JPH1019815A - Thermal analysis and x-ray measuring device - Google Patents

Thermal analysis and x-ray measuring device

Info

Publication number
JPH1019815A
JPH1019815A JP8195385A JP19538596A JPH1019815A JP H1019815 A JPH1019815 A JP H1019815A JP 8195385 A JP8195385 A JP 8195385A JP 19538596 A JP19538596 A JP 19538596A JP H1019815 A JPH1019815 A JP H1019815A
Authority
JP
Japan
Prior art keywords
sample
ray
thermal analysis
measurement
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8195385A
Other languages
Japanese (ja)
Other versions
JP3666831B2 (en
Inventor
Kasumi Sugiura
佳澄 杉浦
Kazuo Kuwabara
和男 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP19538596A priority Critical patent/JP3666831B2/en
Publication of JPH1019815A publication Critical patent/JPH1019815A/en
Application granted granted Critical
Publication of JP3666831B2 publication Critical patent/JP3666831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly heat a sample, enlarge an X-ray angle measurement range for the sample and measure in a sample temperature of 0 deg.C or less when both measurements of thermal analysis and X-ray measurement are carried out by one measuring device. SOLUTION: A sample 3 and a standard substance 4 are heated by heaters 1a, 1b. The sample 3, etc., is cooled by liquid nitrogen filling a coolant tank 7. A temperature of the sample 3 is controlled by these heating and cooling, while X-ray diffraction measurement is carried out for the sample 3 by an X-ray measurement system 11, and concurrently, thermal analysis in the sample 3 is carried out by a thermal analysis system 12. As the heaters 1a, 1b are disposed directly under the sample 3, etc., the sample 3, etc., can be uniformly heated. Moreover, as a face of the sample 3 is largely released, X rays R can be entered at a low angle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱分析測定及びX
線測定の両方の測定を行うことができる熱分析及びX線
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a thermal analysis and X-ray measurement device capable of performing both measurements of X-ray measurement.

【0002】[0002]

【従来の技術】熱分析というのは、試料の温度を変化さ
せたときのその試料の性質の温度依存症を測定すること
である。具体的な分析方法としては非常に多種類の方法
があるが、代表的なものをあげれば、例えば、示差熱分
析(DTA:Differential Thermal Analysis)や、示
差走査熱量測定(DSC:Differential Scanning Calo
rimetry)等がある。
2. Description of the Related Art Thermal analysis is the measurement of the temperature dependence of the properties of a sample when the temperature of the sample is changed. There are a wide variety of specific analysis methods, and typical examples include, for example, differential thermal analysis (DTA) and differential scanning calorimetry (DSC).
rimetry).

【0003】DTAというのは、試料と標準物質とを同
時に加熱して、反応の際に両者間に現れた温度差から試
料に発生した熱変化を知る方法である。DSCというの
は、試料内に発生した熱変化を、それを補償するのに必
要な熱量として求めるものであり、具体的には、試料と
標準物質との間に温度差が生じたら、いずれか一方に供
給する単位時間当たりの熱量を増やしたり、減らしたり
して、等速昇温、等速冷却あるいは等温の状態を保つよ
うに温度コントロールし、そのときに増やしたり、減ら
したりした熱量を測定するものである。DTAは、試料
の熱変化を温度差の形で間接的に測定するものであっ
て、例えば、転移熱すなわち潜熱は測定できないが、D
SCはその転移熱も測定できる。
[0003] DTA is a method of heating a sample and a standard material at the same time, and knowing a thermal change generated in the sample from a temperature difference appearing between the two during the reaction. DSC is to determine the heat change generated in the sample as the amount of heat required to compensate for it. Specifically, if a temperature difference occurs between the sample and the standard, any DSC Increase or decrease the amount of heat supplied per unit time to one side, control the temperature so that the temperature rises, cools, or maintains the isothermal state, and measure the amount of heat that was increased or decreased at that time Is what you do. DTA measures indirectly the thermal change of a sample in the form of a temperature difference. For example, the transition heat or latent heat cannot be measured.
SC can also measure its heat of transition.

【0004】一方、X線測定というのは、試料にX線を
照射してその試料で回折又は反射するX線を検出してそ
の試料の性質を測定することである。このX線測定の具
体的な分析手法としても非常に多種類の方法があるが、
例えばX線回折測定、X線反射率測定がある。
On the other hand, X-ray measurement means irradiating a sample with X-rays, detecting X-rays diffracted or reflected by the sample, and measuring the properties of the sample. There are a wide variety of specific analysis methods for this X-ray measurement,
For example, there are X-ray diffraction measurement and X-ray reflectance measurement.

【0005】X線回折測定というのは、試料で回折した
X線を検出する測定であり、X線反射率測定というの
は、試料で反射したX線を検出する測定である。一般に
は、試料に入射するX線の入射角度が大きい場合に、X
線が試料で回折することが多い。そして、X線入射角度
が小さい場合に、X線が試料で反射することが多い。
[0005] X-ray diffraction measurement is a measurement for detecting X-rays diffracted by a sample, and X-ray reflectivity measurement is a measurement for detecting X-rays reflected by a sample. Generally, when the incident angle of the X-ray incident on the sample is large, X
Lines often diffract at the sample. When the X-ray incidence angle is small, the X-ray is often reflected by the sample.

【0006】従来、産業界においては、熱分析について
はそれ専用の測定装置を使ってその測定を行い、X線測
定についてはそれ専用の測定装置を使ってその測定を行
うというのが一般的であった。しかしながら、少ない例
ではあるが、熱分析及びX線測定の両方を1つの測定装
置によって行うようにしたものも提案されている。例え
ば、図5及び図6に示すように、円筒形状のヒータ51
又は52の内部に試料53及び標準物質54を配置し、
試料53及び標準物質54の両方をヒータ51,52に
よって加熱しながら、試料53にX線Rを照射してX線
測定を行い、一方、熱電対55によって試料53及び標
準物質54の温度を検出して熱分析を行うようにした装
置が知られている。
Heretofore, in the industry, it has been common practice to measure thermal analysis using a dedicated measuring device, and to perform X-ray measurement using a dedicated measuring device. there were. However, although few examples have been proposed, both thermal analysis and X-ray measurement are performed by one measuring device. For example, as shown in FIG. 5 and FIG.
Or placing a sample 53 and a standard substance 54 inside 52,
While heating both the sample 53 and the standard material 54 by the heaters 51 and 52, the sample 53 is irradiated with X-rays R to perform X-ray measurement, while the thermocouple 55 detects the temperature of the sample 53 and the standard material 54. There is known an apparatus for performing thermal analysis.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図5及
び図6に示すような従来の熱分析及びX線測定装置にお
いては、0℃以下の温度に関する測定や、試料温度を急
速に加熱冷却するような測定を行うことができなかっ
た。また、図5に示すように高さの高いヒータ51を用
いる場合には、X線Rを試料53へ低角度で入射させる
ことができないという問題がある。一方、図6に示すよ
うな高さの低いヒータ52を用いる場合には、X線Rを
低角度から試料53へ入射することができるものの、ヒ
ータ52による試料室H内の温度分布が極端に悪くなる
という問題が発生する。
However, in the conventional thermal analysis and X-ray measuring apparatus as shown in FIGS. 5 and 6, measurement relating to a temperature of 0 ° C. or less and rapid heating and cooling of the sample temperature are performed. Measurement could not be performed. Further, when a high heater 51 is used as shown in FIG. 5, there is a problem that X-rays R cannot be incident on the sample 53 at a low angle. On the other hand, when the heater 52 having a low height as shown in FIG. 6 is used, although the X-ray R can be incident on the sample 53 from a low angle, the temperature distribution in the sample chamber H by the heater 52 is extremely low. The problem of getting worse occurs.

【0008】本発明は、上記の問題点を解消するために
なされたものであって、熱分析及びX線測定の両方の測
定を1つの測定装置によって行う場合に、試料を均一な
温度分布で加熱でき、しかも試料に対して低角度からX
線を入射できるようにすることを第1の目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and when both a thermal analysis and an X-ray measurement are performed by a single measuring apparatus, a sample is formed with a uniform temperature distribution. Can be heated, and X from a low angle to the sample
A first object is to enable the incidence of a line.

【0009】また、熱分析及びX線測定の両方の測定を
1つの測定装置によって行う場合に、0℃以下の温度に
関する測定や、試料温度を急速に加熱冷却するような測
定を行うことができるようにすることを第2の目的とす
る。
Further, when both the thermal analysis and the X-ray measurement are performed by one measuring device, it is possible to perform a measurement relating to a temperature of 0 ° C. or less and a measurement such as heating and cooling the sample temperature rapidly. The second object is to do so.

【0010】[0010]

【課題を解決するための手段】上記第1の目的を達成す
るため、本発明に係る熱分析及びX線測定装置は、熱分
析測定系及びX線測定系の両測定系を備え、さらに、試
料のX線照射面の裏側であってその試料に接触又は近接
する位置にヒータを設けたことを特徴としている。
In order to achieve the first object, a thermal analysis and X-ray measuring apparatus according to the present invention comprises both a thermal analysis measuring system and an X-ray measuring system, A heater is provided on the back side of the X-ray irradiation surface of the sample and at a position in contact with or close to the sample.

【0011】また、上記第2の目的を達成するため、本
発明に係る熱分析及びX線測定装置は、熱分析測定系及
びX線測定系の両測定系を備え、さらに、試料を加熱す
る試料加熱手段と、試料を冷却するための試料冷却手段
とを有することを特徴としている。
In order to achieve the second object, the thermal analysis and X-ray measuring apparatus according to the present invention comprises both a thermal analysis measuring system and an X-ray measuring system, and further heats the sample. It is characterized by having a sample heating means and a sample cooling means for cooling the sample.

【0012】上記試料冷却手段の構成は特定のものに限
定されないが、望ましくは、試料のまわりに冷媒タンク
を設け、その冷媒タンク内に液体窒素を貯留する。ま
た、冷媒タンク内に液体窒素その他の寒剤を流すように
することもできる。また、試料冷却手段の別の構成とし
て、試料のまわりに螺旋状の冷媒パイプを設け、液体窒
素その他の寒剤をその冷媒パイプを通して循環させるこ
ともできる。
Although the structure of the sample cooling means is not limited to a specific one, preferably, a refrigerant tank is provided around the sample, and liquid nitrogen is stored in the refrigerant tank. In addition, liquid nitrogen or other cryogens may be allowed to flow in the refrigerant tank. Further, as another configuration of the sample cooling means, a spiral refrigerant pipe may be provided around the sample, and liquid nitrogen and other cryogens may be circulated through the refrigerant pipe.

【0013】試料のX線照射面の裏側であってその試料
に接触又は近接する位置にヒータを設けた構成の熱分析
及びX線測定装置では、図6に示すような高さの低い円
筒状ヒータを用いた従来の装置に比べて、試料を均一な
温度分布で加熱することができ、しかも、図5に示すよ
うな高さの高い円筒状ヒータを用いた従来の装置に比べ
て、試料に対するX線の入射角度を低角度側へ広げるこ
とができる。つまり、X線測定における測角範囲を広く
維持すること及び試料の温度分布を均一に維持すること
の両方の要求を同時に達成できる。
[0013] In a thermal analysis and X-ray measurement apparatus having a heater provided on the back side of an X-ray irradiation surface of a sample and at a position in contact with or close to the sample, a cylindrical shape having a low height as shown in FIG. A sample can be heated with a uniform temperature distribution as compared with a conventional apparatus using a heater, and the sample can be heated as compared with a conventional apparatus using a cylindrical heater having a high height as shown in FIG. The incident angle of X-rays to the beam can be widened toward the lower angle side. That is, both requirements of maintaining a wide angle measurement range in X-ray measurement and maintaining a uniform temperature distribution of the sample can be simultaneously achieved.

【0014】試料加熱手段及び試料冷却手段の両手段を
備えた構造の熱分析及びX線測定装置では、試料を高温
にしたいときには試料加熱手段を用い、試料を0℃以下
にしたいときには試料冷却手段を用い、また、試料温度
を高温から急速に冷却したいときには試料加熱手段及び
試料冷却手段の両方を用いる。
In a thermal analysis and X-ray measuring apparatus having a structure provided with both a sample heating means and a sample cooling means, the sample heating means is used when the sample is to be heated to a high temperature, and the sample cooling means is used when the sample is to be kept at 0 ° C. or lower. When it is desired to rapidly cool the sample temperature from a high temperature, both the sample heating means and the sample cooling means are used.

【0015】[0015]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1は、本発明に係る熱分析及びX線
測定装置の一実施形態を示している。この装置は、円筒
状のブロック部材2と、ブロック部材2の中心部に形成
した凹状の試料室Hと、試料室Hの上部を気密に覆う円
弧状のカバー6と、そして試料室Hのまわりを取り囲む
ようにブロック部材2の内部に形成したリング状の冷媒
タンク7とを有している。
(First Embodiment) FIG. 1 shows an embodiment of a thermal analysis and X-ray measurement apparatus according to the present invention. The apparatus comprises a cylindrical block member 2, a concave sample chamber H formed at the center of the block member 2, an arc-shaped cover 6 for hermetically covering the upper part of the sample chamber H, and a periphery of the sample chamber H. And a ring-shaped refrigerant tank 7 formed inside the block member 2 so as to surround the same.

【0016】試料室Hの内部には、2本の支持棒8a及
び8bが立てられ、それらの支持棒の上端に試料皿9a
及び9bが設けられている。一方の試料皿9aの上には
試料3が載せられ、他方の試料皿9bの上には標準物質
4が載せられている。標準物質4としては、温度変化し
ても性質に変化のない材料、すなわち熱的に安定な材料
が用いられる。試料3の直下、すなわち試料3のX線照
射面の裏側であってその試料3に接触又は近接する位置
には、上下2段にわたってヒータ1aが設けられる。ま
た、標準物質4の直下にもヒータ1bが上下2段にわた
って設けられる。
Inside the sample chamber H, two support rods 8a and 8b are set up, and a sample plate 9a is provided at the upper end of the support rods.
And 9b are provided. The sample 3 is placed on one sample dish 9a, and the standard substance 4 is placed on the other sample dish 9b. As the standard substance 4, a material whose properties do not change even when the temperature changes, that is, a thermally stable material is used. Immediately below the sample 3, that is, on the back side of the X-ray irradiation surface of the sample 3 and at a position in contact with or close to the sample 3, a heater 1 a is provided in two upper and lower stages. Further, a heater 1b is provided immediately below the standard substance 4 in two vertical stages.

【0017】カバー6は、図2に示すように、上から見
ると長方形状に形成され、その中央部にはX線透過窓1
0が設けられている。試料室H内が比較的低温、例えば
500℃程度までしか上がらない場合は、例えばステン
レスや真鍮によってカバー6を形成する。また、試料室
Hが比較的高温、例えば1500℃程度まで上がる場合
は、例えばアルミナによってカバー6を形成する。ま
た、X線透過窓10は、気密性を保持でき、さらにX線
を透過できる材料、例えば、ベリリウム(Be)やニッ
ケル等によって形成する。
As shown in FIG. 2, the cover 6 is formed in a rectangular shape when viewed from above, and has an X-ray transmission window 1 at the center thereof.
0 is provided. When the inside of the sample chamber H rises only at a relatively low temperature, for example, about 500 ° C., the cover 6 is formed of, for example, stainless steel or brass. When the temperature of the sample chamber H rises to a relatively high temperature, for example, about 1500 ° C., the cover 6 is formed of, for example, alumina. The X-ray transmission window 10 is formed of a material that can maintain airtightness and transmit X-rays, such as beryllium (Be) and nickel.

【0018】図1において、冷媒タンク7の内部には、
冷却媒体、例えば液化窒素(LN2)が貯留されてい
る。支持棒8a及び8bの内部には、それぞれ、試料3
の底面及び標準物質4の底面を測温点とする熱電対5a
及び5bが格納されている。
In FIG. 1, inside the refrigerant tank 7,
A cooling medium, for example, liquefied nitrogen (LN 2 ) is stored. Samples 3 are provided inside the support rods 8a and 8b, respectively.
Thermocouple 5a whose bottom is the temperature measurement point and the bottom of the standard material 4
And 5b are stored.

【0019】上記の試料支持系の上方にはX線測定系1
1が配設され、その下方には熱分折系12が配設されて
いる。本実施形態の場合、X線測定系11はθ−θ走査
形式のX線回折装置によって構成され、熱分析系12は
示差走査熱量測定(DSC)装置によって構成されてい
る。詳しく説明すれば、X線測定系11は、X線源F
と、X線カウンタ13と、X線強度演算回路14と、そ
してX線回折記録計15とによって構成されている。熱
分析系12は、T及びΔT測定回路16と、熱量補償回
路17と、そして熱分析記録計18とによって構成され
ている。
An X-ray measuring system 1 is provided above the sample supporting system.
1 is disposed, and a thermal analysis system 12 is disposed below the reference numeral 1. In the case of the present embodiment, the X-ray measurement system 11 is configured by an X-ray diffractometer of a θ-θ scanning format, and the thermal analysis system 12 is configured by a differential scanning calorimeter (DSC). More specifically, the X-ray measurement system 11 includes an X-ray source F
, An X-ray counter 13, an X-ray intensity calculation circuit 14, and an X-ray diffraction recorder 15. The thermal analysis system 12 includes a T and ΔT measurement circuit 16, a calorific value compensation circuit 17, and a thermal analysis recorder 18.

【0020】以下、上記構成により成る熱分析及びX線
測定装置の動作について説明する。試料室Hの内部は、
冷媒タンク7内のLN2 によって一定の冷却能力で冷却
される。そして同時に、試料3及び標準物質4は、それ
ぞれに対応するヒータ1a及び1bによって等しい温度
に加熱される。ヒータ 1a,1bはそれぞれ試料3及び
標準物質4に接触又は近接して設けられるので、試料3
及び標準物質4はそれらの全域にわたって均一に加熱さ
れて、均一に昇温する。試料室H内の昇温及び降温状態
は、温度コントローラを兼ねた熱量補償回路17に予め
記憶されたプログラムに従って制御される。LN2 を用
いた冷却手段を設置してあるので、試料室Hの内部を0
℃以下に設定することもでき、また、一旦設定した高温
を急速に冷却することもできる。
Hereinafter, the operation of the thermal analysis and X-ray measuring apparatus having the above configuration will be described. The inside of the sample chamber H is
The cooling is performed with a constant cooling capacity by LN 2 in the refrigerant tank 7. At the same time, the sample 3 and the standard substance 4 are heated to the same temperature by the corresponding heaters 1a and 1b. Since the heaters 1a and 1b are provided in contact with or close to the sample 3 and the standard material 4, respectively,
And the reference material 4 is uniformly heated over the entire region, and the temperature is uniformly increased. The temperature rise and fall in the sample chamber H are controlled according to a program stored in advance in the calorific value compensation circuit 17 also serving as a temperature controller. Since the cooling means using LN 2 is installed, the inside of the sample chamber H
The temperature can be set to not more than ℃, and the high temperature once set can be rapidly cooled.

【0021】このように試料3及び標準物質4を温度制
御した状態で、以下の通りに、X線回折測定系11によ
るX線回折測定及び熱分析系12による示差走査熱量測
定(DSC)が行われる。
With the temperature of the sample 3 and the standard substance 4 controlled as described above, X-ray diffraction measurement by the X-ray diffraction measurement system 11 and differential scanning calorimetry (DSC) by the thermal analysis system 12 are performed as follows. Will be

【0022】(X線回折測定)X線源Fが試料3を中心
として図の上下方向へ走査回転(いわゆるθ回転)し、
それに同期してX線カウンタ13が、等しい速度で反対
方向へ試料3を中心として走査回転(いわゆるθ回転)
する。これらのθ回転の間、X線源Fから出たX線Rが
試料3に入射する。図示はしてないが、必要に応じて、
X線源Fから試料3に至るX線光路上にはX線Rの発散
を規制する発散規制スリットや、連続X線を単色化する
モノクロメータ等が配設される。
(X-ray Diffraction Measurement) The X-ray source F scans and rotates (so-called θ rotation) in the vertical direction of FIG.
In synchronism therewith, the X-ray counter 13 rotates in the opposite direction at the same speed for scanning around the sample 3 (so-called θ rotation).
I do. During these θ rotations, the X-rays R emitted from the X-ray source F enter the sample 3. Although not shown, if necessary,
On the X-ray optical path from the X-ray source F to the sample 3, a divergence restricting slit for restricting the divergence of the X-ray R, a monochromator for monochromatic continuous X-rays, and the like are provided.

【0023】試料3に入射するX線と試料3の結晶格子
面との間で、周知のブラッグ条件が満足されると、試料
3でX線が回折する。回折したX線は、X線カウンタ1
3の内部に取り込まれて電気的なパルス信号に変換され
て出力され、その出力パルスはX線強度演算回路14に
送られる。図示はしていないが、必要に応じて、X線カ
ウンタ13と試料3との間には、散乱X線がX線カウン
タ13に入るのを防止する散乱線阻止スリットや、X線
カウンタ13に向かう回折X線の断面形状を一定の大き
さに規制する受光スリット等が配設される。
When the well-known Bragg condition is satisfied between the X-ray incident on the sample 3 and the crystal lattice plane of the sample 3, the X-ray is diffracted by the sample 3. The diffracted X-ray is the X-ray counter 1
3, is converted into an electric pulse signal and output, and the output pulse is sent to the X-ray intensity calculation circuit 14. Although not shown, if necessary, a scattered ray blocking slit for preventing scattered X-rays from entering the X-ray counter 13 and a X-ray counter 13 are provided between the X-ray counter 13 and the sample 3. A light receiving slit or the like for regulating the cross-sectional shape of the traveling diffracted X-ray to a certain size is provided.

【0024】X線強度演算回路14はX線強度、すなわ
ち単位時間当たりの出力パルス数(cps)を演算し
て、その結果を記録計15へ送る。記録計15は、入射
X線Rに対するX線カウンタ13の回転角度、すなわち
2θ角度値に対する回折X線強度を求め、周知のX線回
折図形を作成する。このX線回折図形を検討することに
より、試料3を構成する物質の同定や、結晶構造の判定
や、その他種々の解析が行われる。
The X-ray intensity calculation circuit 14 calculates the X-ray intensity, that is, the number of output pulses per unit time (cps), and sends the result to the recorder 15. The recorder 15 determines the rotation angle of the X-ray counter 13 with respect to the incident X-ray R, that is, the diffraction X-ray intensity with respect to the 2θ angle value, and creates a well-known X-ray diffraction pattern. By examining the X-ray diffraction pattern, identification of the substance constituting the sample 3, determination of the crystal structure, and other various analyzes are performed.

【0025】(示差走査熱量測定)熱電対5aによって
検出される試料3の表面温度及び熱電対5bによって検
出される標準物質4の表面温度は、T及びΔT測定回路
16へ送られる。測定回路16は、試料3及び標準物質
4の温度(T)を測定し、同時に両者の差(ΔT)を演
算する。演算結果は熱量補償回路17へ送られる。熱量
補償回路17は、ΔTが0(ゼロ)でないとき、それを
補償してΔT=0となるように、試料側ヒータ1a又は
標準物質側ヒータ1bのいずれかへの通電量を調節し、
そのときに供給した熱量を測定する。これにより、試料
3に発生する熱量変化が検出される。熱分析記録計18
は、試料温度(T)と試料に発生した熱量変化との関係
を求めてグラフ上に表示する。このグラフを検討するこ
とにより、試料3の物理的持性、例えば転移点や融解点
等の温度依存性を測定する。
(Differential Scanning Calorimetry) The surface temperature of the sample 3 detected by the thermocouple 5a and the surface temperature of the standard substance 4 detected by the thermocouple 5b are sent to the T and ΔT measuring circuit 16. The measurement circuit 16 measures the temperature (T) of the sample 3 and the standard substance 4 and simultaneously calculates the difference (ΔT) between them. The calculation result is sent to the calorie compensation circuit 17. When ΔT is not 0 (zero), the heat amount compensating circuit 17 adjusts the amount of current supplied to either the sample-side heater 1a or the standard-material-side heater 1b so that ΔT = 0 by compensating for ΔT,
The amount of heat supplied at that time is measured. Thus, a change in the amount of heat generated in the sample 3 is detected. Thermal analysis recorder 18
Indicates the relationship between the sample temperature (T) and the change in the amount of heat generated in the sample, and displays the relationship on a graph. By examining this graph, the physical durability of the sample 3, for example, the temperature dependence of the transition point, melting point, and the like is measured.

【0026】以上のように、本実施例の熱分析及びX線
測定装置によれば、1つの試料3に対してX線測定及び
熱分析の2種類の測定を同時に行うことができる。
As described above, according to the thermal analysis and X-ray measurement apparatus of the present embodiment, two types of measurement, X-ray measurement and thermal analysis, can be simultaneously performed on one sample 3.

【0027】(第2実施形態)図4は、本発明に係る熱
分析及びX線測定装置の他の実施形態を示している。こ
の熱分析及びX線測定装置が図1に示した装置と異なる
点は、熱分析系22として、示差走査熱量測定(DS
C)装置に代えて示差熱分析(DTA)装置を用いた点
である。
(Second Embodiment) FIG. 4 shows another embodiment of the thermal analysis and X-ray measuring apparatus according to the present invention. This thermal analysis and X-ray measurement apparatus is different from the apparatus shown in FIG. 1 in that a differential scanning calorimeter (DS
C) A point that a differential thermal analysis (DTA) device was used instead of the device.

【0028】このDTA装置は、T及びΔT測定回路1
6と、熱分析記録計18と、そして温度コントローラ2
7とを有している。温度コントローラ27は予め決めら
れたプログラムに従って、試料側ヒータ1a及び標準物
質側ヒータ1bへの通電を制御する。熱分析記録計18
は、試料3と標準物質4との間の温度差(ΔT)と、試
料3の温度変化(T)との関係を求めてグラフ上に表示
する。
This DTA device has a T and ΔT measuring circuit 1
6, thermal analysis recorder 18, and temperature controller 2
7 are provided. The temperature controller 27 controls energization to the sample-side heater 1a and the standard-material-side heater 1b according to a predetermined program. Thermal analysis recorder 18
Indicates the relationship between the temperature difference (ΔT) between the sample 3 and the standard substance 4 and the temperature change (T) of the sample 3 and displays the relationship on a graph.

【0029】以上、好ましい実施例をあげて本発明を説
明したが、本発明はその実施例に限られることなく、請
求の範囲に記載した技術的範囲内で種々に改変できる。
例えば、LN2 を冷媒タンク7内に貯留するのではなく
て、常時その冷媒タンク7を通過させて流すようにする
こともできる。また図3に示すように、冷媒タンク7に
替えて、図の上方から見て螺旋状の冷媒パイプ19を試
料室Hのまわりに配設しこの冷媒パイプ19の上端吸入
口20から導入したLN2 を下端排出口21から排出す
るように構成しても良い。
Although the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the embodiments but can be variously modified within the technical scope described in the claims.
For example, instead of storing LN 2 in the refrigerant tank 7, the LN 2 may always flow through the refrigerant tank 7. As shown in FIG. 3, a helical refrigerant pipe 19 is disposed around the sample chamber H when viewed from above in place of the refrigerant tank 7, and LN introduced from an upper end inlet 20 of the refrigerant pipe 19 is provided. 2 may be configured to be discharged from the lower end discharge port 21.

【0030】熱分析系は上記説明で例示したDSC及び
DTA以外の任意の熱分析系を適用できる。X線測定系
は上記説明で例示したX線回折装置以外に、X線反射率
測定装置や、蛍光X線装置等といったその他の任意のX
線装置を適用できる。
As the thermal analysis system, any thermal analysis system other than the DSC and DTA exemplified in the above description can be applied. The X-ray measuring system is not limited to the X-ray diffractometer exemplified in the above description, but may be any other X-ray reflectometer, fluorescent X-ray apparatus, or any other X-ray measuring apparatus.
Wire device can be applied.

【0031】[0031]

【発明の効果】請求項1記載の熱分析及びX線測定装置
によれば、試料を均一な温度分布で加熱でき、しかも試
料に対して低角度からX線を入射できる。すなわち、試
料を均一に加熱するという要求と、X線装置の測角範囲
を広く維持するという要求の2つの要求を同時に満足で
きる。
According to the thermal analysis and X-ray measuring apparatus of the first aspect, the sample can be heated with a uniform temperature distribution, and the X-ray can be incident on the sample from a low angle. That is, two requirements, that is, a requirement to uniformly heat the sample and a requirement to maintain a wide angle measurement range of the X-ray apparatus can be satisfied at the same time.

【0032】請求項2記載の熱分析及びX線測定装置に
よれば、熱分析及びX線測定の両方の測定を1つの測定
装置によって行う場合に、0℃以下の温度に関する測定
や、試料温度を急速に加熱冷却するような測定を行うこ
とができる。
According to the thermal analysis and X-ray measuring apparatus of the second aspect, when both the thermal analysis and the X-ray measurement are performed by one measuring apparatus, the measurement relating to the temperature of 0 ° C. or less and the sample temperature Can be measured such that the sample is rapidly heated and cooled.

【0033】請求項3記載の熱分析及びX線測定装置に
よれば、試料の均一加熱、X線装置の測角範囲の拡大、
0℃以下の試料温度に関する測定、そして試料温度の急
速加熱又は急速冷却といった全ての要求を満足できる。
According to the thermal analysis and X-ray measurement apparatus of the third aspect, uniform heating of the sample, expansion of the angle measurement range of the X-ray apparatus,
All requirements such as measurement for sample temperatures below 0 ° C. and rapid heating or cooling of the sample temperature can be satisfied.

【0034】請求項4又は請求項5記載の熱分析及びX
線測定装置によれば、簡単な構造で効率良く試料を冷却
できる。
The thermal analysis according to claim 4 or 5, and X
According to the line measurement device, the sample can be efficiently cooled with a simple structure.

【0035】[0035]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る熱分析及びX線測定装置の一実施
形態を示す断面模式図である。
FIG. 1 is a schematic sectional view showing an embodiment of a thermal analysis and X-ray measurement apparatus according to the present invention.

【図2】同熱分析及びX線測定装置の平面図である。FIG. 2 is a plan view of the thermal analysis and X-ray measurement apparatus.

【図3】本発明に係る熱分析及びX線測定装置の他の一
実施形態を示す断面図である。
FIG. 3 is a sectional view showing another embodiment of the thermal analysis and X-ray measurement apparatus according to the present invention.

【図4】本発明に係る熱分析及びX線測定装置のさらに
他の一実施形態を示す断面図である。
FIG. 4 is a sectional view showing still another embodiment of the thermal analysis and X-ray measurement apparatus according to the present invention.

【図5】従来の熱分析及びX線測定装置の一例を示す断
面図である。
FIG. 5 is a cross-sectional view showing an example of a conventional thermal analysis and X-ray measurement device.

【図6】従来の熱分析及びX線測定装置の他の一例を示
す断面図である。
FIG. 6 is a cross-sectional view showing another example of a conventional thermal analysis and X-ray measurement apparatus.

【符号の説明】[Explanation of symbols]

1a,1b ヒータ 2 ブロック部材 3 試料 4 標準物質 5a,5b 熱電対 6 カバー 7 冷媒タンク 8a,8b 支持棒 9a,9b 試料皿 10 X線透過窓 11 X線測定系 12 熱分析系 13 X線カウンタ 19 冷媒パイプ 22 熱分析系 R X線 H 試料室 F X線源 1a, 1b Heater 2 Block member 3 Sample 4 Standard substance 5a, 5b Thermocouple 6 Cover 7 Refrigerant tank 8a, 8b Support rod 9a, 9b Sample dish 10 X-ray transmission window 11 X-ray measurement system 12 Thermal analysis system 13 X-ray counter 19 Refrigerant pipe 22 Thermal analysis system R X-ray H Sample chamber F X-ray source

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 試料の温度を変化させたときのその試料
の性質の温度依存性を測定する熱分析測定と、試料にX
線を照射してその試料で回折又は反射するX線を検出し
てその試料の性質を測定するX線測定との両方の測定を
行うことができる熱分析及びX線測定装置において、 試料のX線照射面の裏側であってその試料に接触又は近
接する位置にヒータを設けたことを特徴とする熱分析及
びX線測定装置。
1. A thermoanalytical measurement for measuring the temperature dependence of the properties of a sample when the temperature of the sample is changed, and a X-ray
In a thermal analysis and X-ray measurement apparatus capable of performing both X-ray measurement of irradiating X-rays and detecting the X-ray diffracted or reflected by the sample and measuring the properties of the sample, A thermal analysis and X-ray measurement apparatus, characterized in that a heater is provided at a position on the back side of the radiation surface and in contact with or close to the sample.
【請求項2】 試料の温度を変化させたときのその試料
の性質の温度依存性を測定する熱分析測定と、試料にX
線を照射してその試料で回折又は反射するX線を検出し
てその試料の性質を測定するX線測定との両方の測定を
行うことができる熱分析及びX線測定装置において、 試料を加熱する試料加熱手段と、試料を冷却するための
試料冷却手段とを有することを特徴とする熱分析及びX
線測定装置。
2. A thermoanalytical measurement for measuring the temperature dependence of the properties of a sample when the temperature of the sample is changed, and X-ray
In a thermal analysis and X-ray measurement device capable of performing both X-ray measurement, which irradiates X-rays and detects X-rays diffracted or reflected by the sample and measures the properties of the sample, heating the sample Thermal analysis, comprising: a sample heating means for cooling the sample; and a sample cooling means for cooling the sample.
Line measuring device.
【請求項3】 請求項2記載の熱分析及びX線測定装置
において、試料加熱手段は、試料のX線照射面の裏側で
あってその試料に接触又は近接する位置に配置したヒー
タを有することを特徴とする熱分析及びX線測定装置。
3. The thermal analysis and X-ray measurement apparatus according to claim 2, wherein the sample heating means has a heater disposed at a position behind or in contact with or close to the sample, on the back side of the X-ray irradiation surface of the sample. A thermal analysis and X-ray measurement apparatus characterized by the above-mentioned.
【請求項4】 請求項2又は請求項3記載の熱分析及び
X線測定装置において、試料冷却手段は、液体窒素を貯
留する冷媒タンクを有することを特徴とする熱分析及び
X線測定装置。
4. The thermal analysis and X-ray measurement apparatus according to claim 2, wherein the sample cooling means has a refrigerant tank for storing liquid nitrogen.
【請求項5】 請求項2又は請求項3記載の熱分析及び
X線測定装置において、試料冷却手段は、液体窒素を循
環させて流す螺旋状の冷媒パイプを有することを特徴と
する熱分析及びX線測定装置。
5. The thermal analysis and X-ray measurement apparatus according to claim 2, wherein the sample cooling means has a helical refrigerant pipe for circulating and flowing liquid nitrogen. X-ray measurement device.
JP19538596A 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment Expired - Fee Related JP3666831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19538596A JP3666831B2 (en) 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19538596A JP3666831B2 (en) 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment

Publications (2)

Publication Number Publication Date
JPH1019815A true JPH1019815A (en) 1998-01-23
JP3666831B2 JP3666831B2 (en) 2005-06-29

Family

ID=16340289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19538596A Expired - Fee Related JP3666831B2 (en) 1996-07-04 1996-07-04 Thermal analysis and X-ray measurement equipment

Country Status (1)

Country Link
JP (1) JP3666831B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308417A2 (en) 2001-11-02 2003-05-07 Rigaku Corporation Method and apparatus for producing metal oxide
JP2005221363A (en) * 2004-02-05 2005-08-18 Rigaku Corp Sample support device for x-ray analysis, and x-ray analyzer
US6937695B2 (en) 2002-10-02 2005-08-30 Rigaku Corporation Analyzing apparatus and analyzing method
JP2010048618A (en) * 2008-08-20 2010-03-04 Tokyo Institute Of Technology Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
JP2010190807A (en) * 2009-02-20 2010-09-02 Sii Nanotechnology Inc Differential scanning calorimeter
JP2010203843A (en) * 2009-03-02 2010-09-16 Rigaku Corp X-ray and thermal analyzer
JP2010286323A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Sample holder for x-ray diffraction measurement and method of measuring x-ray diffraction
CN102519991A (en) * 2011-12-20 2012-06-27 大连理工大学 Natural gas hydrate heat transfer performance testing apparatus used in X-ray CT equipment
JP2012132697A (en) * 2010-12-20 2012-07-12 Rigaku Corp X-ray diffraction and thermal analysis simultaneous measurement device
CN103487459A (en) * 2013-10-15 2014-01-01 北京大学 Test system and method for cooling performance of microscale liquid cooler
CN105181509A (en) * 2015-08-07 2015-12-23 辽宁科技大学 Method for detecting use performance of refractory material
CN109164128A (en) * 2018-10-29 2019-01-08 中国科学院上海硅酸盐研究所 A kind of furnace body for thermal-analysis instrumentation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636503B (en) * 2011-11-24 2014-04-02 大连理工大学 CT (Electronic Computed X-ray Tomography technique) reformer for natural gas hydrate nature core and using method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1308417A2 (en) 2001-11-02 2003-05-07 Rigaku Corporation Method and apparatus for producing metal oxide
US6937695B2 (en) 2002-10-02 2005-08-30 Rigaku Corporation Analyzing apparatus and analyzing method
JP2005221363A (en) * 2004-02-05 2005-08-18 Rigaku Corp Sample support device for x-ray analysis, and x-ray analyzer
JP2010048618A (en) * 2008-08-20 2010-03-04 Tokyo Institute Of Technology Method for measuring phase transition conditions of sample to be subjected to phase transition, and measuring apparatus therefor
JP2010190807A (en) * 2009-02-20 2010-09-02 Sii Nanotechnology Inc Differential scanning calorimeter
JP2010203843A (en) * 2009-03-02 2010-09-16 Rigaku Corp X-ray and thermal analyzer
JP2010286323A (en) * 2009-06-10 2010-12-24 Honda Motor Co Ltd Sample holder for x-ray diffraction measurement and method of measuring x-ray diffraction
JP2012132697A (en) * 2010-12-20 2012-07-12 Rigaku Corp X-ray diffraction and thermal analysis simultaneous measurement device
CN102519991A (en) * 2011-12-20 2012-06-27 大连理工大学 Natural gas hydrate heat transfer performance testing apparatus used in X-ray CT equipment
CN103487459A (en) * 2013-10-15 2014-01-01 北京大学 Test system and method for cooling performance of microscale liquid cooler
CN105181509A (en) * 2015-08-07 2015-12-23 辽宁科技大学 Method for detecting use performance of refractory material
CN109164128A (en) * 2018-10-29 2019-01-08 中国科学院上海硅酸盐研究所 A kind of furnace body for thermal-analysis instrumentation

Also Published As

Publication number Publication date
JP3666831B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JPH1019815A (en) Thermal analysis and x-ray measuring device
US5439291A (en) Method and apparatus for AC Differential thermal analysis
US5141331A (en) Ultrasonic temperature measurement and uses in optical spectroscopy and calorimetry
EP0660110B1 (en) Infrared heated differential thermal analyzer
EP0634649B1 (en) Method and apparatus for thermal conductivity measurements
US20050190813A1 (en) Differential scanning calorimeter (DSC) with temperature controlled furnace
US5713665A (en) Method and apparatus for thermal diffusivity measurement
Virzi Computer modelling of heat transfer in Czochralski silicon crystal growth
US5589690A (en) Apparatus and method for monitoring casting process
JPH06118039A (en) Thermal analyzing device
SU1111695A3 (en) Apparatus for differential thermal analysis of materials
JP3079216B2 (en) Specific heat capacity measurement method
JP2008020311A (en) Analysis apparatus
JP3315368B2 (en) Thermal conductivity measuring device and measuring method
JP2007309750A (en) Blackbody furnace
US20190099837A1 (en) Compact absorptivity measurement system for additive manufacturing
JP2001318068A (en) Thermal analytical device
JPH0618333A (en) Temperature measuring method and device with infrared radiation spectrum
RU2811326C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using heat flow sensors
RU2807433C1 (en) Method for measuring thermophysical properties of materials and unit for its implementation using thermal imagers
US5365876A (en) Crystal face temperature determination means
JPH03237346A (en) Method for measuring specific heat
JP2664088B2 (en) Thermal change temperature measurement method
JPH0613484Y2 (en) Thermal conductivity measuring device
JPH06229951A (en) X-ray diffraction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees