JPS622521A - Molecular beam epitaxial device - Google Patents

Molecular beam epitaxial device

Info

Publication number
JPS622521A
JPS622521A JP60140335A JP14033585A JPS622521A JP S622521 A JPS622521 A JP S622521A JP 60140335 A JP60140335 A JP 60140335A JP 14033585 A JP14033585 A JP 14033585A JP S622521 A JPS622521 A JP S622521A
Authority
JP
Japan
Prior art keywords
temperature
substrate
radiation source
black body
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60140335A
Other languages
Japanese (ja)
Other versions
JPH0611027B2 (en
Inventor
Kazumasa Fujioka
藤岡 和正
Makoto Morioka
誠 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60140335A priority Critical patent/JPH0611027B2/en
Publication of JPS622521A publication Critical patent/JPS622521A/en
Publication of JPH0611027B2 publication Critical patent/JPH0611027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To produce a crystal with excellent quantity by measuring and controlling accurate temperature of a substrate by a method wherein a radiothermometer and a black body radiative source are arranged on positions symmetric with a perpendicular drawn on the surface of a substrate to control the temperature of black body radiative source and the substrate independently. CONSTITUTION:When a substrate 2 is mirror-reflected, the calories Q per unit area measured by a radiothermometer 8 are represented by the reflection between the temperature TW of substrate 2 and the temperature TB of a black body radiative source 10. The temperature TB of black body 10 is measured by a thermocouple 11. Therefore, when the temperature TB of another black body radiative source 11 is independently fluctuated in two ways by a heater 13 and the respective calories Q are measured by the radiothermometer 8, the temperature TWof substrate 2 and the emissivity epsilon can be calculated. Through these procedures, the absolute temperature of substrate 2 can be measured making it feasible to control the output froml another heater 5 by means of feeding back the absolute temperature thus measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は分子線エピタキシ装置に係り、特に基板の温度
を正確に制御するのに好適な分子線エピタキシ装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a molecular beam epitaxy apparatus, and particularly to a molecular beam epitaxy apparatus suitable for accurately controlling the temperature of a substrate.

〔発明の背景〕[Background of the invention]

従来、分子線エピタキシ装置において基板の温度制御は
、[分子線エピタキ装置技術」 (工業調査会、 1.
984年発行)に示される方法が知られている。第3図
により説明すれば、真空容器1内で基板2はサセプタ3
に接着され、試料回転ホルダ4に取り付けられている。
Conventionally, temperature control of the substrate in molecular beam epitaxy equipment has been carried out in accordance with [Molecular Beam Epitaxy Equipment Technology] (Kogyo Kenkyukai, 1.
984) is known. To explain with reference to FIG. 3, in the vacuum container 1, the substrate 2
and is attached to the sample rotation holder 4.

この試料回転ホルダ4には基板2を加熱するヒータ5と
、基板2の温度を計測する熱電対6が固定されている。
A heater 5 for heating the substrate 2 and a thermocouple 6 for measuring the temperature of the substrate 2 are fixed to the sample rotation holder 4.

熱電対6の先端は回転するサセプタ3には接触できない
ので。
The tip of the thermocouple 6 cannot come into contact with the rotating susceptor 3.

サセプタ3の中心部の近傍に固定される。このような取
り付は構造では、温度の絶対測定はできないので、真空
容器1の窓7を介して随時放射温度計8で熱電対6の指
示値の較正がなされている。
It is fixed near the center of the susceptor 3. Since such an installation structure does not allow absolute measurement of temperature, the indicated value of the thermocouple 6 is calibrated with a radiation thermometer 8 through the window 7 of the vacuum container 1 at any time.

基板2の温度制御は、この熱電対6の指示値をフィード
バックし、温度調節器9によりヒータ5の出力を制御し
て行っている。
The temperature of the substrate 2 is controlled by feeding back the indicated value of the thermocouple 6 and controlling the output of the heater 5 with the temperature regulator 9.

しかし、上記構成の温度計測と制御法は1分子線セルか
ら飛んできた分子線10が基板2表面に付着して、基板
2のふく対重が変化するため、全体の熱バランスがくず
れ、基板2の温度と熱電対6の指示値の相対関係が一定
でなくなり、基板2の正しい温度を計測できない。従っ
て、温度制御ができないという問題があった。
However, in the temperature measurement and control method with the above configuration, the molecular beam 10 flying from the single molecular beam cell attaches to the surface of the substrate 2, and the weight of the substrate 2 changes, causing the overall thermal balance to collapse. The relative relationship between the temperature of the substrate 2 and the indicated value of the thermocouple 6 is no longer constant, and the correct temperature of the substrate 2 cannot be measured. Therefore, there was a problem that temperature control was not possible.

また、基板2の温度計測を熱電対6によらず。Furthermore, the temperature of the substrate 2 is not measured by the thermocouple 6.

放射温度計8によって行っても、基板2のふく対重が時
間により変化するため、正しい温度計測ができない8 〔発明の目的〕 本発明は、上記従来の分子線エピタキシ装置のもつ欠点
を除去し、基板の正確な温度計測と温度制御が可能な分
子線エピタキシ装置を提供することを目的とする。
Even if the temperature is measured using a radiation thermometer 8, accurate temperature measurement cannot be performed because the weight of the substrate 2 changes over time. The purpose of this invention is to provide a molecular beam epitaxy device that can accurately measure and control the temperature of a substrate.

〔発明の概要〕[Summary of the invention]

本発明の分子線エピタキシ装置は、基板が鏡面反射する
性質を利用し、基板表面の垂線に対して対称位置に黒体
放射源と放射温度計とを配置し、基板の温度と黒体放射
源の温度とを独立に制御できるよう構成し、放射温度計
により基板表面で反射された黒体放射源からの熱量と基
板表面から放射された熱量とを検出することによって基
板表面の温度を検出できるようにするとともに温度を結
晶成長温度に正確に制御できるようにしたものである。
The molecular beam epitaxy apparatus of the present invention takes advantage of the specular reflection property of the substrate and arranges a blackbody radiation source and a radiation thermometer at symmetrical positions with respect to the perpendicular to the substrate surface. The temperature of the substrate surface can be detected by using a radiation thermometer to detect the amount of heat from the blackbody radiation source reflected on the substrate surface and the amount of heat radiated from the substrate surface. In addition, the temperature can be accurately controlled to the crystal growth temperature.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する6第4
図と同一記号は同一部分を示す。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG.
The same symbols as in the figure indicate the same parts.

第1図で11は黒体放射源、12は黒体放射源11の温
度を計測する熱電対、13は黒体放射源11を加熱する
ヒータであるつ14は基板2表面にたてた垂線で、放射
温度計8と魚体放射源11はこの垂線14に対して対称
に角度0をなすように配置されている。なお、15は分
子線10を発生させるための分子線セル、16は真空容
器1内を真空するための真空ポンプ、17は黒体放射源
11の温度を計測する熱な対である。
In FIG. 1, 11 is a black body radiation source, 12 is a thermocouple that measures the temperature of the black body radiation source 11, 13 is a heater that heats the black body radiation source 11, and 14 is a perpendicular line drawn to the surface of the substrate 2. The radiation thermometer 8 and the fish body radiation source 11 are arranged symmetrically with respect to this perpendicular 14 so as to form an angle of 0. Note that 15 is a molecular beam cell for generating the molecular beam 10, 16 is a vacuum pump for evacuating the inside of the vacuum container 1, and 17 is a thermal pair for measuring the temperature of the blackbody radiation source 11.

以上のような構成において、基板2が完全に鏡面反射す
るとき、放射温度計8が検出する単位面積当りの熱量Q
は次式で表わされる。
In the above configuration, when the substrate 2 is completely specularly reflected, the amount of heat Q per unit area detected by the radiation thermometer 8 is
is expressed by the following equation.

Q=t・σT、’+ (1−t )  ・aT@’  
−(1)ここで、Eは基板2のふく対重t Twは基板
2の温度I TRは黒体放射源10の温度、σはステフ
ァン・ボルツマン定数である。黒体放射*10の温度T
、は熱電対11によって計測される値である。したがっ
て、黒体放射源11の温度T、をヒータ13により独立
に2通りに変化させ、その時の熱量Qを放射温度計8で
41す定すれば、(1)式より基Fi2の温度T、とふ
く対重εを求めることができる。このようにして、基板
2の絶対温度の計測と、この温度をフィードバックして
ヒータ5の出力を制御することが可能である。
Q=t・σT,'+ (1-t)・aT@'
-(1) Here, E is the weight t of the substrate 2, Tw is the temperature I of the substrate 2, TR is the temperature of the blackbody radiation source 10, and σ is the Stefan-Boltzmann constant. Temperature T of black body radiation *10
, are values measured by the thermocouple 11. Therefore, if the temperature T of the blackbody radiation source 11 is independently changed in two ways by the heater 13, and the amount of heat Q at that time is set to 41 by the radiation thermometer 8, then from equation (1), the temperature T of the group Fi2, It is possible to obtain the tofu weight ε. In this way, it is possible to measure the absolute temperature of the substrate 2 and control the output of the heater 5 by feeding back this temperature.

なお、黒体放射源11の温度T、をヒータ13により変
化させる代りに、第2図に示すように。
Note that instead of changing the temperature T of the blackbody radiation source 11 using the heater 13, as shown in FIG.

黒体放射源11と基板2の間にチョッパ18を設け、黒
体放射源11の温度を一定にし、チョッパ18を回転さ
せて基板2の表面から放射された熱量i・σT w’と
、黒体放射@11から放射され基板2の表面で反射され
た熱量(1−g)  ・σT、4及び基板表面から放射
された熱量ε・σTw4の和とを別々に検出しても、基
板2の表面の温度T。
A chopper 18 is provided between the black body radiation source 11 and the substrate 2, the temperature of the black body radiation source 11 is kept constant, and the chopper 18 is rotated to calculate the amount of heat i・σT w' radiated from the surface of the substrate 2 and the black body radiation source 11. Even if the amount of heat radiated from the body radiation @11 and reflected on the surface of the substrate 2 (1-g) ・σT,4 and the sum of the amount of heat ε・σTw4 radiated from the substrate surface are detected separately, the amount of heat emitted from the substrate 2 is Surface temperature T.

とふく対重Cとを計測することができる。and weight C can be measured.

次に、結晶成長中のように基板2のふく対重εが時間と
ともに変化する場合には、黒体放射源11の温度Tll
をヒータ13により変化させ、基板2の設定温度(結晶
成長温度)T□に等しく設定する。黒体放射源11の設
定温度T、lllと基板2の設定温度TV、lとの間に
は、ふく対重だが変化しない場合の両式(1)式と同様
に、 Q二ε・σTWll’+(1−ε)・σT、、’−(2
)が成立し、ここでT。=T、AであるからQ=σTw
a’=σT1.4           ・・・ (3
)となり、放射温度計8の検出する熱量Qは基板2のふ
く対重εに関係なく、黒体放射源11の放射する熱量に
等しくなる。換言すると、黒体放射源11の温度を設定
しようと考えている基板2の温度に設定して、放射温度
計8の検出熱量Qが黒体放射源11が放射する熱量σT
wa’ またはσT、4に等しくなるようにヒータ5の
出力を変化させることにより、基板2の正確な温度制御
が可能となる。
Next, when the cross-weight ε of the substrate 2 changes with time as during crystal growth, the temperature Tll of the blackbody radiation source 11
is changed by the heater 13 and set equal to the set temperature (crystal growth temperature) T□ of the substrate 2. Between the set temperature T,ll of the black body radiation source 11 and the set temperature TV,l of the substrate 2, as in both equations (1) when the weight does not change, Q2ε・σTWll'+(1-ε)・σT,,'-(2
) holds, and here T. = T, A, so Q = σTw
a'=σT1.4... (3
), and the amount of heat Q detected by the radiation thermometer 8 becomes equal to the amount of heat radiated by the blackbody radiation source 11, regardless of the weight ε of the substrate 2. In other words, when the temperature of the black body radiation source 11 is set to the temperature of the substrate 2 to be set, the amount of heat Q detected by the radiation thermometer 8 is equal to the amount of heat σT radiated by the black body radiation source 11.
By changing the output of the heater 5 so that it becomes equal to wa' or σT, 4, accurate temperature control of the substrate 2 becomes possible.

次に、第3図にこれら基板2と黒体放射源11をそれぞ
れ独立に温度制御する制御系のブロック図を示す。基板
温度と黒体放射源温度の設定値T□とT□をあらかじめ
調節11i)9に設定しておき。
Next, FIG. 3 shows a block diagram of a control system that independently controls the temperature of the substrate 2 and the blackbody radiation source 11. The set values T□ and T□ of the substrate temperature and the blackbody radiation source temperature are set in advance in adjustment 11i)9.

それぞれの温度を放射温度計8と熱電対17により検出
し、設定値T、、、T□からの偏差Δ’r、。
The respective temperatures are detected by the radiation thermometer 8 and the thermocouple 17, and the deviations from the set values T, , T□ are Δ'r,.

AT、lにより調節器9からの出力信号でヒータ5゜1
3の出力を変化させて温度を制御する。このとき、放射
温度計8により検出される検出量は熱量Qであるため1
式(1)または式(3)により温度T、が演算される。
The heater 5°1 is controlled by the output signal from the regulator 9 by AT, l.
The temperature is controlled by changing the output of step 3. At this time, the amount detected by the radiation thermometer 8 is the amount of heat Q, so 1
The temperature T is calculated using equation (1) or equation (3).

したがって、黒体放射源温度T、は基板温度制御系の温
度演算部にもフィードバックされている。
Therefore, the blackbody radiation source temperature T is also fed back to the temperature calculation section of the substrate temperature control system.

なお、以上の発明で放射温度計8の代りに特定の波長ま
たは波長域を検出する放射温度計を用いて、この波長ま
たは波長域におけるふく耐強度を検出しても同様の効果
が得られることはいうまでもない。
In addition, in the above invention, the same effect can be obtained even if a radiation thermometer that detects a specific wavelength or wavelength range is used instead of the radiation thermometer 8 to detect the radiation resistance strength in this wavelength or wavelength range. Needless to say.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、基板表面にたてた
垂線に対して対称位置に放射温度計と黒体放射源を配置
し、黒体放射源温度と基板温度をそれぞれ独立に温度制
御することにより、基板のふく対重が一定のときはもち
ろん、ふく対重が時間とともに変化する場合についても
、基板の正確な温度の計測と温度制御ができ、この結果
、・品質の優れた結晶が得られるという効果がある。
As explained above, according to the present invention, the radiation thermometer and the blackbody radiation source are arranged in symmetrical positions with respect to the perpendicular line drawn on the substrate surface, and the temperature of the blackbody radiation source and the substrate temperature are controlled independently. By doing this, it is possible to accurately measure and control the temperature of the substrate not only when the weight of the substrate is constant, but also when the weight of the substrate changes over time. This has the effect that it can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分子線エビタキ装置の説明図、第2図
は本発明の分子線エピタキシ装置の他の実施例の説明図
、第3図は本発明の分子線エピタキシ装置における温度
制御する制御系のブロック図。 第4図は従来の分子線エピタキシ装置の説明図である。 1・・・真空容器、2・・・基板、5,13・・・ヒー
タ、8・・・放射温度計、11・・・黒体放射源、17
・・・熱電対、18・・・チョッパ。
Figure 1 is an explanatory diagram of the molecular beam epitaxy apparatus of the present invention, Figure 2 is an explanatory diagram of another embodiment of the molecular beam epitaxy apparatus of the present invention, and Figure 3 is an illustration of temperature control in the molecular beam epitaxy apparatus of the present invention. Block diagram of the control system. FIG. 4 is an explanatory diagram of a conventional molecular beam epitaxy apparatus. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Substrate, 5, 13... Heater, 8... Radiation thermometer, 11... Black body radiation source, 17
...Thermocouple, 18...Chopper.

Claims (1)

【特許請求の範囲】 1、基板表面の温度を検出し、基板の加熱温度を制御し
ながら基板に分子線を照射してエピタキシャル成長させ
る分子線エピタキ装置において、基板表面にたてた垂線
に対称に黒体放射源と放射温度計とを配置し、基板の温
度と黒体放射源の温度とを独立に制御し、前記放射温度
計は黒体放射源から放射され基板表面で反射された熱量
と基板表面から放射された熱量とを検出して基板表面の
温度を計測するとともに基板表面の温度を制御するよう
構成したことを特徴とする分子線エピタキシ装置。 2、特許請求の範囲第1項記載の装置において、基板の
温度と黒体放射源の温度とを独立に制御する手段は、基
板の温度を計測し、調節器によりヒータを調節して基板
の温度を制御する基板温度制御系と、黒体放射源の温度
を計測し、調節器によりヒータを調節して黒体放射源の
温度を制御する黒体放射源温度制御系とからなり、基板
の温度を演算する演算部に黒体放射源の温度をフィード
バックしながら基板の加熱温度を制御することを特徴と
する分子線エピタキシ装置。
[Claims] 1. In a molecular beam epitaxy device that detects the temperature of the substrate surface and irradiates the substrate with molecular beams to achieve epitaxial growth while controlling the heating temperature of the substrate, A black body radiation source and a radiation thermometer are disposed, and the temperature of the substrate and the temperature of the black body radiation source are independently controlled, and the radiation thermometer measures the amount of heat emitted from the black body radiation source and reflected on the substrate surface. 1. A molecular beam epitaxy apparatus characterized by being configured to measure the temperature of the substrate surface by detecting the amount of heat radiated from the substrate surface and to control the temperature of the substrate surface. 2. In the apparatus according to claim 1, the means for independently controlling the temperature of the substrate and the temperature of the black body radiation source measures the temperature of the substrate and adjusts the heater with the regulator to control the temperature of the substrate. It consists of a substrate temperature control system that controls the temperature, and a blackbody radiation source temperature control system that measures the temperature of the blackbody radiation source and controls the temperature of the blackbody radiation source by adjusting the heater with a regulator. A molecular beam epitaxy apparatus that controls the heating temperature of a substrate while feeding back the temperature of a blackbody radiation source to a calculation unit that calculates the temperature.
JP60140335A 1985-06-28 1985-06-28 Molecular beam epitaxy system Expired - Lifetime JPH0611027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140335A JPH0611027B2 (en) 1985-06-28 1985-06-28 Molecular beam epitaxy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140335A JPH0611027B2 (en) 1985-06-28 1985-06-28 Molecular beam epitaxy system

Publications (2)

Publication Number Publication Date
JPS622521A true JPS622521A (en) 1987-01-08
JPH0611027B2 JPH0611027B2 (en) 1994-02-09

Family

ID=15266431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140335A Expired - Lifetime JPH0611027B2 (en) 1985-06-28 1985-06-28 Molecular beam epitaxy system

Country Status (1)

Country Link
JP (1) JPH0611027B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512547A (en) * 2017-03-17 2020-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Non-contact temperature calibration tool for substrate support and method of use thereof
CN113252195A (en) * 2021-05-12 2021-08-13 新磊半导体科技(苏州)有限公司 Method for determining substrate temperature in molecular beam epitaxy equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164131U (en) * 1980-05-07 1981-12-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164131U (en) * 1980-05-07 1981-12-05

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512547A (en) * 2017-03-17 2020-04-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Non-contact temperature calibration tool for substrate support and method of use thereof
CN113252195A (en) * 2021-05-12 2021-08-13 新磊半导体科技(苏州)有限公司 Method for determining substrate temperature in molecular beam epitaxy equipment
CN113252195B (en) * 2021-05-12 2024-01-26 新磊半导体科技(苏州)股份有限公司 Method for determining substrate temperature in molecular beam epitaxy equipment

Also Published As

Publication number Publication date
JPH0611027B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US3492869A (en) Means of measuring surface temperature by reflection
JPH0674836A (en) Non-contact temperature measuring device based on automatic calibration sensor pair
US3924469A (en) Apparatus for measuring surface temperatures of objects by infrared radiation therefrom
JPH1019815A (en) Thermal analysis and x-ray measuring device
JPS622521A (en) Molecular beam epitaxial device
JP3079216B2 (en) Specific heat capacity measurement method
CN207908059U (en) A kind of visor for infrared radiation thermometer temperature correction and a kind of means for correcting of infrared radiation thermometer
JP6401350B2 (en) Calibration method of temperature adjustment during thermal analysis of sample
CN108132100A (en) A kind of means for correcting of infrared radiation thermometer and bearing calibration
Tanaka et al. Theory of a new radiation thermometry method and an experimental study using galvannealed steel specimens
JPH1123505A (en) Thermal analysis device
JP2664088B2 (en) Thermal change temperature measurement method
JP2982026B2 (en) Temperature measuring device and temperature measuring device for body to be heated using the same
JPH0779083B2 (en) Molecular beam epitaxy system
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
JPH0676922B2 (en) Radiation temperature measuring device
JP2001304968A (en) Method and device for measuring temperature of heated object
JPH0367137A (en) Surface temperatude controller
SU412496A1 (en) METHOD OF RELATIVE MEASUREMENT OF THE DEGREE OF BLACKNESS OF SOLID TELTIJObi "l ;; .- ^! - ':? -?; ^ * ^?". WIJ in S, -' • <. -, - '.- ^ r ^ V •• fi 'L' ^ - * r-; • ..-- • .-.; ^ N ,. "s (f'J
JPS61201182A (en) Multi-element detector for x-ray ct device
JPS5819519A (en) Method for measuring temperature of substrate
JPS5823892B2 (en) Heat capacity measurement method
JP3904423B2 (en) Molecular beam epitaxy apparatus and crystal growth method using the same
JPH01317190A (en) Detection of temperature distribution of device pulling up single crystal of compound semiconductor
JPS6038627A (en) Temperature measuring apparatus