JPH0234592A - Growing method for compound semiconductor single crystal - Google Patents

Growing method for compound semiconductor single crystal

Info

Publication number
JPH0234592A
JPH0234592A JP18154588A JP18154588A JPH0234592A JP H0234592 A JPH0234592 A JP H0234592A JP 18154588 A JP18154588 A JP 18154588A JP 18154588 A JP18154588 A JP 18154588A JP H0234592 A JPH0234592 A JP H0234592A
Authority
JP
Japan
Prior art keywords
boat
seed
heat sink
single crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18154588A
Other languages
Japanese (ja)
Inventor
Kiyoteru Yoshida
清輝 吉田
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18154588A priority Critical patent/JPH0234592A/en
Publication of JPH0234592A publication Critical patent/JPH0234592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute temp. control easily and exactly and to prepare a semiconductor single crystal having high quality by allowing the single crystal to grow while contacting directly a seed mounted on one end of a boat contg. a melt of a compound semiconductor with a heat sink. CONSTITUTION:A heat sink 20 having high heat conductivity is disposed to an end side of a seed of a boat 13 in a quartz ampule 11. Further, a cooling tube 21 for cooling the heat sink 20 is arranged around the heat sink at the outside of a quartz liner tube 18. Both ends of the cooling tube 11 are led out of a high pressure vessel 19, and cooling inert gas is passed therethrough. Additionally, in auxiliary heater 22 divided into plural parts in the peripheral and axial direction is provided to a position corresponding to the periphery of a boat 13 at the outside of the quartz liner tube 8. Synthesis of a melt and growth of a compound semiconductor single crystal are executed by using such apparatus while allowing ends of the seed 15 to protrude from a seed shelf of the boat 13 and contacting directly with the heat sink 20.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体単結晶の成長方法に関し、特に
横型ボート法(温度勾配凝固法、水平ブリッジマン法な
ど)により単結晶を成長させる際に熱流を制御して高品
質の単結晶を成長させる方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for growing a compound semiconductor single crystal, particularly when growing a single crystal by a horizontal boat method (temperature gradient solidification method, horizontal Bridgman method, etc.). The present invention relates to a method for growing high-quality single crystals by controlling heat flow.

〔従来技術〕[Prior art]

横型ボート法は、ボートの一端にシード(種結晶)を設
置し、このシードにボート内の化合物半導体融液を付着
させて単結晶を成長させていく方法である。この方法で
、InPのような解離圧のきわめて高い化合物半導体の
単結晶を成長させようとすると、結晶成長過程で多結晶
化が生じやすく、大型の単結晶をつくることは極めて困
難であった。
The horizontal boat method is a method in which a seed (seed crystal) is installed at one end of a boat, and the compound semiconductor melt in the boat is attached to the seed to grow a single crystal. When this method is used to grow a single crystal of a compound semiconductor such as InP, which has an extremely high dissociation pressure, polycrystallization tends to occur during the crystal growth process, making it extremely difficult to produce a large single crystal.

そこで本発明者等は先に、ボートのシード端側にヒート
シンクを設置して、ボートの周囲からボート内に供給さ
れる熱を、上記シードを通してヒートシンクで吸収しつ
つ化合物半導体単結晶を成長させていく方法を開発した
(特開昭62−187193号公報)。この方法によれ
ば、ボートの壁面から融液の内部を通ってシードに向か
う熱の流れが作られるため、ボートの壁面より融液内部
の方が温度が低くなり、このため単結晶(シードまたは
そこから成長したもの)と融液の界面における結晶成長
が促進され、ボート壁面と融液との接触面における結晶
核の発生が抑制されて、InPなどの単結晶を確実に成
長させることができる。
Therefore, the present inventors first installed a heat sink on the seed end side of the boat, and grew a compound semiconductor single crystal while absorbing the heat supplied into the boat from around the boat through the seed. We have developed a method to do so (Japanese Patent Application Laid-open No. 187193/1983). According to this method, a flow of heat is created from the boat wall through the interior of the melt toward the seeds, resulting in a lower temperature inside the melt than on the boat walls. Crystal growth is promoted at the interface between the melt and the crystals grown there, and the generation of crystal nuclei at the contact surface between the boat wall and the melt is suppressed, making it possible to reliably grow single crystals such as InP. .

〔課題〕〔assignment〕

しかしこれまでの方法では、シードは、ボートのシード
棚部に設置され、ヒートシンクとはボートの端壁を介し
て熱的に結合した状態にあるため、シードからヒートシ
ンクへの熱の流れが悪く、またボートとシードの隙間な
どの関係から熱流抵抗も一定せず、ヒートシンクの冷却
条件の設定など、温度制御が難しいという問題のあるこ
とが判明した。
However, in the conventional method, the seeds are installed on the seed shelf of the boat and are thermally coupled to the heat sink through the end wall of the boat, resulting in poor heat flow from the seeds to the heat sink. It was also discovered that the heat flow resistance was not constant due to the gap between the boat and the seed, making it difficult to control the temperature by setting cooling conditions for the heat sink.

〔課題の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような課題を解決するため、化合物半
導体の融液を収容するボートの一端にシードを設置し、
そのボートのシード端側にヒートシンクを設置して、ボ
ートの周囲からボート内に供給される熱を、上記シード
を通してヒートシンクで吸収しつつ化合物半導体単結晶
を成長させていく方法において、上記シードをヒートシ
ンクと直接接触させることを特徴とする。
In order to solve the above problems, the present invention installs a seed at one end of a boat containing a compound semiconductor melt,
In this method, a heat sink is installed on the seed end side of the boat, and a compound semiconductor single crystal is grown while the heat supplied from around the boat into the boat is absorbed by the heat sink through the seed. It is characterized by direct contact with.

シードをヒートシンクに直接接触させるには、シードの
端部をボートのシード棚部から突出させて、その端面を
ヒートシンクと突き合わせるようにすること・が望まし
い。
In order to bring the seeds into direct contact with the heat sink, it is desirable that the ends of the seeds protrude from the seed shelf of the boat so that the end faces abut against the heat sink.

このようにするとシードからヒートシンクへの熱の流れ
が良好になり、かつ安定するため、温度制御が容易にな
り、かつ正確に行える。
This improves and stabilizes the flow of heat from the seed to the heat sink, making temperature control easier and more accurate.

〔実施例〕〔Example〕

以下、本発明の実施例をInPの単結晶を成長させる場
合について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail regarding the case where a single crystal of InP is grown.

図−1および図−2は本発明の単結晶成長方法に用いる
装置の一例を示す。図において、11は内部を真空にし
た石英アンプル、12はその中の一端側に設置された燐
、13は他端側に設置されたボートである。ボート13
内にはインジウム14が収納されており、その一端側に
はシード15が設置されている。16は石英アンプル1
1内の燐の蒸気圧を制御する低温側電気炉、17は所定
の温度プロファイルでボート13側を加熱する高温側電
気炉、18は石英ライナー管、19はこ′れらを収納し
、アルゴンを加圧充填した高圧容器である。
FIG. 1 and FIG. 2 show an example of an apparatus used in the single crystal growth method of the present invention. In the figure, 11 is a quartz ampoule whose interior is evacuated, 12 is a phosphor installed at one end thereof, and 13 is a boat installed at the other end. boat 13
Indium 14 is housed inside, and a seed 15 is installed at one end of the indium 14. 16 is quartz ampoule 1
A low-temperature side electric furnace 17 controls the vapor pressure of phosphorus in the boat 13, a high-temperature electric furnace 17 heats the boat 13 side with a predetermined temperature profile, 18 a quartz liner tube, 19 housing these, and an argon This is a high-pressure container that is filled under pressure.

横型ボート法では、燐12を蒸発させ、それをインジウ
ム14内に拡散させて、ボート13内にInPの融液を
作成した後、高温側電気炉17内の温度プロファイルを
徐々に変化させるか、あるいは炉内の温度プロファイル
をそのままにして、電気炉17または石英アンプル11
を徐々に移動させるかして、ボート13内でシード15
側から単結晶を成長させていく。
In the horizontal boat method, after evaporating the phosphorus 12 and diffusing it into the indium 14 to create an InP melt in the boat 13, the temperature profile in the high-temperature side electric furnace 17 is gradually changed, or Alternatively, the electric furnace 17 or the quartz ampoule 11 can be
Gradually move the seeds 15 in the boat 13.
A single crystal is grown from the side.

この装置は、単結晶を成長させる際に、ボートI3の外
側から内側に向けての熱流を作り出すため、次のような
構成を採用している。
This apparatus employs the following configuration in order to create a heat flow from the outside to the inside of the boat I3 when growing a single crystal.

まず石英アンプルll内には、ボート13のシード端側
に熱伝導性のよいヒートシンク20が設置されている。
First, in the quartz ampoule 11, a heat sink 20 with good thermal conductivity is installed on the seed end side of the boat 13.

また石英ライナー管18の外側のヒートシンク10の周
囲には、ヒートシンク20を冷却するための冷却管21
が設置されている。冷却管11は両端部を高圧容器19
外に導出し、その中に冷却用の不活性ガスを流通させる
ものである。さらに石英ライナー管18の外側のボート
13の周囲に相当する部位には、周方向および軸線方向
に複数に分割された補助ヒーター22が設置されている
Also, a cooling pipe 21 for cooling the heat sink 20 is provided around the heat sink 10 outside the quartz liner tube 18.
is installed. The cooling pipe 11 has both ends connected to a high pressure vessel 19.
It is led outside and an inert gas for cooling is passed inside it. Furthermore, an auxiliary heater 22 that is divided into a plurality of parts in the circumferential direction and the axial direction is installed at a portion corresponding to the periphery of the boat 13 outside the quartz liner tube 18.

また石英ライナー管18の両端には管端断熱体23が、
高温側電気炉17の外端には環状の高温側炉端断熱体2
4が、低温側電気炉16の外端には環状の低温側炉端断
熱体25がそれぞれ設置され、高圧下での対流による熱
の移動を防止している。さらに両電気炉16・17の間
には環状の炉間断熱体26が設置され、炉間での温度低
下を防止している。また補助ヒーター22と冷却管21
の間の石英ライナー管18上には補助断熱体27を巻い
て、冷却管21によるボート13付近の熱的外乱を防ぐ
と共に、上記炉間の熱の移動を妨げる中間断熱体として
の働きを兼用させている。
In addition, tube end insulators 23 are provided at both ends of the quartz liner tube 18.
At the outer end of the high temperature side electric furnace 17, an annular high temperature side hearth end insulator 2 is provided.
4, an annular low-temperature side hearth heat insulator 25 is installed at the outer end of the low-temperature side electric furnace 16 to prevent heat transfer due to convection under high pressure. Further, an annular inter-furnace heat insulator 26 is installed between the electric furnaces 16 and 17 to prevent a drop in temperature between the furnaces. In addition, the auxiliary heater 22 and the cooling pipe 21
An auxiliary insulator 27 is wrapped around the quartz liner tube 18 between the furnaces to prevent thermal disturbance near the boat 13 caused by the cooling pipe 21, and also serves as an intermediate insulator to prevent heat transfer between the furnaces. I'm letting you do it.

本発明は、このような装置でInP単結晶を成長させる
際に、シード15の端部をボート13のシード柵から突
出させてヒートシンク20に直接接触させた状態で、融
液の合成、単結晶の成長を行うものである。その様子を
図−3(al(blに示す、シード15は下面に溝を形
成し、この溝にボー、ト13のシード1113aの端壁
13bを差し込むようにしてシード!113 alに設
置される。これによりシード15の端部はシード棚の端
壁13bを乗り越えてシード棚13aの外に突出した状
態となり、その端面をヒートシンク20に直接接触させ
る°ことができる。またシード15はシード棚の端壁1
3bに引っ掛かった状態となるため移動するおそれもな
い、なおヒートシンク20にはシード15の先端が入る
凹部20aが形成されている。31は合成されたTnP
融液を示す。
In the present invention, when growing an InP single crystal using such an apparatus, the ends of the seeds 15 are made to protrude from the seed fence of the boat 13 and are brought into direct contact with the heat sink 20, and the synthesis of the melt and the single crystal are performed. The goal is to achieve growth. The situation is shown in FIG. As a result, the end of the seed 15 crosses over the end wall 13b of the seed shelf and protrudes outside the seed shelf 13a, allowing the end face to directly contact the heat sink 20.The seed 15 also end wall 1
Since the seed 15 is caught on the seed 3b, there is no risk of it moving.The heat sink 20 has a recess 20a into which the tip of the seed 15 can fit. 31 is synthesized TnP
Shows melt.

このほかのシードの設置の仕方としては、図−4に示す
ようにシード棚13aの端壁を除去して、そこにシード
15を設置することも可能である。このようにすればシ
ード15に溝を形成する必要がなくなり、かつシード1
5内の熱の流れも一様になるという利点がある。もちろ
んこの場合は、シード15とシード棚13aの隙間から
融液31が漏れないように注意する必要がある。
Another way to install the seeds is to remove the end wall of the seed shelf 13a and install the seeds 15 there, as shown in FIG. In this way, there is no need to form a groove on the seed 15, and the seed 1
There is an advantage that the flow of heat within 5 is also uniform. Of course, in this case, care must be taken to prevent the melt 31 from leaking from the gap between the seeds 15 and the seed shelf 13a.

またこのほか、シード棚の端壁を全部除去するのではな
く、端壁の下部だけを残すようにすれば、シードに形成
する溝を浅(することができる。
In addition, instead of removing the entire end wall of the seed shelf, by leaving only the lower part of the end wall, the groove formed in the seed can be made shallower.

シードを以上のように設置した後、図−1のように石英
アンプル11を電気炉16・17の中に入れて昇温する
。昇温時の注意点としては、シード15の熱分解を抑え
るため、石英アンプルll内の燐圧は常にInPのその
時の温度における解離圧よりも1〜2atI11高めに
すること、また高圧容器19内のアルゴン圧は、この石
英アンプル11内の圧力と平衡するように印加し、これ
により石英アンプル11の破壊を防止すること、そして
シード15には7℃/値以上の温度勾配がつくように温
度制御することである。このようにしてボート13内の
融液部の温度をInPの融点よりわずかに高い温度(1
065℃)まで昇温する。このときのボート部の温度分
布は図−5のようになる。シード部の温度勾配(ΔT/
ΔX)は7℃/c11以上に保つ。
After the seeds are installed as described above, the quartz ampoule 11 is placed in electric furnaces 16 and 17 and heated as shown in FIG. When raising the temperature, please note that in order to suppress the thermal decomposition of the seeds 15, the phosphorus pressure in the quartz ampoule 11 must always be 1 to 2 atI11 higher than the dissociation pressure of InP at that temperature, and that the phosphorus pressure in the high pressure container 19 The argon pressure is applied to balance the pressure inside the quartz ampule 11 to prevent the quartz ampule 11 from breaking, and the temperature is applied to the seed 15 so as to create a temperature gradient of 7° C./value or more. It's about controlling. In this way, the temperature of the melt part in the boat 13 is set to a temperature slightly higher than the melting point of InP (1
065°C). The temperature distribution in the boat section at this time is as shown in Figure 5. Temperature gradient (ΔT/
ΔX) is maintained at 7°C/c11 or higher.

この温度で2時間保持し、InP融液を合成する。融液
が合成されると、シード15は図−3に示すように融液
31と接触するが、シード15には上記の温度勾配が与
えられているため、融液31には溶けない。
This temperature is maintained for 2 hours to synthesize an InP melt. When the melt is synthesized, the seeds 15 come into contact with the melt 31 as shown in FIG. 3, but the seeds 15 do not dissolve in the melt 31 because the above-mentioned temperature gradient is applied to the seeds 15.

融液合成後、結晶成長を開始するが、このときシード1
5と融液31との濡れをよくするため、シード15の融
液側端部のみ1〜2℃温度を上げて、その部分を溶かし
てシード15と融液31を確実に接触させる。このあと
固液界面に4℃/1以上の温度勾配を与えて結晶成長を
開始する。
After melt synthesis, crystal growth starts, but at this time seed 1
In order to improve the wetting of the seed 15 with the melt 31, the temperature of only the end of the seed 15 on the melt side is raised by 1 to 2 DEG C. to melt that part and ensure that the seed 15 and the melt 31 come into contact with each other. Thereafter, a temperature gradient of 4° C./1 or more is applied to the solid-liquid interface to start crystal growth.

ところで通常の温度勾配凝固法でInP単結晶成長を行
うと、電気炉内の温度分布は図−7のように融液内の温
度Aが石英アンプルの外側の温度Bより高くなる−こと
がある。このような状態では、融液からボート壁を通っ
てボート外に出てい(熱流が存在することになり、この
ときの固液界面は図−9に点線で示すように融液に対し
凹面となり、ボート内壁面から結晶核が発生しやすく、
また双晶も発生しやすくなり、単結晶を成長させること
が極めて困難になる。
By the way, when InP single crystal growth is performed using the normal temperature gradient solidification method, the temperature distribution inside the electric furnace can be such that the temperature A inside the melt becomes higher than the temperature B outside the quartz ampoule, as shown in Figure 7. . In this state, the melt flows out of the boat through the boat wall (there is a heat flow), and the solid-liquid interface at this time becomes a concave surface with respect to the melt, as shown by the dotted line in Figure 9. , crystal nuclei are likely to be generated from the inner wall surface of the boat.
Twin crystals also tend to occur, making it extremely difficult to grow single crystals.

このため電気炉内の温度分布は、図−8のように融液内
の温度Aが石英アンプル外の温度Bより低くなるように
制御することが必要となる。これを実現するため図−1
の装置では補助ヒーター22、ヒートシンク20、冷却
管21等を設けて、ボート外からボート内に供給される
熱を、シード15を通してヒートシンクで吸収するよう
にしているのである。このときの融液温度Aとアンプル
外温度Bの差は、実験によると(B−A)/C1m≧4
℃/cnに保つことが好ましい。このような温度差は前
述のようにシード15をヒートシンク20に直接接触さ
せておくことにより容易に得ることができる。以上のよ
うな温度分布を実現すると固液界面は図−10に点線で
示すように融液に対し凸面となり、安定した単結晶成長
が可能となる。
Therefore, it is necessary to control the temperature distribution inside the electric furnace so that the temperature A inside the melt is lower than the temperature B outside the quartz ampoule, as shown in FIG. To achieve this, Figure 1
In this device, an auxiliary heater 22, a heat sink 20, a cooling pipe 21, etc. are provided so that the heat supplied from outside the boat into the boat is absorbed by the heat sink through the seed 15. According to the experiment, the difference between the melt temperature A and the temperature outside the ampoule B at this time is (B-A)/C1m≧4
It is preferable to maintain the temperature at ℃/cn. Such a temperature difference can be easily obtained by bringing the seed 15 into direct contact with the heat sink 20 as described above. When the temperature distribution as described above is achieved, the solid-liquid interface becomes a convex surface relative to the melt as shown by the dotted line in Figure 10, and stable single crystal growth becomes possible.

さらにInPの高品質単結晶を得るには、図6に示すよ
うに結晶成長中のボート部の最低温度を1000℃以上
に保つことも重要である。実際にこの温度が990℃以
下になったとき、成長プロセスで生じたと思われるクラ
ックがInP単結晶内に見られた。ボート部の最低温度
を1000℃以上に保つと、このクランクの発生は抑え
られた。
Furthermore, in order to obtain a high-quality single crystal of InP, it is also important to maintain the minimum temperature of the boat portion during crystal growth at 1000° C. or higher, as shown in FIG. In fact, when this temperature dropped to 990° C. or lower, cracks that appeared to have occurred during the growth process were observed within the InP single crystal. The occurrence of this crank was suppressed by keeping the minimum temperature of the boat section above 1000°C.

以上の実施例ではInP単結晶の成長方法について説明
したが、本発明は高解離圧を有する他の化合物半導体例
えばn−vr族化合物半導体の単結晶成長にも適用する
ことができる。
Although the above embodiment describes a method for growing an InP single crystal, the present invention can also be applied to the single crystal growth of other compound semiconductors having a high dissociation pressure, such as n-vr group compound semiconductors.

また上記実施例では融液をアンプル内で直接合成する場
合を説明したが、予め製造された化合物半導体の多結晶
原料を溶融させて融液を作成してもよい。
Further, in the above embodiment, a case where the melt is directly synthesized in the ampoule has been described, but the melt may be created by melting a polycrystalline raw material of a compound semiconductor manufactured in advance.

さらに本発明は水平ブリッジマン法にも適用可能である
Furthermore, the present invention is also applicable to the horizontal Bridgman method.

〔発明の詳細な説明〕[Detailed description of the invention]

以上説明したように本発明によれば、シードをヒートシ
ンクに直接接触させてヒートシンク側で熱を吸引しなが
ら単結晶を成長させるようにしたので、成長中の単結晶
からシード、ヒートシンクへの熱の流れがスムーズにな
り、安定した温度制御が行えるため、高品質の化合物半
導体単結晶を製造できる利点がある。
As explained above, according to the present invention, the single crystal is grown by bringing the seed into direct contact with the heat sink and sucking heat on the heat sink side, so that heat is transferred from the growing single crystal to the seed and the heat sink. This has the advantage of producing high-quality compound semiconductor single crystals because the flow becomes smoother and temperature can be controlled more stably.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明の単結晶成長方法に使用する装置の一例
を示す縦断面図、図−2は図−1の■−■線における横
断面図、図−3(at(blは本発明の一実施例を示す
縦断面図および平面図、図−4は本発明の他の実施例を
示す縦断面図、図−5は融液合成時および単結晶成長開
始時の温度分布を示すグラフ、図−6は単結晶成長中の
温度分布を示すグラフ、図−7は従来の温度勾配凝固法
における温度分布を示すグラフ、図−8は改良された温
度勾配凝固法における温度分布を示すグラフ、図−9は
図−7の温度分布における単結晶の成長状態を示す平面
図、図−10は図−8の温度分布における単結晶の成長
状態を示す平面図である。 13:ボート、13a:シード棚、15:シード、20
:ヒートシンク、31:融液。 図−3 (a) 図−4 図−7 図−8 距 難 図−5 図−6 E 勉 図−9 図−
Figure 1 is a vertical sectional view showing an example of the apparatus used in the single crystal growth method of the present invention, Figure 2 is a cross sectional view taken along the line ■-■ in Figure 1, and Figure 3 (at (bl is the A longitudinal cross-sectional view and a plan view showing one embodiment, FIG. 4 is a longitudinal cross-sectional view showing another embodiment of the present invention, and FIG. 5 is a graph showing temperature distribution during melt synthesis and at the start of single crystal growth. , Figure 6 is a graph showing the temperature distribution during single crystal growth, Figure 7 is a graph showing the temperature distribution in the conventional temperature gradient solidification method, and Figure 8 is a graph showing the temperature distribution in the improved temperature gradient solidification method. , FIG. 9 is a plan view showing the growth state of the single crystal under the temperature distribution of FIG. 7, and FIG. 10 is a plan view showing the growth state of the single crystal under the temperature distribution of FIG. 8. 13: Boat, 13a : Seed shelf, 15: Seed, 20
: heat sink, 31: melt. Figure-3 (a) Figure-4 Figure-7 Figure-8 Distance map-5 Figure-6 E Tsutomu-9 Figure-

Claims (1)

【特許請求の範囲】[Claims] 1、化合物半導体の融液を収容するボートの一端にシー
ドを設置し、そのボートのシード端側にヒートシンクを
設置して、ボートの周囲からボート内に供給される熱を
、上記シードを通してヒートシンクで吸収しつつ化合物
半導体単結晶を成長させていく方法において、上記シー
ドをヒートシンクと直接接触させることを特徴とする化
合物半導体単結晶の成長方法。
1. A seed is installed at one end of a boat containing a compound semiconductor melt, and a heat sink is installed at the seed end side of the boat. Heat supplied from around the boat into the boat is passed through the seed to the heat sink. A method for growing a compound semiconductor single crystal while absorbing heat, the method comprising: bringing the seed into direct contact with a heat sink.
JP18154588A 1988-07-22 1988-07-22 Growing method for compound semiconductor single crystal Pending JPH0234592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18154588A JPH0234592A (en) 1988-07-22 1988-07-22 Growing method for compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18154588A JPH0234592A (en) 1988-07-22 1988-07-22 Growing method for compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH0234592A true JPH0234592A (en) 1990-02-05

Family

ID=16102657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18154588A Pending JPH0234592A (en) 1988-07-22 1988-07-22 Growing method for compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH0234592A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235413A (en) * 1991-07-26 1993-08-10 Tektronix, Inc. Method and apparatus for processing component signals to preserve high frequency intensity information
WO2003078704A1 (en) * 2002-03-14 2003-09-25 Axt, Inc. Apparatus for growing monocrystalline group ii-vi and iii-v compounds
US7033439B2 (en) * 2000-09-01 2006-04-25 Ngk Insulators, Ltd. Apparatus for fabricating a III-V nitride film and a method for fabricating the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117190A (en) * 1984-11-14 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> Crucible for preparing crystal
JPS62187193A (en) * 1986-02-12 1987-08-15 Furukawa Electric Co Ltd:The Method and device for growing single crystal
JPS6395192A (en) * 1986-10-06 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Apparatus for producing compound semiconductor crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117190A (en) * 1984-11-14 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> Crucible for preparing crystal
JPS62187193A (en) * 1986-02-12 1987-08-15 Furukawa Electric Co Ltd:The Method and device for growing single crystal
JPS6395192A (en) * 1986-10-06 1988-04-26 Nippon Telegr & Teleph Corp <Ntt> Apparatus for producing compound semiconductor crystal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235413A (en) * 1991-07-26 1993-08-10 Tektronix, Inc. Method and apparatus for processing component signals to preserve high frequency intensity information
US7033439B2 (en) * 2000-09-01 2006-04-25 Ngk Insulators, Ltd. Apparatus for fabricating a III-V nitride film and a method for fabricating the same
US7438761B2 (en) 2000-09-01 2008-10-21 Ngk Insulators, Ltd. Apparatus for fabricating a III-V nitride film and a method for fabricating the same
WO2003078704A1 (en) * 2002-03-14 2003-09-25 Axt, Inc. Apparatus for growing monocrystalline group ii-vi and iii-v compounds
EP1485524A1 (en) * 2002-03-14 2004-12-15 Axt, Inc. Apparatus for growing monocrystalline group ii-vi and iii-v compounds
EP1485524A4 (en) * 2002-03-14 2006-09-20 Axt Inc Apparatus for growing monocrystalline group ii-vi and iii-v compounds

Similar Documents

Publication Publication Date Title
CN110983429A (en) Single crystal furnace and monocrystalline silicon preparation method
US10145024B2 (en) Cooling rate control apparatus and ingot growing apparatus including same
EP0068021A1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound.
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
JPH0234592A (en) Growing method for compound semiconductor single crystal
JP2004323247A (en) FURNACE FOR MANUFACTURING SiC SINGLE CRYSTAL
JPH0315550Y2 (en)
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
JP2004203687A (en) Apparatus for manufacturing compound semiconductor
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPS62187193A (en) Method and device for growing single crystal
JP3814893B2 (en) Crystal growth crucible and crystal growth apparatus using the same
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH0449185Y2 (en)
JP2830392B2 (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH0475880B2 (en)
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
JP2003226594A (en) Method of growing semiconductor crystal
JPH08319189A (en) Production of single crystal and device therefor
JPH05178683A (en) Device for producing single crystal of compound semiconductor
JPH03279284A (en) Production of compound semiconductor single crystal
KR20120050675A (en) Ingot grower
JPH03137084A (en) Production of compound semiconductor single crystal