JPH0634676A - Power supply voltage detection circuit and semiconductor integrated circuit provided with the circuit - Google Patents

Power supply voltage detection circuit and semiconductor integrated circuit provided with the circuit

Info

Publication number
JPH0634676A
JPH0634676A JP4192532A JP19253292A JPH0634676A JP H0634676 A JPH0634676 A JP H0634676A JP 4192532 A JP4192532 A JP 4192532A JP 19253292 A JP19253292 A JP 19253292A JP H0634676 A JPH0634676 A JP H0634676A
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
supply voltage
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4192532A
Other languages
Japanese (ja)
Other versions
JP2871309B2 (en
Inventor
Takatomo Shichimiya
敬朋 七宮
Taishin Tanaka
泰臣 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP4192532A priority Critical patent/JP2871309B2/en
Publication of JPH0634676A publication Critical patent/JPH0634676A/en
Application granted granted Critical
Publication of JP2871309B2 publication Critical patent/JP2871309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To output a control signal so that an IC can perform an initial function regardless of a supply voltage by outputting a comparison result between a divided voltage of the supply voltage and a reference voltage as a control voltage. CONSTITUTION:When a supply voltage VDD of an IC is lower than a specific voltage and the output voltage of a node S2 of a voltage-division circuit 2 is lower than that of a node S3 of a reference voltage generation circuit 3, the gate voltage of an N-channel MOSFET 15 becomes smaller than that of an N-channel MOSFET 16 of a comparison circuit 1, thus causing the level of the output voltage of a node 51 to be high. On the other hand, when the voltage VDD is higher than a specific voltage and the output voltage of the node S2 is higher than that of the node S3, the level of the output voltage of the node S1 becomes high. Therefore, using the output signal of the node S1 as a control signal, an optimum circuit configuration for a used supply voltage can be formed by switching the configuration of the circuit on a semiconductor chip and the IC can be controlled so that it can perform an initial function fully regardless of the voltage VDD.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路に適用さ
れる電源電圧検知回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply voltage detection circuit applied to a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】現在、市場に出回っているIC(集積回
路)は、推奨使用電源電圧を5Vとしたものが多い。し
かし、用途によっては電源電圧を5Vよりも低くして使
用することができるICが要求される。例えば、電池を
電源とする装置にICを搭載する場合、ICの電源電圧
として3.3V程度が望まれる。しかし、ICの各素子
が使用電源電圧を5Vと想定して最適設計されている場
合、電源電圧を5Vよりもある程度以上低くすると、各
素子の電気的特性が大きく変化し、そのICの所期の機
能を発揮し得なくなることがある。例えば、MOSFE
T(金属−酸化膜−半導体構造による電界効果トランジ
スタ)は、電源電圧が低くなると駆動能力が低下し、負
荷に十分な駆動電流を流すことができなくなる。このた
め、各素子の動作の著しい遅れが生じ、ICの電気的性
能が著しく劣化する。また、特にアナログ回路の場合は
MOSFETに流れる電流が減少することにより全く所
期の機能を果さなくなることが多い。そこで、従来、I
Cのユーザが要求する使用電源電圧の範囲が広い場合に
は、各使用電源電圧に適したICを各々別個に生産して
いた。
2. Description of the Related Art Currently, most ICs (integrated circuits) on the market have a recommended power supply voltage of 5V. However, an IC that can be used with a power supply voltage lower than 5 V is required depending on the application. For example, when the IC is mounted on a device that uses a battery as a power source, it is desired that the power source voltage of the IC be about 3.3V. However, when each element of the IC is optimally designed assuming that the power supply voltage used is 5V, if the power supply voltage is lowered to a certain level or less than 5V, the electrical characteristics of each element change significantly, and the desired IC May not be able to exert its function. For example, MOSFE
T (field-effect transistor having a metal-oxide film-semiconductor structure) has a low driving capability when the power supply voltage is low, and cannot supply a sufficient driving current to a load. Therefore, the operation of each element is significantly delayed, and the electrical performance of the IC is significantly deteriorated. In particular, in the case of an analog circuit, in many cases, the desired function is not fulfilled at all because the current flowing through the MOSFET decreases. Therefore, conventionally, I
In the case where the range of the power supply voltage used by the user C is wide, ICs suitable for each power supply voltage have been separately produced.

【0003】[0003]

【発明が解決しようとする課題】このように、従来は同
一機能であるにも拘らず、各ユーザの使用電源電圧の範
囲を考慮し、この範囲内の複数の使用電源電圧を想定し
た複数種類のICを別個に生産していたため、製造コス
トが嵩むという問題があった。また、使用電源電圧によ
って例えばトランジスタサイズ等、所期の性能を発揮す
るための最適な回路構成が異なってくる場合が多い。こ
のような場合、製造条件の変更等によっては対処し得
ず、同一機能を有するICであっても使用電源電圧によ
って回路構成を変える必要がある。従って、各使用電源
電圧に対応した各ICを製造するために、各々異なった
マスクを用意しなければならず、製造コストがさらに嵩
むという問題があった。この発明は上述した事情に鑑み
てなされたものであり、半導体集積回路が電源電圧に依
らず所期の機能を果すように制御するための制御信号を
出力する電源電圧検知回路を提供することを目的とす
る。
As described above, in spite of having the same function in the related art, a plurality of kinds of power supply voltages within the range are considered in consideration of the range of the power supply voltage used by each user. However, there is a problem in that the manufacturing cost increases because the ICs are separately manufactured. Further, the optimum circuit configuration for exhibiting desired performance, such as the transistor size, often differs depending on the power supply voltage used. In such a case, it cannot be dealt with by changing the manufacturing conditions, and it is necessary to change the circuit configuration depending on the power supply voltage used even for ICs having the same function. Therefore, in order to manufacture each IC corresponding to each power supply voltage to be used, it is necessary to prepare different masks, and there is a problem that the manufacturing cost further increases. The present invention has been made in view of the above circumstances, and provides a power supply voltage detection circuit that outputs a control signal for controlling a semiconductor integrated circuit to perform a desired function regardless of the power supply voltage. To aim.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
電源電圧を分圧して出力する分圧回路と、基準電圧を出
力する基準電圧発生回路と、前記分圧回路の出力電圧と
前記基準電圧とを比較し、該比較結果を制御信号として
出力する比較回路とを具備することを特徴とする。請求
項2に係る発明は、半導体チップ上に前記電源電圧検知
回路とが形成されると共に所定の機能を果す回路であっ
て前記制御信号に基づいて状態が切り換えられる回路が
形成されてなることを特徴とする。
The invention according to claim 1 is
A voltage divider circuit that divides and outputs a power supply voltage, a reference voltage generation circuit that outputs a reference voltage, a comparison circuit that compares the output voltage of the voltage divider circuit with the reference voltage, and outputs the comparison result as a control signal. And a circuit. According to a second aspect of the present invention, the power supply voltage detection circuit is formed on a semiconductor chip, and a circuit which performs a predetermined function and whose state is switched based on the control signal is formed. Characterize.

【0006】[0006]

【作用】上記請求項1に係る発明によれば、電源電圧を
分圧した電圧と基準電圧との比較結果が制御信号として
出力される。上記請求項2に係る発明によれば、上記制
御信号により半導体チップ上の回路の構成が切り換えら
れる。
According to the first aspect of the invention, the result of comparison between the voltage obtained by dividing the power supply voltage and the reference voltage is output as the control signal. According to the invention of claim 2, the configuration of the circuit on the semiconductor chip is switched by the control signal.

【0007】[0007]

【実施例】以下、図面を参照し本発明の一実施例につい
て説明する。図1はこの発明の一実施例による電源電圧
検知回路の構成を示す回路図である。この電源電圧検知
回路は、ICの電源電圧を検知するものであり、同IC
の機能を実現する回路と共に半導体チップ上に形成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a circuit diagram showing the configuration of a power supply voltage detection circuit according to an embodiment of the present invention. This power supply voltage detection circuit detects the power supply voltage of the IC.
It is formed on a semiconductor chip together with a circuit that realizes the function of.

【0008】図1において、2は分圧回路であり、Pチ
ャネルMOSFET21〜23とNチャネルMOSFE
T24および25とがICの電源および接地間に直列接
続されてなる。PチャネルMOSFET21〜23とN
チャネルMOSFET24および25は各々ドレインお
よびゲートが共通接続されており、ICに電源電圧が印
加されることにより、いずれのMOSFETもオン状態
となる。このような構成により、PチャネルMOSFE
T23のドレインとNチャネルMOSFETのドレイン
とが接続されるノードS2から電源電圧VDDを所定の
分圧比で分圧した電圧が得られる。
In FIG. 1, reference numeral 2 is a voltage dividing circuit, which includes P-channel MOSFETs 21 to 23 and an N-channel MOSFE.
T24 and T25 are connected in series between the power source of the IC and the ground. P-channel MOSFETs 21-23 and N
The drains and gates of the channel MOSFETs 24 and 25 are commonly connected, and when a power supply voltage is applied to the IC, both MOSFETs are turned on. With such a configuration, P-channel MOSFE
From the node S2 where the drain of T23 and the drain of the N-channel MOSFET are connected, a voltage obtained by dividing the power supply voltage VDD by a predetermined dividing ratio can be obtained.

【0009】基準電圧発生回路3は、PチャネルMOS
FET31とNチャネルMOSFET32および33と
を電源および接地間に順次直列に接続してなるものであ
る。PチャネルMOSFET31は、ソースが電源端子
に接続される。また、この電源電圧検知回路を動作させ
る場合、PチャネルMOSFET31はゲートにローレ
ベルの電圧が印加され、オン状態とされる。Nチャネル
MOSFET32はゲートしきい値電圧が負であるデプ
レッション型FETであり、ドレインがPチャネルMO
SFET31のドレインと接続され、ゲートおよびソー
スがNチャネルMOSFET33のドレインに接続され
ている。このようにNチャネルMOSFET32は、ゲ
ートおよびソース間電圧が0Vに固定されており、この
ゲートおよびソース間電圧(0V)とゲートしきい値電
圧(<0V)との差分が正味のゲートバイアスとなって
ソースおよびドレイン間に反転層を形成せしめる。従っ
て、NチャネルMOSFET32は、電源電圧VDDが
変化することによってドレインおよびソース間の電圧が
変化したとしても、常にほぼ一定のドレイン電流が流れ
る。NチャネルMOSFET33は、ソースが接地され
ると共にドレインおよびゲートがNチャネルMOSFE
T32のソースおよびゲートと共通接続されている。そ
して、電源側からNチャネルMOSFET32を介して
供給される電流がNチャネルMOSFET33にドレイ
ン電流として流れる。上述の通り、NチャネルMOSF
ET32のドレイン電流の大きさは電源電圧VDDに依
らずほぼ一定となるため、NチャネルMOSFET33
のドレイン電圧、すなわち、図1のおけるノードS3の
電圧も電源電圧VDDに依らずほぼ一定となる。
The reference voltage generating circuit 3 is a P channel MOS.
The FET 31 and N-channel MOSFETs 32 and 33 are sequentially connected in series between a power source and ground. The source of the P-channel MOSFET 31 is connected to the power supply terminal. When operating this power supply voltage detection circuit, a low level voltage is applied to the gate of the P-channel MOSFET 31 to turn it on. The N-channel MOSFET 32 is a depletion type FET having a negative gate threshold voltage, and the drain is a P-channel MO.
It is connected to the drain of the SFET 31, and its gate and source are connected to the drain of the N-channel MOSFET 33. As described above, in the N-channel MOSFET 32, the voltage between the gate and the source is fixed to 0V, and the difference between the voltage between the gate and the source (0V) and the gate threshold voltage (<0V) becomes the net gate bias. Form an inversion layer between the source and drain. Therefore, in the N-channel MOSFET 32, a substantially constant drain current always flows even if the voltage between the drain and the source changes due to the change in the power supply voltage VDD. The N-channel MOSFET 33 has a source grounded and a drain and a gate N-channel MOSFET.
It is commonly connected to the source and gate of T32. Then, the current supplied from the power supply side through the N-channel MOSFET 32 flows into the N-channel MOSFET 33 as a drain current. As mentioned above, N-channel MOSF
Since the magnitude of the drain current of the ET32 is almost constant regardless of the power supply voltage VDD, the N-channel MOSFET 33
Drain voltage, that is, the voltage of the node S3 in FIG. 1 is substantially constant regardless of the power supply voltage VDD.

【0010】4は基準電圧発生回路3と全く同様な構成
を有する基準電圧発生回路であり、PチャネルMOSF
ET41とNチャネルMOSFET42および43とか
らなり、電源電圧VDDに依らずほぼ一定の電圧をノー
ドS4から出力する。
Reference numeral 4 is a reference voltage generating circuit having the same structure as the reference voltage generating circuit 3, and is a P-channel MOSF.
The ET 41 and the N-channel MOSFETs 42 and 43 output a substantially constant voltage from the node S4 regardless of the power supply voltage VDD.

【0011】比較回路1は、PチャネルMOSFET1
1〜12とNチャネルMOSFET14〜16とからな
る。PチャネルMOSFET11は、ソースが電源端子
に接続される。また、この電源電圧検知回路を動作させ
る場合、PチャネルMOSFET11はゲートにローレ
ベルの電圧が印加され、オン状態とされる。Pチャネル
MOSFET12および13は、各々のソースがPチャ
ネルMOSFET11のドレインに共通接続されてお
り、各々のドレインがNチャネルMOSFET15およ
び16の各ドレインに接続されている。また、これらの
PチャネルMOSFET12および13の各ゲートはP
チャネルMOSFET13のドレインとNチャネルMO
SFET16のドレインとの接続点に共通接続されてい
る。NチャネルMOSFET15および16の各ゲート
は、分圧回路2のノードS2および基準電圧発生回路3
のノードS3に各々接続されている。また、Nチャネル
MOSFET15および16の各ソースはNチャネルM
OSFET14のドレインに共通接続されている。この
NチャネルMOSFET14は、ソースが接地されると
共にゲートが基準電圧発生回路3のノードS4に接続さ
れている。
The comparison circuit 1 is a P-channel MOSFET 1
1 to 12 and N-channel MOSFETs 14 to 16. The source of the P-channel MOSFET 11 is connected to the power supply terminal. When operating this power supply voltage detection circuit, a low level voltage is applied to the gate of the P-channel MOSFET 11 to turn it on. The sources of the P-channel MOSFETs 12 and 13 are commonly connected to the drain of the P-channel MOSFET 11, and the drains of the P-channel MOSFETs 12 and 13 are connected to the drains of the N-channel MOSFETs 15 and 16. The gates of these P-channel MOSFETs 12 and 13 are P
Drain of channel MOSFET 13 and N channel MO
It is commonly connected to the connection point with the drain of the SFET 16. The gates of the N-channel MOSFETs 15 and 16 are connected to the node S2 of the voltage dividing circuit 2 and the reference voltage generating circuit 3 respectively.
Node S3 of each. The sources of the N-channel MOSFETs 15 and 16 are N-channel M
The drains of the OSFETs 14 are commonly connected. The N-channel MOSFET 14 has a source grounded and a gate connected to the node S4 of the reference voltage generation circuit 3.

【0012】図2に電源電圧VDDを0Vから徐々に高
くしていった場合の各ノードS1〜S4の電圧の変化の
シミュレーション結果を示す。以下、この図を参照し、
この電源電圧検知回路の動作を説明する。
FIG. 2 shows a simulation result of changes in the voltages of the nodes S1 to S4 when the power supply voltage VDD is gradually increased from 0V. Below, refer to this figure,
The operation of this power supply voltage detection circuit will be described.

【0013】まず、分圧回路2のノードS2の出力電圧
は図2に示すように電源電圧VDDにほぼ比例する。こ
れに対し、基準電圧発生回路3のノードS3の出力電圧
は、電源電圧VDDに対し以下のように変化する。ま
ず、電源電圧VDDがPチャネルMOSFET31のゲ
ートしきい値電圧以下である場合は、PチャネルMOS
FET31がオフ状態であるためNチャネルMOSFE
T33にドレイン電流が流れず、ノードS3の出力電圧
は0Vとなる。電源電圧VDDが、PチャネルMOSF
ET31のゲートしきい値電圧以上になると、Pチャネ
ルMOSFET31がオン状態となることによりNチャ
ネルMOSFET33にドレイン電流が流れ、ノードS
3の出力電圧は急激に上昇する。しかし、以後は、上述
した通り、デプレッション型MOSFET32のドレイ
ン電流が電源電圧VDDによらずほぼ一定になるため、
ノードS3の出力電圧は、電源電圧VDDの上昇に対し
飽和傾向を呈する。基準電圧発生回路4のノードS4も
ノードS3と全く同じように変化する。
First, the output voltage of the node S2 of the voltage dividing circuit 2 is almost proportional to the power supply voltage VDD as shown in FIG. On the other hand, the output voltage of the node S3 of the reference voltage generating circuit 3 changes as follows with respect to the power supply voltage VDD. First, when the power supply voltage VDD is equal to or lower than the gate threshold voltage of the P-channel MOSFET 31, the P-channel MOS
N-channel MOSFE because FET 31 is off
The drain current does not flow in T33, and the output voltage of the node S3 becomes 0V. Power supply voltage VDD is P channel MOSF
When the voltage exceeds the gate threshold voltage of ET31, the P-channel MOSFET 31 is turned on to cause a drain current to flow in the N-channel MOSFET 33, and the node S
The output voltage of 3 rapidly increases. However, after that, as described above, the drain current of the depletion type MOSFET 32 becomes substantially constant regardless of the power supply voltage VDD,
The output voltage of the node S3 exhibits a saturation tendency as the power supply voltage VDD rises. The node S4 of the reference voltage generating circuit 4 changes just like the node S3.

【0014】電源電圧VDDが所定値よりも低く分圧回
路2のノードS2の出力電圧が基準電圧発生回路3のノ
ードS3の出力電圧よりも低い場合には、NチャネルM
OSFET16のゲート電圧に比べてNチャネルMOS
FET15のゲート電圧が不足する。このため、ノード
S1の出力電圧は、ハイレベル、すなわち、Pチャネル
MOSFET11のドレインとNチャネルMOSFET
12および13の各ドレインの共通接続点の電圧にほぼ
一致した電圧となる(領域A)。
When power supply voltage VDD is lower than a predetermined value and the output voltage of node S2 of voltage dividing circuit 2 is lower than the output voltage of node S3 of reference voltage generating circuit 3, N channel M
N-channel MOS compared to the gate voltage of OSFET16
The gate voltage of the FET 15 is insufficient. Therefore, the output voltage of the node S1 is at a high level, that is, the drain of the P-channel MOSFET 11 and the N-channel MOSFET.
The voltage is almost the same as the voltage at the common connection point of the drains 12 and 13 (region A).

【0015】一方、電源電圧VDDが所定電圧よりも高
く分圧回路2のノードS2の出力電圧が基準電圧発生回
路3のノードS3の出力電圧よりも高い場合には、Nチ
ャネルMOSFET16のゲート電圧に比べてNチャネ
ルMOSFET15のゲート電圧が過剰となる。このた
め、ノードS1の出力電圧は、ローレベル、すなわち、
NチャネルMOSFET14のドレイン電圧にほぼ一致
する電圧となる(領域B)。図3にはVDD=3.5V
付近においてノードS1の電圧がハイレベルからローレ
ベルへと変化する様子が示されている。
On the other hand, when the power supply voltage VDD is higher than the predetermined voltage and the output voltage of the node S2 of the voltage dividing circuit 2 is higher than the output voltage of the node S3 of the reference voltage generating circuit 3, the gate voltage of the N-channel MOSFET 16 is set. In comparison, the gate voltage of the N-channel MOSFET 15 becomes excessive. Therefore, the output voltage of the node S1 is low level, that is,
The voltage is almost the same as the drain voltage of the N-channel MOSFET 14 (region B). VDD = 3.5V in FIG.
It is shown that the voltage of the node S1 changes from high level to low level in the vicinity.

【0016】このように本実施例による電源電圧検知回
路によれば、ICの電源電圧が所定値よりも低い場合に
はノードS1からハイレベルの信号が出力され、高い場
合にはローレベルの信号が出力される。従って、このノ
ードS1の出力信号を制御信号とし、この制御信号によ
り半導体チップ上に形成された回路の構成を切り換え、
使用電源電圧にとって最適な回路構成とすることができ
る。例えば以下のような適用例が考えられる。 (1)使用電源電圧に応じて駆動能力が要求されるMO
SFETは、予め複数のMOSFETを並列接続した構
成とする。電源電圧が高い場合には他方のMOSFET
を強制的にオフ状態とし(例えば入力信号のゲートへの
供給を絶ち、入力信号の代りにゲート電圧として0Vを
印加する等の方法が考えられる)、一方のMOSFET
のみを使用する。逆に電源電圧が低い場合には、両方の
MOSFETに入力信号を与え、両方のMOSFETを
使用する。 (2)各回路の駆動順序を適正なものにするためのタイ
ミング補償用遅延回路の段数を切り換えられるように構
成しておく。電源電圧が所定値よりも高い場合には遅延
回路の段数を最低限必要と考えられる段数に減らして動
作速度を向上させる。また、電源電圧が所定値よりも低
い場合には遅延回路の段数を増してタイミング上の誤動
作を確実に防止する。
As described above, according to the power supply voltage detection circuit of this embodiment, a high level signal is output from the node S1 when the power supply voltage of the IC is lower than a predetermined value, and a low level signal when it is high. Is output. Therefore, the output signal of the node S1 is used as a control signal, and the configuration of the circuit formed on the semiconductor chip is switched by the control signal.
The circuit configuration can be optimized for the power supply voltage used. For example, the following application examples are possible. (1) MO that requires driving capability according to the power supply voltage used
The SFET has a configuration in which a plurality of MOSFETs are connected in parallel in advance. When the power supply voltage is high, the other MOSFET
Is forcibly turned off (for example, a method of cutting off the supply of the input signal to the gate and applying 0V as the gate voltage instead of the input signal) is considered, and one MOSFET
Use only. On the contrary, when the power supply voltage is low, both MOSFETs are supplied with an input signal and both MOSFETs are used. (2) The number of stages of the delay circuit for timing compensation is set so that the driving order of each circuit can be made appropriate. When the power supply voltage is higher than the predetermined value, the number of stages of the delay circuit is reduced to the minimum required stage to improve the operation speed. Further, when the power supply voltage is lower than the predetermined value, the number of stages of the delay circuit is increased to surely prevent timing malfunction.

【0017】[0017]

【発明の効果】以上説明したように、この発明によれ
ば、半導体集積回路の電源電圧を検知することができ、
検知結果に基づき、半導体集積回路が電源電圧に依らず
所期の機能を発揮するように制御することができる。従
って、使用電源電圧範囲の広い半導体集積回路を安価に
製造することができるという効果が得られる。
As described above, according to the present invention, the power supply voltage of the semiconductor integrated circuit can be detected,
Based on the detection result, it is possible to control the semiconductor integrated circuit so as to exert its intended function regardless of the power supply voltage. Therefore, it is possible to obtain the effect that a semiconductor integrated circuit having a wide range of power supply voltage to be used can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例による電源電圧検知回路
の構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of a power supply voltage detection circuit according to an embodiment of the present invention.

【図2】 同実施例の動作のシミュレーション結果を示
す図である。
FIG. 2 is a diagram showing a simulation result of the operation of the example.

【符号の説明】[Explanation of symbols]

1……比較回路、2……分圧回路、3および4…基準電
圧発生回路。
1 ... Comparison circuit, 2 ... Voltage dividing circuit, 3 and 4 ... Reference voltage generating circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電源電圧を分圧して出力する分圧回路
と、 基準電圧を出力する基準電圧発生回路と、 前記分圧回路の出力電圧と前記基準電圧とを比較し、該
比較結果を制御信号として出力する比較回路とを具備す
ることを特徴とする電源電圧検知回路。
1. A voltage dividing circuit for dividing a power supply voltage and outputting the divided voltage, a reference voltage generating circuit for outputting a reference voltage, an output voltage of the voltage dividing circuit and the reference voltage, and controlling the comparison result. A power supply voltage detection circuit comprising: a comparison circuit for outputting as a signal.
【請求項2】 半導体チップ上に前記電源電圧検知回路
とが形成されると共に所定の機能を果す回路であって前
記制御信号に基づいて状態が切り換えられる回路が形成
されてなることを特徴とする請求項1記載の電源電圧検
知回路を有する半導体集積回路。
2. A power supply voltage detection circuit is formed on a semiconductor chip, and a circuit which performs a predetermined function and whose state is switched based on the control signal is formed. A semiconductor integrated circuit comprising the power supply voltage detection circuit according to claim 1.
JP4192532A 1992-07-20 1992-07-20 Power supply voltage detection circuit Expired - Fee Related JP2871309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4192532A JP2871309B2 (en) 1992-07-20 1992-07-20 Power supply voltage detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4192532A JP2871309B2 (en) 1992-07-20 1992-07-20 Power supply voltage detection circuit

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP15138597A Division JP3147042B2 (en) 1997-06-09 1997-06-09 Semiconductor integrated circuit
JP9151386A Division JPH10117138A (en) 1997-06-09 1997-06-09 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH0634676A true JPH0634676A (en) 1994-02-10
JP2871309B2 JP2871309B2 (en) 1999-03-17

Family

ID=16292850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4192532A Expired - Fee Related JP2871309B2 (en) 1992-07-20 1992-07-20 Power supply voltage detection circuit

Country Status (1)

Country Link
JP (1) JP2871309B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274642A (en) * 2004-03-23 2005-10-06 Sony Corp Display apparatus and driving method for same
KR100682059B1 (en) * 2005-02-24 2007-02-15 삼성전자주식회사 Ultra low power limiter
CN100357856C (en) * 2005-03-25 2007-12-26 威盛电子股份有限公司 Computer host board and its power controller

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547372A (en) * 1977-06-17 1979-01-20 Seiko Epson Corp Electronic watch
JPS55101058A (en) * 1979-01-26 1980-08-01 Hitachi Ltd Detection circuit for operating lowest limit voltage
JPS5910859A (en) * 1982-07-12 1984-01-20 Hitachi Ltd Detecting circuit for power source voltage drop
JPS60205264A (en) * 1984-03-30 1985-10-16 Citizen Watch Co Ltd Voltage comparison circuit
JPS6134471A (en) * 1984-07-26 1986-02-18 Matsushita Electric Ind Co Ltd Power source voltage detection circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547372A (en) * 1977-06-17 1979-01-20 Seiko Epson Corp Electronic watch
JPS55101058A (en) * 1979-01-26 1980-08-01 Hitachi Ltd Detection circuit for operating lowest limit voltage
JPS5910859A (en) * 1982-07-12 1984-01-20 Hitachi Ltd Detecting circuit for power source voltage drop
JPS60205264A (en) * 1984-03-30 1985-10-16 Citizen Watch Co Ltd Voltage comparison circuit
JPS6134471A (en) * 1984-07-26 1986-02-18 Matsushita Electric Ind Co Ltd Power source voltage detection circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274642A (en) * 2004-03-23 2005-10-06 Sony Corp Display apparatus and driving method for same
KR100682059B1 (en) * 2005-02-24 2007-02-15 삼성전자주식회사 Ultra low power limiter
US7688561B2 (en) 2005-02-24 2010-03-30 Samsung Electronics Co., Ltd. Ultra-low power limiter
CN100357856C (en) * 2005-03-25 2007-12-26 威盛电子股份有限公司 Computer host board and its power controller

Also Published As

Publication number Publication date
JP2871309B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
US5825695A (en) Semiconductor device for reference voltage
US5136182A (en) Controlled voltage or current source, and logic gate with same
US6677803B1 (en) Semiconductor integrated circuit device
KR20010049227A (en) Level adjustment circuit and data output circuit thereof
US5654645A (en) Buffer with controlled hysteresis
US20140176230A1 (en) High-Voltage Tolerant Biasing Arrangement Using Low-Voltage Devices
US4071784A (en) MOS input buffer with hysteresis
US6445170B1 (en) Current source with internal variable resistance and control loop for reduced process sensitivity
US5126603A (en) Circuit utilizes N-channel mos transistors having reduced area dimension for effectively detecting output current of a H-bridge circuit
JPH0382151A (en) Mos type semiconductor integrated circuit
KR100226486B1 (en) Semiconductor circuit for high power voltage
US7053691B2 (en) Electrical circuit for selecting a desired power source
JPH0634676A (en) Power supply voltage detection circuit and semiconductor integrated circuit provided with the circuit
US5406144A (en) Power reduction in a temperature compensating transistor circuit
US6985014B2 (en) System and method for compensating for the effects of process, voltage, and temperature variations in a circuit
JPS60237720A (en) Output circuit
JPH03132115A (en) Semiconductor integrated circuit
JP3147042B2 (en) Semiconductor integrated circuit
JPH07191065A (en) Integrated comparator circuit
JPH10117138A (en) Semiconductor integrated circuit
JP2001092544A (en) Constant voltage circuit
US20230090005A1 (en) Comparator architecture supporting lower oxide breakdown voltages
JP2003273672A (en) Differential amplifier circuit
KR100221612B1 (en) Bias adjusting circuit of cmos output buffer
JPH08274606A (en) Output buffer circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981208

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120108

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees