JPS62264686A - Formation of mim nonlinear element - Google Patents

Formation of mim nonlinear element

Info

Publication number
JPS62264686A
JPS62264686A JP61004299A JP429986A JPS62264686A JP S62264686 A JPS62264686 A JP S62264686A JP 61004299 A JP61004299 A JP 61004299A JP 429986 A JP429986 A JP 429986A JP S62264686 A JPS62264686 A JP S62264686A
Authority
JP
Japan
Prior art keywords
layer
film
photoresist
underlaid
mim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61004299A
Other languages
Japanese (ja)
Inventor
Nobuhito Fukushima
福島 信人
Takanori Minamitani
南谷 孝典
Nobuyuki Yoshino
吉野 信幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP61004299A priority Critical patent/JPS62264686A/en
Publication of JPS62264686A publication Critical patent/JPS62264686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide an underlaid M layer of an MIM element in a safe and simple manner, by patterning the underlaid M layer by means of the lift-off technique using photoresist shaped to have overhangs. CONSTITUTION:P-type photoresist 9 is applied on a glass substrate 8. An underlaid M layer and an inversed pattern mask 10 are provided thereon. The structure is exposed and developed to form a mask 9 having overhangs 91. A metal film of Ta 11 is adhered over the surface. During this process, the substrate 8 is cooled with liquid of N2 so as to protect the resist 9 from beat. After that, unrequired portions of the Ta film 11 are removed together with the resist 9 so that a predetermined pattern of the underlaid M layer can be obtained. According to this method, the works can be performed more safely because there is no need of using fluoric acid or a high-temperature furnace. Further, the number of processes can be decreased substantially.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示装置に用いるMIM非線形素子の形成
方法に関し、さらに詳しくは下記M層のパターン化方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an MIM nonlinear element used in a liquid crystal display device, and more specifically to a method for patterning an M layer as described below.

〔発明の背景〕[Background of the invention]

卓のみならず、各種情報機器にまで用いられるようにな
り、その表示容量の増大が望まれている。
They are now being used not only for desks but also for various information devices, and there is a desire for an increase in their display capacity.

そこで、金属−絶縁体−金属の三層構造を有する、いわ
ゆるM I M非線形素子(以下MIM素子と呼ぶ)を
画素電極と結合して、表示品位を向上させたマトリクス
駆動が検討されている。
Therefore, matrix driving is being considered in which a so-called MIM nonlinear element (hereinafter referred to as an MIM element) having a three-layer structure of metal-insulator-metal is combined with a pixel electrode to improve display quality.

〔従来の技術の問題点と本発明の目的〕従来のM I 
M素子は、第2図に断面図として示すように、ガラス基
板1上に保護膜として酸化タンタル膜2を設けた後(第
2図−(a))、M I M素子の下部M層となる金属
タンタル膜6を形成、必要部分をフォトレジスト4で覆
って(第2図−(b))エツチングによりパターニング
する。次に、上記金属タンタル膜3の表面を陽極酸化し
て酸化タンタル膜5を形成しく第2図−(C))て1層
とし、さらにM I M素子の上部M層として金属クロ
ム膜6を形成、最後に透明導電膜で画素電極7を形成す
る(第2図−(d))、といった製造順序がとられてい
た。
[Problems with conventional technology and purpose of the present invention] Conventional MI
As shown in FIG. 2 as a cross-sectional view, the M element is constructed by providing a tantalum oxide film 2 as a protective film on a glass substrate 1 (FIG. 2-(a)), and then forming the lower M layer of the M I M element. A tantalum metal film 6 is formed, necessary portions are covered with a photoresist 4 (FIG. 2-(b)), and patterned by etching. Next, the surface of the metal tantalum film 3 is anodized to form a tantalum oxide film 5 (FIG. 2-(C)) to form a single layer, and a metal chromium film 6 is further formed as the upper M layer of the M I M element. The manufacturing order was as follows: first, the pixel electrode 7 was formed using a transparent conductive film (FIG. 2-(d)).

3をエツチングする際に用いるフン酸系エッチャント(
例えば、フッ酸二硝酸:水=1:10:10の混合溶液
)から、基板ガラス1を保護するために必要不可欠なも
のであり、エツチングに耐え、全面的に透明かつ平滑な
表面を持っていなければならないことから、一般的には
金属タンタル膜を熱酸化することにより得られる酸化タ
ンタル膜が用いられている。
Hydronic acid etchant (
For example, it is essential for protecting the substrate glass 1 from a mixed solution of hydrofluoric acid dinitric acid and water (1:10:10), and has a completely transparent and smooth surface that is resistant to etching. Therefore, a tantalum oxide film obtained by thermally oxidizing a metal tantalum film is generally used.

以上の様に、従来のMIM素子の製造には、本来MIM
素子構造には必要のない、金属タンタル膜の形成、およ
び、その熱酸化といった余計な工程が必要であり、しか
も、金属メンタル膜の熱酸化には500°C以上の高温
を必要とするため、基板ガラス1として高価な耐熱ガラ
スを用いなげればならない問題があった。
As mentioned above, in the production of conventional MIM elements, MIM
Extra steps are required, such as forming a metal tantalum film and thermally oxidizing it, which are not necessary for the element structure, and furthermore, thermal oxidation of the metal mental film requires a high temperature of 500°C or more. There is a problem in that an expensive heat-resistant glass must be used as the substrate glass 1.

また、下部M層の金属タンタル膜6をエツチングする際
、用いるエッチャントにフッ酸が含まれていることから
、製造中の人体への影響や公害に対しても細心の注意を
払う必要があった。
In addition, when etching the metal tantalum film 6 of the lower M layer, the etchant used contains hydrofluoric acid, so it was necessary to pay close attention to the impact on the human body and pollution during manufacturing. .

本発明は、M I M素子の下部M層を安全かつ簡単に
パターニングすることを目的とし、それにより、工程の
短縮化と基板の自由な選択を可能にし、安価なM I 
M素子を提供するものである。
The present invention is aimed at safely and easily patterning the lower M layer of an M I M device, thereby shortening the process and enabling free selection of substrates, thereby making it possible to pattern the lower M layer of an M I M device at low cost.
This provides an M element.

〔発明の構成〕[Structure of the invention]

本発明は、下部M層のパターニングに、オーバーハング
形状に形成されたフォトレジストを用いた、リフトオフ
法を用いるものである。
The present invention uses a lift-off method using a photoresist formed in an overhang shape for patterning the lower M layer.

一般に行われているりフトオフ法では、十分な特性を持
ったMIM素子を得るために必要な、下部M層の膜厚(
およそ0.1μ以上)では、フォトレジストの上部のみ
ならず、側面にも膜が形成されるため、ハクリ液による
フォトレジストの除去が困難とされていた。
In the commonly used lift-off method, the film thickness of the lower M layer (
(approximately 0.1 μm or more), a film is formed not only on the top of the photoresist but also on the side surfaces, making it difficult to remove the photoresist with a peeler.

本発明において、下部M層のパターニングのためのフォ
トレジスト(ポジ型)は、下部M層のパターンと反転形
状のマスクを用いて露光後、クロロベンゼンに代表され
る、非水系貧溶媒に浸漬し拡散させ、その後、現像する
ことにより、オーバーハング形状を持たせたものである
。このため、上記フォトレジスト上にタンタルに代表さ
れる、下部M層を、たとえば、真空蒸着法で形成すれば
、オーバーハングの陰になる部分、すなわちフォトレジ
ストの側面には膜が形成されず、リフトオフに際してフ
ォトレジストは、ハクリ液と直接、接触することができ
るため、すみやかなリフトオフが可能となる。
In the present invention, the photoresist (positive type) for patterning the lower M layer is exposed using a mask with an inverted shape to the pattern of the lower M layer, and then immersed in a non-aqueous poor solvent such as chlorobenzene to be diffused. The overhang shape is obtained by developing the film and then developing it. For this reason, if a lower M layer, typically made of tantalum, is formed on the photoresist using, for example, a vacuum evaporation method, no film will be formed on the portions that are in the shadow of the overhang, that is, on the side surfaces of the photoresist. During lift-off, the photoresist can come into direct contact with the peeling solution, so that quick lift-off is possible.

〔実施例〕〔Example〕

以下に、本発明の実施例を第3図に基づいて、説明する
An embodiment of the present invention will be described below with reference to FIG.

まず、ガラス基板8に、ポジタイプのフォトレジスト9
(シプレー社AZ 1350 J )を、約1.5μ厚
に塗布した(第3図−(a))。この場合、ガラス基板
8は、安価なソーダライムガラスで差し支えない。これ
を、80°Cで30分間プリベークし、フォトレジスト
9中の溶媒を揮発させた後、下部M層のパターンと反転
形状を持った露光マスク10を介して露光を行った(第
3図−(b))。通常のフォトリソグラフィーでは、こ
の後、ただちに現像を行うが、本実施例では、露光後、
クロロベンゼン中に5分間浸漬した後、現像を行った。
First, a positive type photoresist 9 is placed on a glass substrate 8.
(Shipley AZ 1350 J) was applied to a thickness of about 1.5 μm (Figure 3-(a)). In this case, the glass substrate 8 may be inexpensive soda lime glass. This was prebaked at 80°C for 30 minutes to volatilize the solvent in the photoresist 9, and then exposed to light through an exposure mask 10 having an inverted shape to the pattern of the lower M layer (Fig. 3- (b)). In normal photolithography, development is performed immediately after this, but in this example, after exposure,
After immersion in chlorobenzene for 5 minutes, development was performed.

この処理により、フォトレジスト9の側面形状は(第3
図−(C))に示すように、オーバーハング91を持っ
たものとなった。本実施例では、オーバーハング91の
深さは、約0.5μであった。
Through this process, the side shape of the photoresist 9 is changed to
As shown in Figure-(C)), it has an overhang 91. In this example, the depth of overhang 91 was approximately 0.5 μ.

次に、これを120°Cで30分間、ポストベークした
後、下部M層となる金属タンタル膜11を真空蒸着法で
、約0.3μの厚さに形成した(第3図−(d))。こ
の時、輻射熱からフォトレジスト9を保護するため、ガ
ラス基板8を液体窒素で充分冷却した。その後、ハクリ
液を用いてフォトレジスト9と共に金属タンタル膜11
の不要部分を除去することにより、金属タンタル膜11
による下部M層の所定パターンが得られた(第3図−(
e))。
Next, this was post-baked at 120°C for 30 minutes, and then a metal tantalum film 11, which would become the lower M layer, was formed to a thickness of about 0.3μ by vacuum evaporation (Fig. 3-(d)). ). At this time, in order to protect the photoresist 9 from radiant heat, the glass substrate 8 was sufficiently cooled with liquid nitrogen. Thereafter, using a peeling solution, the metal tantalum film 11 is removed together with the photoresist 9.
By removing unnecessary parts of the metal tantalum film 11
A predetermined pattern of the lower M layer was obtained (Fig. 3-(
e)).

この際、フォトレジスト90オーバーハング形状により
、形成した金属タンタル膜11に阻害されることなく、
フォトレジスト側面がハクリ液と接することができるた
め、すみゃかに、フォトレジスト9および、その上に形
成された金属タンタル膜11が除去できた。
At this time, due to the overhang shape of the photoresist 90, it is not hindered by the formed metal tantalum film 11.
Since the side surface of the photoresist could come into contact with the peeling solution, the photoresist 9 and the metal tantalum film 11 formed thereon could be immediately removed.

次に、上記パターニングされた金属タンタル、嘆11を
、しゅう酸水溶液中で陽極酸化し、表面に酸化タンタル
膜12を約0.05μの厚さで形成して1層とした後、
さらに、上部のM層として金属クロム膜16を真空蒸着
で形成し、最後に画素電極14をITO(インジウム・
スズ酸化物)膜で形成すれば、第1図に示すようなM 
I M非線形素子が完成した。
Next, the patterned tantalum metal 11 was anodized in an oxalic acid aqueous solution, and a tantalum oxide film 12 was formed on the surface to a thickness of about 0.05 μm to form a single layer.
Furthermore, a metal chromium film 16 is formed as the upper M layer by vacuum evaporation, and finally the pixel electrode 14 is made of ITO (indium metal).
If formed with a tin oxide film, M
The IM nonlinear element was completed.

なお、金属クロム膜16および、画素電極14のパター
ニングは、一般に行われているフォトリソグラフィーに
よるエツチングを用いた。
Note that the metal chromium film 16 and the pixel electrode 14 were patterned by etching using commonly used photolithography.

上記、実施例中に用いたクロロベンゼンのかわりに、ト
ルエン、キシレン、トリクロロエチレン等を用いても良
(、基本的には非水系貧溶媒であれば、オーバーハング
状にフォトレジストを形成することができる。
Instead of the chlorobenzene used in the examples above, toluene, xylene, trichloroethylene, etc. may be used (basically, if it is a non-aqueous poor solvent, the photoresist can be formed in an overhang shape. .

また、下部M層材料としては、タンタルの他、ニオブ、
アルミニウム等のパルプ金属を用いることができるが、
タンタル、ニオブ等の高融点金属を蒸着する場合には、
輻射熱により基板温度が、100℃以上に、ヒ昇するた
め、フォトレジストの変質、変形が起こる。そこで、上
記実施例では、基板冷却を用いてフォトレジストの保護
を行ったが、その他、小膜厚ずつ、数回にわけて蒸着を
行う断続蒸着法によっても、上記実施例と同様にMIM
素子を製造できた。また、低い圧力でプラズマ放電し、
つきまわりを少なくすれば、スパッタ法による下部M層
の形成も、フォトレジストの変質、変形を防ぐものとし
て有効であり、同様にMIM素子を製造できた。
In addition to tantalum, niobium,
Although pulp metals such as aluminum can be used,
When depositing high melting point metals such as tantalum and niobium,
Since the substrate temperature rises to 100° C. or more due to radiant heat, deterioration and deformation of the photoresist occur. Therefore, in the above embodiment, the photoresist was protected by cooling the substrate, but in the same manner as in the above embodiment, MIM
We were able to manufacture the device. In addition, plasma discharge at low pressure,
If the throwing power is reduced, forming the lower M layer by sputtering is also effective in preventing deterioration and deformation of the photoresist, and MIM elements can be manufactured in the same manner.

上部M層も、クロムに限らず基本的に導電性があれば良
く、ニクロム、金、ITO等でも、同様にMIM素子を
製造できた。
The upper M layer is not limited to chromium as long as it is basically conductive, and MIM elements could be similarly manufactured using nichrome, gold, ITO, etc.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように、本発明によれば、従来、フン酸系
エッチャントによるエツチングで、パターニングしてい
た金属タンタル膜に代表される下部M層を、リフトオフ
法によりパターニングできた。
As described above, according to the present invention, the lower M layer typified by the metal tantalum film, which was conventionally patterned by etching with a hydrofluoric acid etchant, can be patterned by the lift-off method.

これにより、500°C以上の高温での、熱酸化という
工程で形成されていたガラス基板の保護層が不必要とな
り、大幅な工程の短縮がはかられると同時に、基板に安
価なソーダガラスを用いることが可能となった。したが
って、製造コストの大幅な低減につながった。また、製
造時の安全性においても、フッ酸を用いなくなったこと
、500℃の加熱炉を用いなくなったことにより、大幅
に向上した。
This eliminates the need for a protective layer on the glass substrate, which was previously formed through a process called thermal oxidation at high temperatures of 500°C or higher, significantly shortening the process, and at the same time making it possible to use inexpensive soda glass for the substrate. It became possible to use it. Therefore, this led to a significant reduction in manufacturing costs. Furthermore, safety during manufacturing has also been significantly improved by eliminating the use of hydrofluoric acid and the use of a 500°C heating furnace.

なお、本発明により製造したMIM素子は、特性的に、
従来の工程で製造されたMIM素子に比べ、なんら劣る
点は見い出せなかった。
Note that the MIM device manufactured according to the present invention has the following characteristics:
No inferiority was found compared to MIM elements manufactured using conventional processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により形成されるMIM非線形素
子の構成を示す要部断面図、第2図(a)〜素子の要部
断面図である。 1.8・・・ガラス基板、  3.11・・・金属タン
タル膜、 5.12・・・酸化タンタル膜、6.16・
・・金属クロム膜、  7.4・・・画素電極、第2図 第3図 第3図 (e) 手続補正書(方式) 1 事件の表示 昭和61年特許願第4299号 2、発明の名称 MIM非線形素子の形成方法 3、補正をする者 事件との関係  特許出願人 住所 東京都新宿区西新宿2丁目1番1号名称 (19
6)  シチズン時計株式会社昭和62年5月26日 5、補正の対象 [明細書の図面の簡単な説明の欄」 6、補正の内容 図面の簡単な説明 第1図は本発明の方法によシ形成されるMIM非線形素
子の構成を示す要部断面図、第2図(al〜(d)は従
来の形成工程を説明するMIM素子の要部断面図、第3
図(al (bl fc)fdl telは本発明の詳
細な説明するMIM素子の要部断面図である。 1.8・・・ガラス基板、3.11・・・金属タンタル
膜、5,12・・・酸化タンタル膜、6,13・・・金
属クロム膜、7,4・・・画素電極。
FIG. 1 is a sectional view of a main part showing the structure of an MIM nonlinear element formed by the method of the present invention, and FIG. 2(a) is a sectional view of a main part of the element. 1.8...Glass substrate, 3.11...Metal tantalum film, 5.12...Tantalum oxide film, 6.16.
...Metallic chromium film, 7.4...Pixel electrode, Figure 2, Figure 3, Figure 3 (e) Procedural amendment (method) 1 Indication of the case 1985 Patent Application No. 4299 2, Title of the invention MIM nonlinear element formation method 3, relationship with the amendment person case Patent applicant address 2-1-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo Name (19
6) Citizen Watch Co., Ltd. May 26, 1988 5. Subject of amendment [column for brief explanation of drawings in specification] 6. Contents of amendment Brief explanation of drawings Figure 1 shows the method of the present invention. FIG. 2 is a cross-sectional view of a main part showing the structure of the MIM nonlinear element to be formed. FIGS.
Figure (al (bl fc) fdl tel) is a cross-sectional view of a main part of an MIM element to explain the present invention in detail. 1.8...Glass substrate, 3.11...Metal tantalum film, 5,12... ...Tantalum oxide film, 6,13...Metal chromium film, 7,4...Pixel electrode.

Claims (1)

【特許請求の範囲】[Claims] 基板表面に下部M層となる金属薄膜を所定の形状にパタ
ーン化し、その表面を陽極酸化してI層とし、さらにそ
の上に上部M層として金属薄膜あるいは透明導電体薄膜
を積層させて構成するMIM非線形素子の形成方法にお
いて、オーバーハングを有する断面形状にパターン化さ
れたフォトレジストを用いたリフトオフ法により、下部
M層をパターン化することを特徴とするMIM非線形素
子の形成方法。
A thin metal film that will become the lower M layer is patterned into a predetermined shape on the surface of the substrate, the surface is anodized to form the I layer, and a thin metal film or a transparent conductor thin film is further laminated on top of that as the upper M layer. A method for forming an MIM nonlinear element, the method comprising patterning a lower M layer by a lift-off method using a photoresist patterned in a cross-sectional shape having an overhang.
JP61004299A 1986-01-14 1986-01-14 Formation of mim nonlinear element Pending JPS62264686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004299A JPS62264686A (en) 1986-01-14 1986-01-14 Formation of mim nonlinear element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004299A JPS62264686A (en) 1986-01-14 1986-01-14 Formation of mim nonlinear element

Publications (1)

Publication Number Publication Date
JPS62264686A true JPS62264686A (en) 1987-11-17

Family

ID=11580632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004299A Pending JPS62264686A (en) 1986-01-14 1986-01-14 Formation of mim nonlinear element

Country Status (1)

Country Link
JP (1) JPS62264686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049762A1 (en) 2004-10-28 2006-05-11 Hewlett-Packard Development Company, L.P. Metal-insulator-metal device
JP2013021187A (en) * 2011-07-12 2013-01-31 Mitsubishi Electric Corp Mim capacitor and manufacturing method therefor, and semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445102A (en) * 1977-09-16 1979-04-10 Mitsubishi Electric Corp Undulation pattern forming method
JPS59124728A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Formation of pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445102A (en) * 1977-09-16 1979-04-10 Mitsubishi Electric Corp Undulation pattern forming method
JPS59124728A (en) * 1982-12-29 1984-07-18 Fujitsu Ltd Formation of pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049762A1 (en) 2004-10-28 2006-05-11 Hewlett-Packard Development Company, L.P. Metal-insulator-metal device
US7160745B2 (en) 2004-10-28 2007-01-09 Hewlett-Packard Development Company, L.P. Metal-insulator-metal device
JP2013021187A (en) * 2011-07-12 2013-01-31 Mitsubishi Electric Corp Mim capacitor and manufacturing method therefor, and semiconductor device

Similar Documents

Publication Publication Date Title
US6339230B1 (en) Method for manufacturing a liquid crystal display
US8158467B2 (en) Liquid crystal display device and method of fabricating the same
JP2004310027A (en) Liquid crystal display device and its manufacturing method
US4670097A (en) Method for patterning transparent layers on a transparent substrate
KR100557499B1 (en) Method of forming a pattern, liquid crystal display device and fabricating method of liquid crystal display device using thereof
US4385976A (en) Solderable layer system, its use and method for manufacturing same
JPS62264686A (en) Formation of mim nonlinear element
JPH10221712A (en) Manufacture of liquid crystal display device
JPH06294973A (en) Array substrate for liquid crystal display device
JPH08166469A (en) Clock dial and production thereof
JPH0766422A (en) Array substrate for liquid crystal display device
JP3510129B2 (en) Manufacturing method of liquid crystal display element
JP2001337619A (en) Method for manufacturing array substrate
JP2002299199A (en) Resist coating method, thin-film forming method and method of manufacturing electro-optical device
JPH07287114A (en) Color filter and production of color filter
JPH08179372A (en) Active matrix panel and its production
JPH04273215A (en) Production of thin-film transistor array substrate
JP2549682B2 (en) Liquid crystal display and manufacturing method thereof
KR101003679B1 (en) Liquid crystal display device and method of fabricating thereof
JPS6146520Y2 (en)
JPH0346632A (en) Production of reflection type mim active matrix substrate
JP2003084305A (en) Liquid crystal display device and manufacturing method therefor
JPH1069229A (en) Production of display element
JPH01293318A (en) Electrode substrate for liquid crystal display panel
JPS61181165A (en) Semiconductor device