JPS5823892B2 - Heat capacity measurement method - Google Patents

Heat capacity measurement method

Info

Publication number
JPS5823892B2
JPS5823892B2 JP13893578A JP13893578A JPS5823892B2 JP S5823892 B2 JPS5823892 B2 JP S5823892B2 JP 13893578 A JP13893578 A JP 13893578A JP 13893578 A JP13893578 A JP 13893578A JP S5823892 B2 JPS5823892 B2 JP S5823892B2
Authority
JP
Japan
Prior art keywords
sample
temperature
heat capacity
back surface
temperature rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13893578A
Other languages
Japanese (ja)
Other versions
JPS5565143A (en
Inventor
安積忠彦
桑原勝男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Original Assignee
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd filed Critical Rigaku Denki Co Ltd
Priority to JP13893578A priority Critical patent/JPS5823892B2/en
Publication of JPS5565143A publication Critical patent/JPS5565143A/en
Publication of JPS5823892B2 publication Critical patent/JPS5823892B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 平板状をなしだ試料の表面に例えばレーザ光のような輻
射線を瞬間的に入射させて、その裏面の温度上昇を観測
することにより、熱容量、熱拡散率および熱伝導率の二
定数を測定することができる。
[Detailed description of the invention] Heat capacity, thermal diffusivity, and thermal Two constants of conductivity can be measured.

すなわち試料に吸収された輻射線のエネルギ、試料の質
量、厚み、密度等が既知であるとき、裏面の温度上昇を
求めることによって熱容量が測定される。
That is, when the energy of the radiation absorbed by the sample, the mass, thickness, density, etc. of the sample are known, the heat capacity is measured by determining the temperature rise on the back surface.

またその2分の1の温度上昇を生ずる時間によって熱拡
散率が求められると共にこの熱拡散率と前記熱容量とに
よって熱伝導率を算出することができる。
Further, the thermal diffusivity can be determined by the time required for the temperature to rise by half of that temperature, and the thermal conductivity can be calculated from this thermal diffusivity and the heat capacity.

従って熱拡散率の測定には、温度上昇の絶対値を必要と
しないが熱容量および伝導率の測定には温度上昇の絶対
値を正確に求める必要がある。
Therefore, the absolute value of temperature rise is not required for measuring thermal diffusivity, but it is necessary to accurately determine the absolute value of temperature rise for measuring heat capacity and conductivity.

このだめ従来は試料の裏面に熱電対接点を添着していだ
が、熱の伝導損による誤差が大きいと共に工作が煩雑で
あり、かつ高温に加熱すると離脱し易い等の欠点があり
、最近は赤外線検出器による非接触的観測が注目されて
いる。
Conventionally, thermocouple contacts were attached to the back side of the sample, but there were drawbacks such as large errors due to heat conduction loss, complicated work, and easy detachment when heated to high temperatures.Recently, infrared detection Non-contact observation using instruments is attracting attention.

しかし試料裏面からの輻射線が入射する赤外線検出器の
出力と温度との関係を較正する必要がある。
However, it is necessary to calibrate the relationship between the output of the infrared detector, which receives radiation from the back surface of the sample, and temperature.

従来はこの較正のために基準試料の温度を徐々に変化し
て、接点を該試料の近傍に配置した熱電対で測定される
温度Tと赤外線検出器の出力Vとの関係から、第1図に
実線で示したような較正曲線を得ていた。
Conventionally, for this calibration, the temperature of the reference sample was gradually changed, and the relationship between the temperature T measured with a thermocouple whose contact point was placed near the sample and the output V of the infrared detector was calculated as shown in Figure 1. A calibration curve as shown by the solid line was obtained.

すなわち、任意の温度T1の試料にレーザ光等を瞬間的
に入射させた場合における赤外線検出器の出力変化ΔV
を測定し、上記曲線から;温度上昇ΔTを求めたもので
ある。
In other words, the output change ΔV of the infrared detector when a laser beam or the like is instantaneously incident on a sample at an arbitrary temperature T1
was measured, and the temperature rise ΔT was determined from the above curve.

しかし上記曲線は試料温度のみでなく、赤外線検出系に
おけるアパーチャ、反射鏡等から放射される熱線の影響
をも含むもので、試料温度Tの変化に伴ってこれらの温
度も変化している。
However, the above curve includes not only the sample temperature but also the influence of heat rays emitted from the aperture, reflector, etc. in the infrared detection system, and these temperatures change as the sample temperature T changes.

これに対して試料に輻:射線を瞬間的に入射させた場合
は、上記アパーチャ等が実質的にもとの温度を保持する
On the other hand, when radiation is instantaneously incident on the sample, the aperture and the like maintain substantially the original temperature.

このため上述の較正曲線による従来の赤外線検出型フラ
ッシュ法熱定数測定は誤差が含まれる欠点がある。
For this reason, the conventional infrared detection type flash method thermal constant measurement using the above-mentioned calibration curve has the drawback of containing errors.

本発明はこのような欠点のない熱容量測定法を提;供す
るもので、以下これについて説明する。
The present invention provides a heat capacity measurement method that does not have these drawbacks, and will be described below.

第2図は本発明の方法に用いられる装置の一例で、アル
ミナ等の試料保持筒1内に平板状の試料2を取付けて、
電気炉3の中に設置し、反射鏡4および半透明鏡5を介
してレーザ光源6から矢印:のように上記試料の表面に
レーザ光を瞬間的に照射する。
FIG. 2 shows an example of an apparatus used in the method of the present invention, in which a flat sample 2 is mounted inside a sample holding cylinder 1 made of alumina or the like.
It is installed in an electric furnace 3, and the surface of the sample is instantaneously irradiated with laser light from a laser light source 6 through a reflecting mirror 4 and a semi-transparent mirror 5 as shown by the arrow.

また試料の裏面から矢印のように放射される熱線を、ア
パーチャアおよびトロイダルミラ−8を介してインジウ
ム、アンチモンあるいハ硫化鉛のような赤外線検出器9
で検出するもので、熱電対10の出力を電圧計11で測
定することにより試料2の温度を検出すると共に試料に
照射するレーザ光のエネルギモニタ12および試料で反
射しだレーザ光のモニタ13によって試料に吸収される
エネルギを求める。
In addition, the heat rays emitted from the back surface of the sample in the direction of the arrow are passed through an aperture and a toroidal mirror 8 to an infrared detector 9 of indium, antimony, or lead halide.
The temperature of the sample 2 is detected by measuring the output of the thermocouple 10 with a voltmeter 11, and the energy monitor 12 of the laser beam irradiated to the sample and the monitor 13 of the laser beam reflected by the sample detect the temperature of the sample 2. Find the energy absorbed by the sample.

すなわちこのような装置を用いて、質量mおよび必要に
応じて厚みt、密度ρ等が既知の試料2を所望の温度T
Iに保持し、該試料にレーザ光を瞬間的に照射して、試
料に吸収されたエネルギΔQ並びに赤外線検出器の出力
変化ΔVx を測定する。
That is, using such an apparatus, a sample 2 whose mass m and, if necessary, thickness t, density ρ, etc. are known, is heated to a desired temperature T.
The sample is held at I, and the sample is momentarily irradiated with laser light to measure the energy ΔQ absorbed by the sample and the change in the output of the infrared detector ΔVx.

また上記第1図の装置に、第3図のように適宜の標準試
料14を設置すると共にその裏面に熱電対15の接点を
添着して、その試料を前述の試料2と同一の温度T1に
保持し、レーザ光を瞬間的に照射して電圧計16により
標準試料14の裏面温度Tを観測する。
Further, as shown in FIG. 3, a suitable standard sample 14 is installed in the apparatus shown in FIG. While holding the standard sample 14, the temperature T of the back surface of the standard sample 14 is observed using the voltmeter 16 by momentarily irradiating the laser beam.

同時に赤外線検出器9の出力Vを観測して、時間tに伴
う上記温度Tおよび出力Vの変化を記録する。
At the same time, the output V of the infrared detector 9 is observed, and changes in the temperature T and output V over time t are recorded.

第4図(a)および(b)はこれらの記録曲線の一例で
、時刻toにおいて表面にレーザ光を瞬間的に照射する
と、裏面の温度Tおよび赤外線検出器の出力Vは時間t
の経過と共に上昇して極太値となり、その後徐々に低下
する。
FIGS. 4(a) and (b) are examples of these recording curves. When the front surface is momentarily irradiated with a laser beam at time to, the temperature T of the back surface and the output V of the infrared detector change at time t.
As time passes, it increases to a very thick value, and then gradually decreases.

この低下する部分を延長して、時刻toにおける温度上
昇ΔT並びに出力ΔVを求め、ΔT/ΔVを算出する。
By extending this decreasing portion, the temperature rise ΔT and the output ΔV at time to are determined, and ΔT/ΔV is calculated.

その値と前述のように試料2について求めたΔVx と
の積によって該試料の裏面における温度上昇ΔTxを得
ることができる。
The temperature rise ΔTx on the back surface of the sample can be obtained by multiplying that value by ΔVx determined for sample 2 as described above.

第5図はこのようにして、試料2にレーザ光を照射した
場合における時間tと裏面の温度Tとの関係を画いたも
ので、温度Tが極大値に達した後の曲線を延長して、レ
ーザ光を照射した時刻toにおける温度上昇ΔT1
を求めることにより、熱容量CpをΔQ Cp=− mΔT1 として算出することができる。
Figure 5 depicts the relationship between the time t and the temperature T on the back surface when sample 2 is irradiated with laser light, and the curve after the temperature T reaches its maximum value is extended. , temperature rise ΔT1 at time to when the laser beam was irradiated
By determining this, the heat capacity Cp can be calculated as ΔQ Cp=-mΔT1.

なお温度上昇がΔV2 になる時間をtl とすると
熱拡散率αは、2 α−0,139− 1 で与えられ、熱伝導率λは λ−ρCpα である。
Note that if the time at which the temperature rise reaches ΔV2 is tl, then the thermal diffusivity α is given by 2α−0,139−1, and the thermal conductivity λ is λ−ρCpα.

また標準試料を用いて、これを順次各温度に保持した状
態でそれぞれレーザ光等を入射させて第6図のように、
温度TとΔT/ΔVの関係を求めた較正曲線、あるいは
較正表を予め作成しておくことにより、任意の試料につ
いて任意の温度における所要の温度上昇ΔT1を直ちに
求めることができる。
In addition, using a standard sample, we sequentially hold it at each temperature and irradiate it with a laser beam, etc., as shown in Figure 6.
By preparing in advance a calibration curve or a calibration table that determines the relationship between temperature T and ΔT/ΔV, it is possible to immediately determine the required temperature increase ΔT1 at any temperature for any sample.

以上説明したように本発明は、熱電対を添着した標準試
料の表面に輻射線を瞬間的に入射させ、上記熱電対で求
めた温度上昇と赤外線検出器の出力との関係にもとづい
て、試料裏面の温度上昇ΔT1 を得るものである。
As explained above, in the present invention, radiation is instantaneously incident on the surface of a standard sample to which a thermocouple is attached, and the sample is detected based on the relationship between the temperature rise determined by the thermocouple and the output of an infrared detector. This is to obtain the temperature rise ΔT1 on the back surface.

従って試料と赤外線検出器との間の光学系におけるアパ
ーチャあるいは反射鏡等の温度変化による誤差を含まな
いもので、正確な熱容量を測定することができる。
Therefore, it is possible to accurately measure heat capacity without including errors due to temperature changes in the aperture or reflecting mirror in the optical system between the sample and the infrared detector.

すなわち第1図に実線で示しだような従来の較正曲線は
試料から放射される熱線による出力Vsと光学系のアパ
ーチャ、反射鏡等の熱線による出力Vaとによるもので
ある。
That is, the conventional calibration curve as shown by the solid line in FIG. 1 is based on the output Vs due to the heat rays radiated from the sample and the output Va due to the heat rays from the aperture of the optical system, the reflecting mirror, etc.

かつ試料温度Tを徐々に変化した場合は試料から放射さ
れる熱線の一部が上記アパーチャ等に入射してその温度
も変化するから、温度Tの変化に伴って前記Vs、Va
が何れも変化し、温度Tと試料から熱線による出力Vs
との関係は破線のように表わされる。
In addition, when the sample temperature T is gradually changed, a part of the heat rays emitted from the sample enters the aperture, etc., and the temperature also changes.
changes, and the temperature T and the output Vs from the hot wire from the sample
The relationship with is shown as a broken line.

丑だ試料に輻射線を瞬間的に照射した場合は、前記アパ
ーチャ等の熱線にもとづく赤外線検出器の出力Vaは一
定に保たれるから、該検出器の出力変化ΔVは試料の熱
変化のみによるものである。
When a sample is instantaneously irradiated with radiation, the output Va of the infrared detector based on the heat rays of the aperture etc. is kept constant, so the output change ΔV of the detector is due only to the thermal change of the sample. It is something.

従って試料裏面における実際の温度変化ΔT′は上記破
線上における(Vs+ΔV)の点によって与えられるが
、該破線は未知の曲線であるから、この温度変化ΔT′
を知ることができないと共に実線の曲線によって求めた
温度変化ΔTは明らかに誤差を含んでいる。
Therefore, the actual temperature change ΔT' on the back surface of the sample is given by the point (Vs+ΔV) on the above-mentioned broken line, but since the broken line is an unknown curve, this temperature change ΔT'
cannot be known, and the temperature change ΔT determined by the solid curve clearly contains an error.

本発明の方法はこのような誤差を含むことなく、試料裏
面の温度変化を正確に測定して、試料の熱容量を精密に
求めることができる。
The method of the present invention does not include such errors and can accurately measure the temperature change on the back surface of the sample and accurately determine the heat capacity of the sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法による較正曲線を示しだ図、第2図
は本発明の方法を実施する装置の構成の一例を示しだ図
、第3図は本発明の方法による較正装置の一部を示しだ
図、第4図は本発明の方法において較正値を求めるだめ
の測定曲線の一例、第5図は本発明の方法によって得ら
れた曲線の一例、第6図は本発明の方法における較正曲
線の一例である。 なお図において、2は試料、14は標準試料、9は赤外
線検出器、6はレーザ光線、3は電気炉、10,15は
熱電対である。
Fig. 1 shows a calibration curve according to the conventional method, Fig. 2 shows an example of the configuration of an apparatus for carrying out the method of the present invention, and Fig. 3 shows a part of the calibration apparatus according to the method of the present invention. FIG. 4 is an example of a measurement curve for obtaining a calibration value using the method of the present invention, FIG. 5 is an example of a curve obtained using the method of the present invention, and FIG. This is an example of a calibration curve. In the figure, 2 is a sample, 14 is a standard sample, 9 is an infrared detector, 6 is a laser beam, 3 is an electric furnace, and 10 and 15 are thermocouples.

Claims (1)

【特許請求の範囲】[Claims] 1 所望の温度に保持した板状試料の表面に輻射線を瞬
間的に照射して裏面から放射される熱線の変化を赤外線
検出器で検出し、裏面に熱電対接点を添着して前記温度
に保持した板状基準試料の表面に輻射線を瞬間的に照射
して裏面から放射される熱線を前記試料の熱線検出系と
同一の検出系で検出してその赤外線検出器の出力と前記
熱電対で検出された温度上昇との関係にもとづいて前記
試料裏面の温度上昇を求め、この温度上昇と試料に吸収
された輻射線エネルギおよび試料の質量とによって該試
料の熱容量を得ることを特徴とする熱容量測定法。
1 Instantly irradiate the surface of a plate-shaped sample held at a desired temperature with radiation, detect changes in the heat rays emitted from the back surface with an infrared detector, and attach a thermocouple contact to the back surface to maintain the temperature. The surface of the plate-shaped reference sample held is momentarily irradiated with radiation, the heat rays emitted from the back surface are detected by the same detection system as the heat ray detection system of the sample, and the output of the infrared detector and the thermocouple are detected. The method is characterized in that the temperature rise on the rear surface of the sample is determined based on the relationship with the temperature rise detected in the sample, and the heat capacity of the sample is obtained from this temperature rise, the radiant energy absorbed by the sample, and the mass of the sample. Heat capacity measurement method.
JP13893578A 1978-11-13 1978-11-13 Heat capacity measurement method Expired JPS5823892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13893578A JPS5823892B2 (en) 1978-11-13 1978-11-13 Heat capacity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13893578A JPS5823892B2 (en) 1978-11-13 1978-11-13 Heat capacity measurement method

Publications (2)

Publication Number Publication Date
JPS5565143A JPS5565143A (en) 1980-05-16
JPS5823892B2 true JPS5823892B2 (en) 1983-05-18

Family

ID=15233574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13893578A Expired JPS5823892B2 (en) 1978-11-13 1978-11-13 Heat capacity measurement method

Country Status (1)

Country Link
JP (1) JPS5823892B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571792B2 (en) * 1987-09-29 1997-01-16 財団法人電力中央研究所 Thermal diffusivity measurement method at high temperature
JP5160816B2 (en) * 2007-06-19 2013-03-13 アルバック理工株式会社 Infrared detector temperature calibration method and specific heat capacity measurement method
DE102016117754B4 (en) * 2016-09-21 2019-03-21 Netzsch-Gerätebau GmbH Method for calibrating a device for the thermal analysis of samples
WO2022004888A1 (en) * 2020-07-02 2022-01-06 株式会社ベテル Method for calibrating thermophysical property measurement device, calibration program, storage medium, and reference sample

Also Published As

Publication number Publication date
JPS5565143A (en) 1980-05-16

Similar Documents

Publication Publication Date Title
JP3192161B2 (en) Non-contact measurement method and system for heated object temperature by radiation
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
US2837917A (en) Radiation systems for measuring temperature
US3672221A (en) Temperature sensor
US2611541A (en) Radiation pyrometer with illuminator
RU2617725C1 (en) Method for determining emissivity of hard materials and device for its implementation
US5221142A (en) Method and apparatus for temperature measurement using thermal expansion
Hanssen et al. Use of a high-temperature integrating sphere reflectometer for surface-temperature measurements
JPS5823892B2 (en) Heat capacity measurement method
Zhang et al. A transient method for total emissivity determination
US6375349B1 (en) Instrument configured to test multiple samples for the determination of thermophysical properties by the flash method
JPH09222404A (en) Method and device for measuring specific heat capacity
US2844033A (en) Radiant energy measurement methods and apparatus
US4185497A (en) Adiabatic laser calorimeter
US2968946A (en) Radiation pyrometer
Edwards An accurate carbon cone calorimeter for pulsed lasers
Ghizoni et al. Photopyroelectric measurement of the thermal diffusivity of solids
Gordon Measurement of ratio of absorptivity of sunlight to thermal emissivity
Bach et al. Temperature measurement of particulate surfaces
CN208206333U (en) A kind of temperature measurement system under dense ionization radiation environment
JPH08122155A (en) Radiation thermometry of object surface temperature
JPH03237346A (en) Method for measuring specific heat
JPH05507356A (en) Object temperature measurement method and device and heating method
Tsvetkov et al. Method for measuring optical characteristics of opaque and translucent solids at temperatures to 1600° C
RU213568U1 (en) DEVICE FOR DETERMINING THE ENERGY DENSITY IN A DEVICE FOR DETERMINING THERMAL CONDUCTIVITY BY THE LASER FLASH METHOD