってきた。それに伴な
い、いわゆるホットキャリア効果が問題になってきた。
これは素子内の電界が強まることによって、MOSFE
Tの信頼性が低下するものである。この効果を抑えるた
めには、電源電圧を下げ電界を弱めれば良いが、集積回
路を組込む装置内でそのような特殊な電源電圧を用意し
にくい等の種々の理由で実行が難かしい。この為、電源
電圧を下げずにホットキャリア効果を回路的に抑制する
方法として、第2図に示すものが提案されている(日経
マイクロデバイス1985年夏号48頁)。
(Prior Art) As the density of the MOSFET integrated circuit has been increased, the MOSFETs constituting it have become finer. Along with that, the so-called hot carrier effect has become a problem.
This is because the electric field in the device is strengthened
The reliability of T decreases. In order to suppress this effect, it is sufficient to lower the power supply voltage and weaken the electric field, but it is difficult to execute it for various reasons such as it is difficult to prepare such a special power supply voltage in the device incorporating the integrated circuit. Therefore, a method shown in FIG. 2 has been proposed as a method for suppressing the hot carrier effect in a circuit without lowering the power supply voltage (Nikkei Microdevice, Summer 1985, p. 48).

第2図に於て、MOSFET21はNチャネルであり、
ゲート電極に接続された電源24の電位により常に導通
するようにバイアスされている。MOSFET22はN
チャネルであり、ゲート電極が入力端子13に接続され
ており、入力端子13に印加される入力により導通した
り遮断したりし、出力端子14上の出力はMOSFET
22の状態により変化する。この回路によると、出力端
子14と電源VSSとの間の電圧がMOSFET21と2
2により分割され、MOSFET21及び22の各々の
ソース・ドレイン間には大きな電圧は加わらず、従って
MOSFET内の電界が低く抑えられ、ホットキャリア
効果を抑制できる。
In FIG. 2, the MOSFET 21 is an N channel,
It is biased so as to be always conductive by the potential of the power supply 24 connected to the gate electrode. MOSFET 22 is N
A channel, whose gate electrode is connected to the input terminal 13, conducts or cuts off by the input applied to the input terminal 13, and the output on the output terminal 14 is a MOSFET.
It changes according to the state of 22. According to this circuit, the voltage between the output terminal 14 and the power supply V SS is equal to that of the MOSFETs 21 and 2
It is divided by two, and a large voltage is not applied between the source and drain of each of the MOSFETs 21 and 22. Therefore, the electric field in the MOSFET is suppressed low, and the hot carrier effect can be suppressed.

(発明が解決しようとする問題点) しかしながら、第2図の回路には、実用上次の問題点が
ある。
(Problems to be Solved by the Invention) However, the circuit of FIG. 2 has the following practical problems.

第1に、出力端子14に接続された負荷容量をMOSF
ET21と22を通して放電する際に、MOSFET2
1が無く出力端子14が直接MOSFET22のドレイ
ン電極に接続されている場合に比較し、動作速度が遅く
なる。第2に、回路の状態が変化する時に、MOSFE
T21と22の各電極に過渡的に加わる電位は、出力端
子14に接続される負荷容量の大きさと、入力端子13
に印加される入力の波形の複雑な関数であり、第2図の
回路はどのような場合に対しても電界を充分小さく抑え
ることを保証するものではない。
First, the load capacitance connected to the output terminal 14 is connected to the MOSF.
When discharging through ET21 and 22, MOSFET2
The operation speed becomes slower than in the case where the output terminal 14 is directly connected to the drain electrode of the MOSFET 22 because there is no 1. Second, when the state of the circuit changes, the MOSFE
The potential that is transiently applied to the electrodes of T21 and T22 depends on the magnitude of the load capacitance connected to the output terminal 14 and the input terminal 13
2 is a complex function of the input waveform applied to, and the circuit of FIG. 2 does not guarantee that the electric field will be kept sufficiently small in any case.

本発明はこの点に鑑み、電源電圧を下げることなくホッ
トキャリア効果を抑制し、かつ動作速度も低下せず、ど
のような場合にもMOSFET内の電界が充分小さいこ
とを原理的に保証する、ゲート回路を提供することを目
的とする。
In view of this point, the present invention theoretically guarantees that the hot carrier effect is suppressed without lowering the power supply voltage, the operating speed does not decrease, and the electric field in the MOSFET is sufficiently small in any case. An object is to provide a gate circuit.

(問題点を解決するための手段) 本発明が前述の問題点を解決するために提供する手段
は、ソース電極を第1の電源に接続しゲート電極を第2
の電源に接続した第1の導電型の第1のMOSFET
と、ドレイン電極を前記第1のMOSFETのドレイン
電極に接続しゲート電極を第3の電源に接続した第2の
導電型の第2のMOSFETと、ソース電極を前記第2
のMOSFETのソース電極に接続しゲート電極を入力
端子に接続しドレイン電極を出力端子に接続した前記第
1の導電型の第3のMOSFETと、ドレイン電極を前
記出力端子に接続しゲート電極を前記入力端子に接続し
た前記第2の導電型の第4のMOSFETと、ソース電
極を前記第4のMOSFETのソース電極に接続しゲー
ト電極を第4の電源に接続した前記第1の導電型の第5
のMOSFETと、ドレイン電極を前記第5のMOSF
ETのドレイン電極に接続しゲート電極を第5の電源に
接続しソース電極を第6の電源に接続した前記第2の導
電型の第6のMOSFETとを具備し、前記第1の導電
型と前記第2の導電型が互いに逆導電型であることを特
徴とするゲート回路である。
(Means for Solving the Problems) Means provided by the present invention for solving the above-mentioned problems are as follows. The source electrode is connected to the first power supply and the gate electrode is connected to the second power supply.
MOSFET of the first conductivity type connected to the power supply of
A second MOSFET of a second conductivity type having a drain electrode connected to the drain electrode of the first MOSFET and a gate electrode connected to a third power source, and a source electrode of the second MOSFET.
Of the MOSFET of the first conductivity type, the gate electrode of which is connected to the input terminal and the drain electrode of which is connected to the output terminal, and the drain electrode of which is connected to the output terminal and the gate electrode of which is A fourth MOSFET of the second conductivity type connected to an input terminal, and a first MOSFET of the first conductivity type having a source electrode connected to the source electrode of the fourth MOSFET and a gate electrode connected to a fourth power supply. 5
And the drain electrode of the fifth MOSF
A second MOSFET of the second conductivity type connected to a drain electrode of ET, a gate electrode thereof connected to a fifth power supply, and a source electrode thereof connected to a sixth power supply; The gate circuit is characterized in that the second conductivity types are mutually opposite conductivity types.

(実施例) 次に実施例を挙げ本発明を一層詳しく説明する。(Example) Next, an Example is given and this invention is demonstrated in more detail.

第1図は本発明の一実施例を示す回路図である。この実
施例に於いてMOSFET1,3,5はPチャネル素子
であり、MOSFET2,4,6はNチャネル素子であ
る。まず入力端子13に印加されている電位が低レベル
であり、MOSFET3が導通し、MOSFET4が遮
断している状態から、入力端子13の電位が高レベルに
変化しMOSFET3が遮断し、MOSFET4が導通
した場合を考える。この時、出力端子14からMOSF
ET4と5と6を通して電源VSSに電流が流れ、出力端
子14の電位が下がっていく。MOSFET5のゲート
電極には一定電圧Vが印加されており、MOSFET
5の閾値電圧をVTPとすると、接続点16の電位がV
+VTPに達するとMOSFET5が遮断し、接続点16
の電位はV+VTP以下には下がらない。従って出力端
子14の電位はV+VTP以下には下がらない。また、
MOSFET6のゲート電極は一定電位の電源12に接
続されていて、この為ドレイン電流は常に一定である。
従って、出力端子14の電位が下がって行く過程に於い
て、流れる電流は一定であり、これはまたMOSFET
5の有無にかかわらない。
FIG. 1 is a circuit diagram showing an embodiment of the present invention. In this embodiment, MOSFETs 1, 3 and 5 are P-channel devices, and MOSFETs 2, 4 and 6 are N-channel devices. First, from the state in which the potential applied to the input terminal 13 is low level, the MOSFET 3 is conducting and the MOSFET 4 is cut off, the potential of the input terminal 13 changes to a high level, the MOSFET 3 is cut off, and the MOSFET 4 is turned on. Consider the case. At this time, from the output terminal 14 to the MOSF
A current flows through the power supply V SS through ET4, 5 and 6, and the potential of the output terminal 14 decreases. A constant voltage V 2 is applied to the gate electrode of the MOSFET 5,
When the threshold voltage of 5 is V TP , the potential of the connection point 16 is V 2
When it reaches + V TP , MOSFET5 cuts off and the connection point 16
Does not drop below V 2 + V TP . Therefore, the potential of the output terminal 14 does not drop below V 2 + V TP . Also,
The gate electrode of the MOSFET 6 is connected to the power source 12 having a constant potential, and therefore the drain current is always constant.
Therefore, in the process of the potential of the output terminal 14 decreasing, the flowing current is constant, which is also the MOSFET.
Regardless of whether or not there is 5.

反対に、入力端子13に印加される電位が高レベルから
低レベルに変化し、MOSFET3が遮断状態から導通
状態に変化し、MOSFET4が導通状態から遮断状態
に変化する場合を考える。この場合、電源VDDからMO
SFET1と2と3を通じて出力端子14に電流が流れ
出力端子14及び接続点15の電位が上昇する。接続点
15の電位がV−VTNに達っするとMOSFET2が
遮断し、接続点15の電位従って出力端子14の電位は
−VTNまでしか上昇しない。但し、VはMOSF
ET2のゲート電極に印加されている一定の電位、また
TNはMOSFET2の閾値電圧である。また、この状
態切り換え時に於いて出力端子14に流れる電流は、ゲ
ート電極に一定電位が印加されたMOSFET1の働き
により一定であり、これはまたMOSFET2の有無に
よらない。
On the contrary, consider a case where the potential applied to the input terminal 13 changes from the high level to the low level, the MOSFET 3 changes from the cut-off state to the conductive state, and the MOSFET 4 changes from the conductive state to the cut-off state. In this case, power supply V DD to MO
A current flows through the SFETs 1, 2 and 3 to the output terminal 14, and the potentials of the output terminal 14 and the connection point 15 rise. When the potential of the connection point 15 reaches V 1 -V TN , the MOSFET 2 is cut off, and the potential of the connection point 15 and thus the potential of the output terminal 14 rises only to V 1 -V TN . However, V 1 is MOSF
Constant potential applied to the gate electrode of ET2, also V TN is the threshold voltage of the MOSFET 2. Further, the current flowing through the output terminal 14 at the time of this state switching is constant due to the action of the MOSFET 1 having a constant potential applied to the gate electrode, and this is independent of the presence or absence of the MOSFET 2.

以上のように、第1図の回路に於いては出力端子14の
電位はMOSFET2の働きによりV−VTNまでしか
上昇せず、またMOSFET5の働きによりV+VTP
でしか下がらない。従って、MOSFET1,2,3の
ソース・ドレイン間にはVDD−(V+VTP)より大き
い電圧はかからない。またMOSFET4,5,6のソ
ース・ドレイン間には(V−VTN)−VSSより大きい
電圧はかからない。従ってV及びVを適当に調整す
ることでこれらの電圧を充分小さくすることができ、M
OSFET内の電界を充分に弱く保ちホットキャリア効
果を抑制することができる。また、MOSFET1と6
の働きにより、MOSFET2及びMOSFET5によ
り動作速度が遅くなるのを防ぐことができる。
As described above, in the circuit of FIG. 1, the potential of the output terminal 14 rises only to V 1 -V TN due to the action of the MOSFET 2 and V 2 + V TP due to the action of the MOSFET 5.
It can only go down. Therefore, no voltage greater than V DD − (V 2 + V TP ) is applied between the source and drain of the MOSFETs 1, 2 and 3 . Further, no voltage larger than (V 1 −V TN ) −V SS is applied between the source and drain of the MOSFETs 4, 5 and 6. Therefore, these voltages can be made sufficiently small by appropriately adjusting V 1 and V 2 , and M
The hot carrier effect can be suppressed by keeping the electric field in the OSFET sufficiently weak. Also, MOSFETs 1 and 6
By the action, it is possible to prevent the operation speed from being slowed down by the MOSFET 2 and the MOSFET 5.

(発明の効果) 以上述べた如く、本発明によれば、電源電圧を下げずに
ホットキャリア効果を必ず抑制でき、かつ動作速度が遅
くなることのないゲート回路が得られ、微細な素子を用
いたMOSFET集積回路に於いて大きな効果がある。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain a gate circuit that can suppress the hot carrier effect without lowering the power supply voltage and that does not slow down the operation speed, and use a fine element. It has a great effect in the MOSFET integrated circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す回路図、第2図は従来
例を示す回路図である。 1,2,3,4,5,6,21,22,23……MOS
FET、13……入力端子、14……出力端子。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a conventional example. 1, 2, 3, 4, 5, 6, 21, 22, 23 ... MOS
FET, 13 ... Input terminal, 14 ... Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ソース電極を第1の電源に接続しゲート電
極を第2の電源に接続した第1の導電型の第1のMOS
FETと、ドレイン電極を前記第1のMOSFETのド
レイン電極に接続しゲート電極を第3の電源に接続した
第2の導電型の第2のMOSFETと、ソース電極を前
記第2のMOSFETのソース電極に接続しゲート電極
を入力端子に接続しドレイン電極を出力端子に接続した
前記第1の導電型の第3のMOSFETと、ドレイン電
極を前記出力端子に接続しゲート電極を前記入力端子に
接続した前記第2の導電型の第4のMOSFETと、ソ
ース電極を前記第4のMOSFETのソース電極に接続
しゲート電極を第4の電源に接続した前記第1の導電型
の第5のMOSFETと、ドレイン電極を前記第5のM
OSFETのドレイン電極に接続しゲート電極を第5の
電源に接続しソース電極を第6の電源に接続した前記第
2の導電型の第6のMOSFETとを具備し、前記第1
の導電型と前記第2の導電型が互いに逆導電型であるこ
とを特徴とするゲート回路。
1. A first conductivity type first MOS having a source electrode connected to a first power supply and a gate electrode connected to a second power supply.
An FET, a second MOSFET of a second conductivity type in which a drain electrode is connected to the drain electrode of the first MOSFET and a gate electrode is connected to a third power source, and a source electrode is a source electrode of the second MOSFET. And a gate electrode connected to an input terminal and a drain electrode connected to an output terminal, and a third MOSFET of the first conductivity type, a drain electrode connected to the output terminal, and a gate electrode connected to the input terminal. A fourth MOSFET of the second conductivity type; a fifth MOSFET of the first conductivity type, a source electrode of which is connected to a source electrode of the fourth MOSFET and a gate electrode of which is connected to a fourth power supply; The drain electrode is connected to the fifth M
A second MOSFET of the second conductivity type connected to a drain electrode of the OSFET, a gate electrode thereof connected to a fifth power source, and a source electrode thereof connected to a sixth power source;
And the second conductivity type are opposite conductivity types to each other.
JP61181613A 1986-07-31 1986-07-31 Gate circuit Expired - Fee Related JPH0650816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181613A JPH0650816B2 (en) 1986-07-31 1986-07-31 Gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181613A JPH0650816B2 (en) 1986-07-31 1986-07-31 Gate circuit

Publications (2)

Publication Number Publication Date
JPS6337716A JPS6337716A (en) 1988-02-18
JPH0650816B2 true JPH0650816B2 (en) 1994-06-29

Family

ID=16103863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181613A Expired - Fee Related JPH0650816B2 (en) 1986-07-31 1986-07-31 Gate circuit

Country Status (1)

Country Link
JP (1) JPH0650816B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297097A (en) 1988-06-17 1994-03-22 Hitachi Ltd. Large scale integrated circuit for low voltage operation
USRE40132E1 (en) * 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation
JP2001127615A (en) * 1999-10-28 2001-05-11 Nippon Telegr & Teleph Corp <Ntt> Division level logic circuit
JP3681731B2 (en) * 2002-02-20 2005-08-10 松下電器産業株式会社 Drive circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158240U (en) * 1981-03-31 1982-10-05
JPS58207728A (en) * 1982-05-28 1983-12-03 Nec Corp Transistor circuit
JPS60233931A (en) * 1984-05-07 1985-11-20 Toshiba Corp Inverter circuit
JPS60237724A (en) * 1984-05-11 1985-11-26 Hitachi Ltd Complementary mos logical gate

Also Published As

Publication number Publication date
JPS6337716A (en) 1988-02-18

Similar Documents

Publication Publication Date Title
US4713600A (en) Level conversion circuit
KR930015345A (en) Integrated Circuit with Complementary Input Buffer
JP2567179B2 (en) Level conversion circuit
JPH02155492A (en) Semiconductor device
JPH02214219A (en) Bipolar mos tri-state output buffer
US4488067A (en) Tristate driver circuit with low standby power consumption
JPH0650816B2 (en) Gate circuit
TW419888B (en) Input circuit
JP2666347B2 (en) Output circuit
JPS61157115A (en) Cmos including &#39;chute through&#39; current suppression means
JPH0656950B2 (en) Gate circuit
JP2001053599A (en) Semiconductor integrated circuit
JP2888513B2 (en) Logic circuit
JP2730098B2 (en) Semiconductor integrated device
JPH0430765B2 (en)
JPH0677805A (en) Output buffer circuit
JPH01154620A (en) Semiconductor integrated circuit
JPH06120790A (en) Standby flag circuit
JP2680815B2 (en) Logic gate circuit
JPH0666656B2 (en) Schmitt trigger circuit
JPH0634676A (en) Power supply voltage detection circuit and semiconductor integrated circuit provided with the circuit
JPS61113319A (en) Holding circuit
JP3226535B2 (en) Output buffer circuit
JPS6341451B2 (en)
JPS62222713A (en) Cmos inverter circuit for delay

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees