JP3640454B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP3640454B2
JP3640454B2 JP34689995A JP34689995A JP3640454B2 JP 3640454 B2 JP3640454 B2 JP 3640454B2 JP 34689995 A JP34689995 A JP 34689995A JP 34689995 A JP34689995 A JP 34689995A JP 3640454 B2 JP3640454 B2 JP 3640454B2
Authority
JP
Japan
Prior art keywords
partition
crucible
single crystal
plate
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34689995A
Other languages
Japanese (ja)
Other versions
JPH09169589A (en
Inventor
達也 恩田
喬 尾上
武晴 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP34689995A priority Critical patent/JP3640454B2/en
Publication of JPH09169589A publication Critical patent/JPH09169589A/en
Application granted granted Critical
Publication of JP3640454B2 publication Critical patent/JP3640454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、るつぼ内に少なくとも1枚の仕切板からなる仕切体を設置することによって、その仕切体内の空間に板状の単結晶を製造するための製造方法に関するものである。
【0002】
【従来の技術】
従来より、金属や酸化物あるいは半導体の単結晶を製造する方法としては、原料融液中に種結晶(シード)を入れ、この種結晶についた単結晶を回転させながら引き上げるチョクラルスキー法や、筒状の縦型あるいは横型ボートの中に原料を入れて融液化した後にその融液の温度をボート下部から下げて行き、ボート内に結晶を成長させるボート法の他、水平あるいは垂直ブリッジマン法や、VGFあるいはHGF法といわれる垂直および水平グラジエントフリーズ法が知られている。
【0003】
これらの製造法によって得られた単結晶体はいずれもそのるつぼ径に沿ったバルク単結晶体がほとんどであり、得られた単結晶体をスライスすることによって所望の厚みの板状体とするのが通常の手法であった。
【0004】
【発明が解決しようとする課題】
上述のように、従来法では、得られたバルク単結晶体から所望形状の板材をスライスしていたため、その工程にある程度の所要時間を必要とし、その上、対象物によっては例えばGaAsのような有害な半導体等の残滓の発生が避けられないという欠点があった。
【0005】
本発明は、従来法に代わって、原料から直接目的形状の板状の単結晶を製造できる新規な製造方法及びそのための製造装置の開発を目的とするものである。
【0006】
【課題を解決するための手段】
本発明者等はかかる課題を解決するために鋭意研究したところ、従来法で使用されるるつぼ内に特定形状の仕切体を設置することによって所望の厚みを有する単結晶体を得ることができることを見出し、本発明を提供すことができた。
【0007】
すなわち本発明は第1に、るつぼ内に少なくとも1枚の仕切板からなる仕切体を設け、該るつぼの周りに配置された加熱領域変動可能なヒーターで温度調整して該仕切体上部の原料を融解し融液を該仕切体内の空間に流し込み底部をシードに接合させて徐冷し板状の単結晶を製造することを特徴とする単結晶の製造方法である。
【0008】
また本発明は第2に、るつぼ内に少なくとも1枚の仕切板からなる仕切体を設け、該るつぼの周りに配置された加熱領域変動可能なヒーターで温度調整して該仕切体上部の化合物半導体原料と封止材を融解し該化合物半導体融液を該仕切体内の空間に流し込み底部をシードに接合させて徐冷し板状の化合物半導体単結晶を製造することを特徴とする単結晶の製造方法である。さらに本発明は第3に、るつぼ内に横方向に互いに平行な複数枚の仕切板からなる横状仕切体を設け、該るつぼの周りに配置された加熱領域変動可能なヒーターで温度調整して該仕切体上部の原料を融解し該るつぼ上部から結晶連絡ノズルを通して融液を該仕切体内の空間に流し込み底部をシードに接合させて徐冷し板状の単結晶を製造することを特徴とする単結晶の製造方法である。
【0009】
【作用】
本発明法の単結晶育成手段としては、従来公知のVGF法や垂直または水平ブリッジマン法を用いることができる。装置内部に設けるるつぼとしては、低伝導性のビトロカーボン(日本カーボン社製ガラス質カーボン材の商品名)やグラファイトからなるるつぼを用い、該るつぼ内に同材質の板状仕切、少なくとも1枚の仕切板からなる仕切体を縦状または横状に装入する。
【0010】
この場合、仕切板は1枚以上あればよく、この仕切板の間隔を実施例1においては1.5mmの幅としたが、これは目的とする任意の厚みに調節すればよい。また、縦型の仕切体は、断面がU字形の仕切板を複数枚重ねて最後に平板を重ねた積層構造となっており、この積層体がるつぼ内部に設置されている。
【0011】
また他の仕切体の形態として実施例4に示すように、仕切板をるつぼ内に平行状に配置し、るつぼ上部から融解金属を結晶連絡ノズルを通して、各仕切板によって得られた円板状の空間に融液が充填される構造となっている。
【0012】
この仕切体を用いることによって、原料である銅、亜鉛、錫、ビスマスの金属や、GaAs、InAs等の化合物半導体を融解して得た融液を仕切板の間隙に流し込み、底部はシードに接合するようにした。
【0013】
以下、図面を参照して本発明法並びに本発明装置を詳細に説明するが、本発明の範囲はこれらに限定されるものでない。
【0014】
【実施例1】
図1に本発明で使用する装置の一例の概略を示す。1は原料、2はるつぼ、3はシード、4は封止材、5は縦状仕切体、6は上部ヒーター、7は中央部ヒーター、8は下部ヒーター、9は水冷ジャケット、10は断熱材をそれぞれ表わす。該装置内に設けられたグラファイト製るつぼ2の中に、3枚のU字形仕切り板と1枚の平板を積層して構成した縦状仕切体5(図2に断面を示す)を縦状に挿入した後、るつぼ2内に金属原料1として6N高純度銅100gを入れ、縦状仕切体5上部の原料1を1150℃で融解すると共に、該仕切板5下部とシード3の共通部分の温度を1083℃となるように調整した。
【0015】
次いで50℃/hrの割合でるつぼ全体を徐冷して、縦状仕切体5内部の空隙に図3(仕切板は図示せず)に示すような1.5mm厚×10mm幅×50mm長の単結晶銅板3枚を同時に製造し、るつぼ外でシード3の共通部(多結晶部)を切断して所望の単結晶銅板を得た。
【0016】
【実施例2】
実施例1と同様に、るつぼ2内に原料1として6N(99.9999%)高純度銅100gを入れ、縦状仕切体5上部の原料1を1150℃で融解すると共に、仕切体5下部を1083℃に調整した。
【0017】
次いで60mm/hrの速度でるつぼを下方に引き下げて冷却し、該仕切体5内部の空隙に1.5mm厚×10mm幅×50mm長の単結晶銅板3枚を同時に製造し、実施例1と同様にシード3の共通部(多結晶部)を切断して所望の単結晶銅板を得た。
【0018】
【実施例3】
実施例1におけるグラファイト製るつぼに代えて、より低伝導率を示すビトロカーボン製るつぼを作成して装置内に設置し、るつぼ2内に原料1として50gのGaAs(純度6N)と10gのB2 3 (封止材4)を装入した後、常圧より1kg/cm2 高い圧力のAr雰囲気内で、縦状仕切体5上部を1280℃、該仕切体5下部を1238℃となるように調整した。
【0019】
次いで10℃/hrの割合でるつぼ全体を徐冷し、縦状仕切体5の空隙に1.5mm厚×10mm幅×50mm長の単結晶GaAs板3枚を同時に製造し、実施例1と同様にシード3の共通部(多結晶部)を切断して所望の単結晶GaAs板を得た。
【0020】
【実施例4】
図4に示すように、横方向に互いに平行な複数枚の仕切板からなる横状仕切体13を配置した原料ホルダー11を、実施例1で用いた結晶装置に装入して結晶化を図った。この場合、金属原料1として6N高純度銅100gを入れ、横状仕切板13上部の原料1を1150℃で融解するとともに、該仕切板13下部とシード3との空間部の温度を1083℃となるように調整した。
【0021】
次いで50℃/hr の割合で原料ホルダー11全体を徐冷して、横状仕切体13内部の円板状空隙にφ20mm、厚さ1.5mmの単結晶銅板6枚を同時に製造し、ホルダー外でシード3との共通部(多結晶部)を切断して所望の単結晶板を得た。
【0022】
【発明の効果】
上述のように本発明によって得られた単結晶板は、仕切体内部で板状となるため、従来法のようにバルク結晶体をスライスして所望形状にするという工程は不要となり、本発明が操業上コストダウンに寄与する効果は大である。
【図面の簡単な説明】
【図1】本発明装置の断面を示す概略図である。
【図2】本発明装置のるつぼ内に設置された縦状仕切体の断面図である。
【図3】本発明装置のるつぼの透視図である。
【図4】本発明装置のるつぼ内に設置される横状仕切体を示す透過斜視図である。
【符号の説明】
1 原料
2 るつぼ
3 シード
4 封止材
5 縦状仕切体
6 上部ヒーター
7 中央部ヒーター
8 下部ヒーター
9 水冷ジャケット
10 断熱材
11 原料ホルダー
12 結晶連絡ノズル
13 横状仕切体
14 シード容器
[0001]
[Industrial application fields]
The present invention relates to a manufacturing method for manufacturing a plate-shaped single crystal in a space in a partition body by installing a partition body including at least one partition plate in a crucible.
[0002]
[Prior art]
Conventionally, as a method for producing a single crystal of metal, oxide or semiconductor, a seed crystal (seed) is put in the raw material melt, and the Czochralski method of pulling up the single crystal attached to this seed crystal, In addition to the boat method in which the raw material is put into a cylindrical vertical or horizontal boat and melted to lower the temperature of the melt from the bottom of the boat to grow crystals in the boat, the horizontal or vertical Bridgman method In addition, a vertical and horizontal gradient freeze method called a VGF or HGF method is known.
[0003]
Most of the single crystals obtained by these production methods are bulk single crystals along the diameter of the crucible. By slicing the obtained single crystals, a plate-like body having a desired thickness can be obtained. Was the usual method.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional method, since a plate material having a desired shape is sliced from the obtained bulk single crystal, a certain amount of time is required for the process, and depending on the object, for example, GaAs is used. There was a drawback that generation of residues such as harmful semiconductors was inevitable.
[0005]
An object of the present invention is to develop a novel manufacturing method and a manufacturing apparatus therefor, which can manufacture a plate-shaped single crystal having a target shape directly from a raw material, instead of the conventional method.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve such a problem, and found that a single crystal having a desired thickness can be obtained by installing a partition having a specific shape in a crucible used in the conventional method. The headline and the present invention could be provided.
[0007]
That is, according to the present invention, firstly, a partition body composed of at least one partition plate is provided in a crucible , and the temperature is adjusted by a heater that is arranged around the crucible and can be changed in the heating region. A method for producing a single crystal, comprising melting , pouring the melt into a space in the partition , joining the bottom to a seed, and gradually cooling to produce a plate-like single crystal.
[0008]
In addition, the present invention secondly provides a compound semiconductor comprising at least one partition plate in a crucible and adjusting the temperature with a heater that is arranged around the crucible and capable of changing the heating region. Manufacturing a single crystal characterized by melting a raw material and a sealing material , pouring the compound semiconductor melt into a space in the partition , joining the bottom to a seed, and gradually cooling to produce a plate-shaped compound semiconductor single crystal Is the method. Further the present invention is a third, lateral shaped partition body formed of transversely parallel to each other a plurality of partition plates in the crucible is provided, and the temperature adjusted arranged heating zones variability heaters around the crucible The raw material at the upper part of the partition is melted, the melt is poured from the upper part of the crucible through a crystal connecting nozzle into the space in the partition, the bottom is joined to the seed, and cooled slowly to produce a plate-like single crystal. This is a method for producing a single crystal.
[0009]
[Action]
A conventionally known VGF method or vertical or horizontal Bridgman method can be used as means for growing a single crystal in the method of the present invention. As a crucible provided inside the apparatus, a crucible made of low-conductivity vitrocarbon (product name of glassy carbon material manufactured by Nippon Carbon Co., Ltd.) or graphite is used, and a plate-like partition made of the same material is contained in the crucible. A partition made of a partition plate is inserted vertically or horizontally.
[0010]
In this case, it suffices to have one or more partition plates, and the interval between the partition plates is set to a width of 1.5 mm in the first embodiment, but this may be adjusted to an arbitrary desired thickness. The vertical partition has a stacked structure in which a plurality of partition plates having a U-shaped cross section are stacked, and finally a flat plate is stacked, and the stacked body is installed inside the crucible.
[0011]
In addition, as shown in Example 4 as another embodiment of the partition, the partition plate is arranged in parallel in the crucible, and the molten metal is passed through the crystal communication nozzle from the upper part of the crucible and is obtained by each partition plate. The space is filled with melt.
[0012]
By using this partition, the melt obtained by melting the raw materials of copper, zinc, tin, bismuth metal and compound semiconductors such as GaAs and InAs is poured into the gap of the partition plate, and the bottom is joined to the seed. I tried to do it.
[0013]
Hereinafter, the method of the present invention and the device of the present invention will be described in detail with reference to the drawings, but the scope of the present invention is not limited thereto.
[0014]
[Example 1]
FIG. 1 shows an outline of an example of an apparatus used in the present invention. 1 is a raw material, 2 is a crucible, 3 is a seed, 4 is a sealing material, 5 is a vertical partition, 6 is an upper heater, 7 is a central heater, 8 is a lower heater, 9 is a water cooling jacket, and 10 is a heat insulating material Represents each. In a graphite crucible 2 provided in the apparatus, a vertical partition body 5 (shown in cross section in FIG. 2) formed by laminating three U-shaped partition plates and one flat plate is formed vertically. After the insertion, 100 g of 6N high-purity copper is put in the crucible 2 as the metal raw material 1, the raw material 1 on the upper part of the vertical partition 5 is melted at 1150 ° C., and the temperature of the common part between the lower part of the partition plate 5 and the seed 3 Was adjusted to 1083 ° C.
[0015]
Next, the whole crucible is gradually cooled at a rate of 50 ° C./hr, and the space inside the vertical partition 5 is 1.5 mm thick × 10 mm wide × 50 mm long as shown in FIG. 3 (partition plate not shown). Three single crystal copper plates were manufactured at the same time, and the common portion (polycrystalline portion) of the seed 3 was cut outside the crucible to obtain a desired single crystal copper plate.
[0016]
[Example 2]
As in Example 1, 100 g of 6N (99.9999%) high-purity copper as raw material 1 is put in the crucible 2, and the raw material 1 at the upper part of the vertical partition 5 is melted at 1150 ° C., and the lower part of the partition 5 is The temperature was adjusted to 1083 ° C.
[0017]
Subsequently, the crucible is pulled down at a speed of 60 mm / hr to cool down, and three single crystal copper plates of 1.5 mm thickness × 10 mm width × 50 mm length are simultaneously manufactured in the space inside the partition 5, as in Example 1. The common part (polycrystalline part) of the seed 3 was cut into a desired single crystal copper plate.
[0018]
[Example 3]
Instead of the graphite crucible in Example 1, a vitrocarbon crucible showing lower conductivity was prepared and installed in the apparatus, and 50 g of GaAs (purity 6N) and 10 g of B 2 were used as the raw material 1 in the crucible 2. After charging O 3 (sealing material 4), the upper part of the vertical partition 5 is set to 1280 ° C. and the lower part of the partition 5 is set to 1238 ° C. in an Ar atmosphere at a pressure 1 kg / cm 2 higher than the normal pressure. Adjusted.
[0019]
Subsequently, the whole crucible was gradually cooled at a rate of 10 ° C./hr to simultaneously produce three single crystal GaAs plates 1.5 mm thick × 10 mm wide × 50 mm long in the gap of the vertical partition 5, as in Example 1. The common part (polycrystalline part) of the seed 3 was cut to obtain a desired single crystal GaAs plate.
[0020]
[Example 4]
As shown in FIG. 4, the raw material holder 11 in which a horizontal partition 13 made up of a plurality of partition plates parallel to each other in the lateral direction is placed in the crystallization apparatus used in Example 1 for crystallization. It was. In this case, 100 g of 6N high-purity copper is added as the metal raw material 1, the raw material 1 on the upper side of the horizontal partition plate 13 is melted at 1150 ° C., and the temperature of the space between the lower portion of the partition plate 13 and the seed 3 is 1083 ° C. It adjusted so that it might become.
[0021]
Next, the entire raw material holder 11 is gradually cooled at a rate of 50 ° C./hr to simultaneously produce six single crystal copper plates having a diameter of 20 mm and a thickness of 1.5 mm in a disk-shaped gap inside the horizontal partition 13, outside the holder. The desired portion (polycrystalline portion) with the seed 3 was cut to obtain a desired single crystal plate.
[0022]
【The invention's effect】
As described above, since the single crystal plate obtained by the present invention has a plate shape inside the partition body, the step of slicing the bulk crystal body into a desired shape as in the conventional method becomes unnecessary, and the present invention is The effect that contributes to cost reduction in operation is significant.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross section of a device of the present invention.
FIG. 2 is a sectional view of a vertical partition installed in a crucible of the device of the present invention.
FIG. 3 is a perspective view of a crucible of the device of the present invention.
FIG. 4 is a transparent perspective view showing a horizontal partition installed in the crucible of the device of the present invention.
[Explanation of symbols]
1 Raw Material 2 Crucible 3 Seed 4 Sealing Material 5 Vertical Partition 6 Upper Heater 7 Center Heater 8 Lower Heater 9 Water Cooling Jacket 10 Heat Insulation Material 11 Material Holder 12 Crystal Contact Nozzle 13 Horizontal Partition 14 Seed Container

Claims (3)

るつぼ内に少なくとも1枚の仕切板からなる仕切体を設け、該るつぼの周りに配置された加熱領域変動可能なヒーターで温度調整して該仕切体上部の原料を融解し融液を該仕切体内の空間に流し込み底部をシードに接合させて徐冷し板状の単結晶を製造することを特徴とする単結晶の製造方法。A partition composed of at least one partition plate is provided in the crucible, the temperature is adjusted by a heater that is arranged around the crucible and the heating region can be changed, and the raw material in the upper part of the partition is melted to melt the melt in the partition. A method for producing a single crystal, which comprises pouring into a space and joining the bottom part to a seed and gradually cooling to produce a plate-like single crystal. るつぼ内に少なくとも1枚の仕切板からなる仕切体を設け、該るつぼの周りに配置された加熱領域変動可能なヒーターで温度調整して該仕切体上部の化合物半導体原料と封止材を融解し該化合物半導体融液を該仕切体内の空間に流し込み底部をシードに接合させて徐冷し板状の化合物半導体単結晶を製造することを特徴とする単結晶の製造方法。A partition made of at least one partition plate is provided in the crucible , and the compound semiconductor raw material and the sealing material on the upper portion of the partition are melted by adjusting the temperature with a heater that is arranged around the crucible and capable of changing the heating region. A method for producing a single crystal, comprising: pouring the compound semiconductor melt into a space in the partition , joining the bottom to a seed, and gradually cooling to produce a plate-shaped compound semiconductor single crystal. るつぼ内に横方向に互いに平行な複数枚の仕切板からなる横状仕切体を設け、該るつぼの周りに配置された加熱領域変動可能なヒーターで温度調整して該仕切体上部の原料を融解し該るつぼ上部から結晶連絡ノズルを通して融液を該仕切体内の空間に流し込み底部をシードに接合させて徐冷し板状の単結晶を製造することを特徴とする単結晶の製造方法。A horizontal partition made up of a plurality of partition plates that are parallel to each other in the lateral direction is provided in the crucible , and the temperature is adjusted by a heater that is arranged around the crucible and that can change the heating region, so that the raw material at the top of the partition is melted. A method for producing a single crystal comprising producing a plate-like single crystal by pouring a melt from the upper part of the crucible through a crystal communication nozzle into a space in the partition body and joining the bottom part to a seed and gradually cooling .
JP34689995A 1995-10-17 1995-12-13 Single crystal manufacturing method Expired - Fee Related JP3640454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34689995A JP3640454B2 (en) 1995-10-17 1995-12-13 Single crystal manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-293590 1995-10-17
JP29359095 1995-10-17
JP34689995A JP3640454B2 (en) 1995-10-17 1995-12-13 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH09169589A JPH09169589A (en) 1997-06-30
JP3640454B2 true JP3640454B2 (en) 2005-04-20

Family

ID=26559480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34689995A Expired - Fee Related JP3640454B2 (en) 1995-10-17 1995-12-13 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3640454B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513046B2 (en) * 1998-03-31 2004-03-31 日本碍子株式会社 Single crystal manufacturing equipment

Also Published As

Publication number Publication date
JPH09169589A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
US4382838A (en) Novel silicon crystals and process for their preparation
JP5596788B2 (en) Sapphire single crystal growth method and apparatus
WO2013007108A1 (en) Method for growing thin-plate silicon crystal
WO1993012272A1 (en) Method of and apparatus for casting crystalline silicon ingot by electron beam melting
KR20100024675A (en) Manufacturing equipment for ingot and method of manufacturing the ingot
EP1571240B1 (en) Method for producing compound semiconductor single crystal
CN201183846Y (en) Thermal field structure of polycrystalline silicon casting furnace
KR101345747B1 (en) The Apparatus for Semiconductor or Metal Oxide Ingot
TWI595124B (en) Manufacturing method of polysilicon ingot
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JP3640454B2 (en) Single crystal manufacturing method
US4461671A (en) Process for the manufacture of semiconductor wafers
JPH0242295B2 (en)
CN102471924B (en) Apparatus for producing multicrystalline silicon ingots by induction method
EP1114884B1 (en) Process for producing compound semiconductor single crystal
JPH0137458B2 (en)
KR100428699B1 (en) Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
CN201183849Y (en) Thermal field structure of polycrystalline silicon casting furnace having graphitic cooling block heat preservation strips
CN221720995U (en) Directional solidification crystal growth device
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH04292494A (en) Method and device for producing shape-adjusted crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP3624295B2 (en) Single crystal manufacturing method and manufacturing apparatus thereof
JPS62265193A (en) Production of single crystal for compound semiconductor and its device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees