JPS62270486A - Production apparatus for gaas single crystal - Google Patents

Production apparatus for gaas single crystal

Info

Publication number
JPS62270486A
JPS62270486A JP11055886A JP11055886A JPS62270486A JP S62270486 A JPS62270486 A JP S62270486A JP 11055886 A JP11055886 A JP 11055886A JP 11055886 A JP11055886 A JP 11055886A JP S62270486 A JPS62270486 A JP S62270486A
Authority
JP
Japan
Prior art keywords
furnace
temperature
boat
solid
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11055886A
Other languages
Japanese (ja)
Inventor
Seiji Mizuniwa
清治 水庭
Mikio Kashiwa
幹雄 柏
Michinori Wachi
三千則 和地
Masaya Onishi
大西 正哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11055886A priority Critical patent/JPS62270486A/en
Publication of JPS62270486A publication Critical patent/JPS62270486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To sustain constant growth condition of a crystal in the longitudinal direction and obtain a long and high-quality GaAs single crystal, by moving a heat radiation means together with a solid-liquid interface. CONSTITUTION:A quartz ampul 4 having a partition wall permitting the flow of vapor in the center thereof is placed in a twin electric furnace 1 consisting of a high- temperature furnace 2 equipped with a heating element 10 in the longitudinal direction and a low-temperature furnace 3 an a quartz boat 7 containing Ga or GaAs 5 and a seed crystal 6 is placed on the high-temperature side of the ampul 4 and As 8 in excess is placed on the low-temperature side thereof. An opening part 12 of a heat radiation member 13 is then closed to heat the furnace 2 to 1,300 deg.C and the furnace 3 to about 610 deg.C. Thereby eutectic reaction of the GaAs is carried out in the boat 7 and the temperature distribution of the boat 7 is formed so that the side of the seed crystal 6 may be the low-temperature side and the opposite side may be the high-temperature side. A quartz plate 14 on the opening part 12 of the heat radiation member 13 is then opened and the heat radiation member 13 is simultaneously moved to place the opening part 12 just above the seed crystal 6 and carry out seeding. The temperature is then lowered to start growth of a single crystal 5, which is grown while always positioning the opening part 12 above the solid-liquid interface 16.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明はGa八へ単結晶製造装冒に係り、特に温度傾斜
法によって長尺の単結晶を製造する装置に関するもので
ある。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to equipment for producing single crystals of Ga 8, and particularly relates to equipment for producing long single crystals by a temperature gradient method. It is something.

[従来の技術] GaAs単結晶を製造する方法の一つに石英ボートを用
いた横型ボート法がある。この横型ボート法はざらに温
度傾斜法と炉体移動方式とに大別されるが、前者の方式
は後者に比べて、■ 機械的駆動部がないために振動が
少なく良質の結晶が得られる、 ■ 装置の長さが172〜273程度で済み小型である
、 ■ 炉体は移動しないのでアンプルを炉体から独立させ
て浮かせなくて済む、 ■ 装置を安価に実用することができる、等の長所を有
しており多用されている。
[Prior Art] One of the methods for manufacturing GaAs single crystals is a horizontal boat method using a quartz boat. This horizontal boat method can be roughly divided into the temperature gradient method and the furnace moving method, but compared to the latter method, the former method produces fewer vibrations and higher quality crystals because it does not have a mechanical drive. , ■ The length of the device is approximately 172 to 273 mm, so it is small; ■ Since the furnace body does not move, the ampoule does not need to be floated independently from the furnace body; ■ The device can be put to practical use at low cost. It has advantages and is widely used.

[発明が解決しようとする問題点] しかしながら、温度傾斜法では結晶の成長条件を一定に
保つ必要があり、このためにボート全長にわたって安定
した温度傾斜を形成することのできる炉が要求される。
[Problems to be Solved by the Invention] However, in the temperature gradient method, it is necessary to keep the crystal growth conditions constant, and therefore a furnace that can form a stable temperature gradient over the entire length of the boat is required.

このような炉には一般に炉体から放熱させるための放熱
孔等の放熱手段が必要であり、上述したように安定した
温度傾斜を形成するためには、この放熱手段を結晶の長
さ以上に長くしなければならない。従って、長尺の結晶
を製造する場合には炉体構造が複雑になると共に放熱手
段からの放熱量を結晶の長さ方向に対して均一とするこ
とが困難どなる。
Such a furnace generally requires a heat dissipation means such as a heat dissipation hole to dissipate heat from the furnace body, and in order to form a stable temperature gradient as described above, the length of this heat dissipation means is longer than the length of the crystal. It has to be long. Therefore, when producing long crystals, the furnace structure becomes complicated and it becomes difficult to make the amount of heat radiated from the heat radiating means uniform in the length direction of the crystal.

例えば、炉体上部に長い放熱孔を設けると、結晶の単位
表面積からの放熱量はぞの開口角が大ぎくなるために増
加してしまう。そこで、放熱量を一定にする目的で放熱
孔の形状を変化させようとすると炉内の立体的な温度分
布が変動するので好ましくない。
For example, if a long heat dissipation hole is provided in the upper part of the furnace body, the amount of heat dissipated from a unit surface area of the crystal increases because the opening angle becomes large. Therefore, if it is attempted to change the shape of the heat radiation hole for the purpose of making the amount of heat radiation constant, the three-dimensional temperature distribution within the furnace will change, which is not preferable.

すなわち、温度傾斜法では長尺のGaAs単結晶を品質
良く製造することが困難であった。
That is, it is difficult to produce a long GaAs single crystal with good quality using the temperature gradient method.

かくして、本発明の目的は上記従来技術の問題点を解消
し、温度傾斜法によって長尺で且つ高品質のGaAs単
結晶を製造することができるGaAs単結晶製造装置を
提供することにある。
SUMMARY OF THE INVENTION Thus, an object of the present invention is to solve the problems of the prior art described above and to provide a GaAs single crystal production apparatus capable of producing long and high quality GaAs single crystals by the temperature gradient method.

[問題点を解決覆るだめの手段コ 本発明のGaAs単結晶製造装置は上記「1的を達成す
るために、その一端に種結晶が載置されると共にGaA
s融液が収容された成長用ボートを炉体内に配置し、上
記ボートの長さ方向に形成された温度分布を変化させて
固液境界面を上記種結晶からその反対方向に移動させ、
上記GaAs融液を結晶固化して単結晶を成長させる装
置において、上記固液境界面と共に上記種結晶からその
反対方向に移動して常に固液境界面の上部に位置する放
熱手段を上記炉体上部に設けたものである。
[Means for overcoming the problem] In order to achieve the above-mentioned goal 1, the GaAs single crystal manufacturing apparatus of the present invention is equipped with a seed crystal placed at one end and a GaAs single crystal manufacturing apparatus according to the present invention.
A growth boat containing the molten liquid is placed in the furnace body, and the temperature distribution formed in the length direction of the boat is changed to move the solid-liquid interface from the seed crystal in the opposite direction,
In the apparatus for growing a single crystal by crystallizing the GaAs melt, a heat dissipation means that moves in the opposite direction from the seed crystal together with the solid-liquid interface and is always located above the solid-liquid interface is attached to the furnace body. It is installed at the top.

[作 用] 以上のような放熱手段を炉体上部に設Cノ、これを結晶
成長に合わけ−て移動させることにより、常に固液境界
面近傍からの放熱量が一定となる。すなわら、長尺の結
晶を製造する場合でも、ボー1−長さ方向の成長条件を
一定に保つことができる。
[Function] By installing the heat dissipation means as described above in the upper part of the furnace body and moving it in accordance with the crystal growth, the amount of heat dissipation from the vicinity of the solid-liquid interface is always constant. In other words, even when producing long crystals, the growth conditions in the bow length direction can be kept constant.

放熱手段は固液境界面と共に移動するので、この放熱手
段の長さをボート長より短くすることができる。
Since the heat dissipation means moves together with the solid-liquid interface, the length of the heat dissipation means can be made shorter than the boat length.

r実施例] 以下、本発明の実施例を添付図面に従って説明する。l 第1図(a)は本発明の一実施例に係るGaAs単結晶
製造装置の禍成図である。
Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. l FIG. 1(a) is a diagram showing the failure of a GaAs single crystal manufacturing apparatus according to an embodiment of the present invention.

図中、1は高温炉2と低温炉3とから成る二連式電気炉
であり、この二連式電気炉1内に密封した石英アンプル
4が配置されている。石英アンプル4の中央には蒸気の
流通を許容する仕切壁が設Cノられており、これにより
石英アンプル4は部分される。石英アンプル4の高温側
には成長用原料であるGa又はGaAs 5ど種結晶6
とを収容する石英ボート7が、低温側には過剰As8が
それぞれ載置されている。
In the figure, reference numeral 1 denotes a double-barrel electric furnace consisting of a high-temperature furnace 2 and a low-temperature furnace 3, and a sealed quartz ampoule 4 is disposed within the double-barrel electric furnace 1. A partition wall is provided in the center of the quartz ampule 4 to allow the flow of steam, thereby dividing the quartz ampule 4 into sections. On the high temperature side of the quartz ampoule 4, a seed crystal 6 of Ga or GaAs 5, which is a raw material for growth, is placed.
A quartz boat 7 accommodating 1 and 2 is loaded with excess As8 on the low temperature side.

この過剰As8が載置される低温側石英アンプル4の端
部には温度監視用の熱電対9が接続されている。
A thermocouple 9 for temperature monitoring is connected to the end of the low temperature side quartz ampoule 4 on which the excess As8 is placed.

= 5− ところで、高温炉2はその長さ方向に配置された発熱体
10とこの発熱体10の外周部に設けられた断熱材11
とを備えると共に石英ボート7よりわずかに長い形状を
有している。さらに、石英ボート7の上方に位置する断
熱材11は幅約50mで且つ石英ボート7の長さ程度の
部分が切除されており、この断熱材1’lの上部には長
さ300mm。
= 5- By the way, the high temperature furnace 2 has a heating element 10 arranged in the length direction thereof and a heat insulating material 11 provided on the outer periphery of the heating element 10.
and has a slightly longer shape than the quartz boat 7. Further, the heat insulating material 11 located above the quartz boat 7 has a width of approximately 50 m, and a portion approximately the length of the quartz boat 7 has been cut out, and the upper part of this heat insulating material 1'l has a length of 300 mm.

幅30mmの開口部ゴ2を有する放熱部材13が炉の長
さ方向に移動自在に設けられている。また、放熱部材1
3の開口部12には透明石英板14が2枚重ねて開閉自
在に取り付けられている。
A heat radiating member 13 having an opening 2 with a width of 30 mm is provided so as to be movable in the longitudinal direction of the furnace. In addition, the heat dissipation member 1
Two transparent quartz plates 14 are attached to the opening 12 of No. 3 in a stacked manner so as to be openable and closable.

次に、本実施例の作用を第1図(b)の温度分布図を参
照して述べる。
Next, the operation of this embodiment will be described with reference to the temperature distribution diagram of FIG. 1(b).

まず、石英ボート7内にはGa3500g、^5380
09及び種結晶6を収容し、さらに石英アンプル4内を
5x 10  Torr以下で1時間真空引きした後こ
れを封じ切り、第1図(a)に示すように炉内に設置し
た。
First, in the quartz boat 7 there is 3500g of Ga, ^5380g.
After evacuating the inside of the quartz ampule 4 to 5× 10 Torr or less for 1 hour, the quartz ampule 4 was sealed and placed in a furnace as shown in FIG. 1(a).

そして、放熱部材13の開口部12を閉じた状態で高温
炉2を1200°C以上に、低温炉3を約610℃に界
渇し、石英ボート7内にてGaAs共融反応を行なわせ
た後、種結晶6側が低温で反対側が高温側となるように
石英ボート7の全長にわたって温度勾配的1℃/ cm
の温度分布を形成した。
Then, with the opening 12 of the heat dissipation member 13 closed, the high temperature furnace 2 is heated to 1200°C or more, the low temperature furnace 3 is cooled to about 610°C, and a GaAs eutectic reaction is performed in the quartz boat 7. , a temperature gradient of 1°C/cm is applied over the entire length of the quartz boat 7 so that the seed crystal 6 side is low temperature and the opposite side is high temperature side.
A temperature distribution was formed.

その後、放熱部材13の開口部12の石英板14を開く
と共にこの開口部12が種結晶6の直上に位’aするよ
うに放熱部材13を移動させる。
Thereafter, the quartz plate 14 of the opening 12 of the heat radiating member 13 is opened and the heat radiating member 13 is moved so that the opening 12 is positioned directly above the seed crystal 6.

そして、温度勾配を一定としたまま徐々に讐温し−C秤
結晶6付近の温度をGaAsの融点Tmとし、種付tづ
を行なった。
Then, while keeping the temperature gradient constant, the temperature was gradually increased to set the temperature near the -C weighing crystal 6 to the melting point Tm of GaAs, and seeding was performed.

種付は終了後、温度勾配を保持しつつ1℃/hの1度で
M温し、単結晶15の成長を開始する。
After seeding is completed, the temperature is heated at 1° C./h while maintaining the temperature gradient, and the growth of the single crystal 15 is started.

この温度時下に伴って固液境界面16が種結晶6から反
対方向へ移動するが、固液境界面16と共に放熱部材1
3を同一方向に移動して常に固液境界面16の上部に開
口部12を位置させる。これにより、固液境界面16近
傍には開口部12が上部に位置しない場合(分布17)
に比べて冷却効果(斜線部)が生じ、温度分布18が形
成される。
As the temperature decreases, the solid-liquid interface 16 moves in the opposite direction from the seed crystal 6.
3 in the same direction so that the opening 12 is always located above the solid-liquid interface 16. As a result, if the opening 12 is not located at the top near the solid-liquid interface 16 (distribution 17)
A cooling effect (shaded area) occurs compared to the above, and a temperature distribution 18 is formed.

同様にして降温を続け、温度分布19を経て固液境界面
16を石英ボート7後端まで移動させることにより、融
液全体が結晶固化する。その後、炉内を50℃/hの速
度で室温まで冷却した。
By continuing to lower the temperature in the same manner and moving the solid-liquid interface 16 to the rear end of the quartz boat 7 through the temperature distribution 19, the entire melt is crystallized and solidified. Thereafter, the inside of the furnace was cooled to room temperature at a rate of 50° C./h.

このようにして、全長800mのGaAs単結晶を得る
ことができた。この単結晶の両端部及び中心部からそれ
ぞれ(100)面のウェハを切り出し、これを溶融KO
Hでエツチングして転位密度を測定した結果、EPD(
エッチピット密度)≦2000個/cm2の低転位結晶
であることが確認された。
In this way, a GaAs single crystal with a total length of 800 m could be obtained. (100)-plane wafers are cut out from both ends and the center of this single crystal, and these are melted into KO
As a result of etching with H and measuring the dislocation density, EPD (
It was confirmed that the crystal was a low dislocation crystal with an etch pit density of ≦2000/cm2.

なお、上記実施例では放熱手段として開口部を有する部
材を用いたが、これに限るものではなく、水冷等の冷却
装置を炉内に設けてもよい。
In the above embodiment, a member having an opening is used as a heat dissipation means, but the present invention is not limited to this, and a cooling device such as water cooling may be provided in the furnace.

[発明の効果] 以上説明したように本発明によれば、次の如き優れた効
果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.

(1)  放熱手段を固液境界面と共に移動させること
により、結晶の長さ方向の成長条件を一定に保持させる
ことができる。
(1) By moving the heat dissipation means together with the solid-liquid interface, the growth conditions in the length direction of the crystal can be kept constant.

(2)  従って、温度傾斜法を用いて長尺で且つ高品
質のGaAs¥結晶を製造することが可能となる。
(2) Therefore, it becomes possible to produce long and high quality GaAs\ crystals using the temperature gradient method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例に係るGaAs単結晶
製造装置の構成図、第1図(b)は実施例の渇麿分布図
である。 図中、1は電気炉、5はGaAs融液、6は種結晶、7
は石英ボート.12は開口部、13は放熱部材、16は
固液境界面である。
FIG. 1(a) is a block diagram of a GaAs single crystal production apparatus according to an embodiment of the present invention, and FIG. 1(b) is a distribution diagram of the embodiment. In the figure, 1 is an electric furnace, 5 is a GaAs melt, 6 is a seed crystal, and 7
is a quartz boat. 12 is an opening, 13 is a heat dissipation member, and 16 is a solid-liquid interface.

Claims (3)

【特許請求の範囲】[Claims] (1)その一端に種結晶が載置されると共にGaAs融
液が収容された成長用ボートを炉体内に配置し、上記ボ
ートの長さ方向に形成された温度分布を変化させて固液
境界面を上記種結晶からその反対方向に移動させ、上記
GaAs融液を結晶固化して単結晶を成長させる装置に
おいて、上記固液境界面と共に上記種結晶からその反対
方向に移動して常に固液境界面の上部に位置する放熱手
段を上記炉体上部に設けたことを特徴とするGaAs単
結晶製造装置。
(1) A growth boat with a seed crystal placed on one end and containing a GaAs melt is placed inside the furnace, and the temperature distribution formed in the length direction of the boat is changed to create a solid-liquid boundary. In an apparatus for growing a single crystal by crystallizing and solidifying the GaAs melt by moving the plane from the seed crystal in the opposite direction, the solid-liquid interface moves from the seed crystal in the opposite direction together with the solid-liquid interface, and the solid-liquid surface always moves from the seed crystal in the opposite direction. A GaAs single crystal production apparatus characterized in that a heat dissipation means located above the boundary surface is provided in the upper part of the furnace body.
(2)上記放熱手段が上記成長用ボートの長さより短い
ことを特徴とする特許請求の範囲第1項記載の製造装置
(2) The manufacturing apparatus according to claim 1, wherein the heat radiating means is shorter than the length of the growth boat.
(3)上記放熱手段が放熱孔からなることを特徴とする
特許請求の範囲第2項記載の製造装置。
(3) The manufacturing apparatus according to claim 2, wherein the heat radiation means comprises a heat radiation hole.
JP11055886A 1986-05-16 1986-05-16 Production apparatus for gaas single crystal Pending JPS62270486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11055886A JPS62270486A (en) 1986-05-16 1986-05-16 Production apparatus for gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11055886A JPS62270486A (en) 1986-05-16 1986-05-16 Production apparatus for gaas single crystal

Publications (1)

Publication Number Publication Date
JPS62270486A true JPS62270486A (en) 1987-11-24

Family

ID=14538872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11055886A Pending JPS62270486A (en) 1986-05-16 1986-05-16 Production apparatus for gaas single crystal

Country Status (1)

Country Link
JP (1) JPS62270486A (en)

Similar Documents

Publication Publication Date Title
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
EP1114884B1 (en) Process for producing compound semiconductor single crystal
JPS62270486A (en) Production apparatus for gaas single crystal
JPS59203798A (en) Apparatus for preparing belt-shaped silicon crystal
JP3018738B2 (en) Single crystal manufacturing equipment
JPS6217496Y2 (en)
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JPH0380180A (en) Device for producing single crystal
JPH072615Y2 (en) Compound semiconductor single crystal growth equipment
JPS63185885A (en) Crystal growing device of horizontal type
JPH10298000A (en) Plate single crystal and its production
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JP3640454B2 (en) Single crystal manufacturing method
JP2739547B2 (en) Method for producing lithium borate single crystal
JPH0449185Y2 (en)
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPS62265193A (en) Production of single crystal for compound semiconductor and its device
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0234592A (en) Growing method for compound semiconductor single crystal
JPS6385082A (en) Method for growing single crystal and apparatus thereof
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH08290991A (en) Method for growing compound semiconductor single crystal