JPH0611027B2 - Molecular beam epitaxy system - Google Patents

Molecular beam epitaxy system

Info

Publication number
JPH0611027B2
JPH0611027B2 JP60140335A JP14033585A JPH0611027B2 JP H0611027 B2 JPH0611027 B2 JP H0611027B2 JP 60140335 A JP60140335 A JP 60140335A JP 14033585 A JP14033585 A JP 14033585A JP H0611027 B2 JPH0611027 B2 JP H0611027B2
Authority
JP
Japan
Prior art keywords
temperature
substrate
radiation source
black body
body radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60140335A
Other languages
Japanese (ja)
Other versions
JPS622521A (en
Inventor
和正 藤岡
誠 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60140335A priority Critical patent/JPH0611027B2/en
Publication of JPS622521A publication Critical patent/JPS622521A/en
Publication of JPH0611027B2 publication Critical patent/JPH0611027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は分子線エピタキシ装置に係り、特に基板の温度
を正確に制御するのに好適な分子線エピタキシ装置に関
する。
Description: FIELD OF THE INVENTION The present invention relates to a molecular beam epitaxy apparatus, and more particularly to a molecular beam epitaxy apparatus suitable for accurately controlling the temperature of a substrate.

〔発明の背景〕[Background of the Invention]

従来、分子線エピタキシ装置において基板の温度制御
は、「分子線エピタキシー技術」(工業調査会,1984年
発行)に示される方法が知られている。第4図により説
明すれば、真空容器1内で基板2はサセプタ3に接着さ
れ、試料回転ホルダ4に取り付けられている。この試料
回転ホルダ4には基板2を加熱するヒータ5と、基板2
の温度を計測する熱電対6が固定されている。熱電対6
の先端は回転するサセプタ3には接触できないので、サ
セプタ3の中心部の近傍に固定される。このような取り
付け構造では、温度の絶対測定はできないので、真空容
器1の窓7を介して随時放射温度計8で熱電対6の指示
値の較正がなされている。基板2の温度制御は、この熱
電対6の指示値をフィードバックし、温度調節器9によ
りヒータ5の出力を制御して行っている。
Conventionally, for the temperature control of the substrate in the molecular beam epitaxy apparatus, the method shown in "Molecular beam epitaxy technology" (published by the Industrial Research Group, 1984) is known. Referring to FIG. 4, the substrate 2 is attached to the susceptor 3 in the vacuum container 1 and attached to the sample rotation holder 4. The sample rotation holder 4 includes a heater 5 for heating the substrate 2 and the substrate 2
The thermocouple 6 for measuring the temperature is fixed. Thermocouple 6
Since its tip cannot contact the rotating susceptor 3, it is fixed near the center of the susceptor 3. In such a mounting structure, since the temperature cannot be measured absolutely, the indicated value of the thermocouple 6 is calibrated by the radiation thermometer 8 via the window 7 of the vacuum container 1 at any time. The temperature of the substrate 2 is controlled by feeding back the indicated value of the thermocouple 6 and controlling the output of the heater 5 by the temperature controller 9.

しかし、上記構成の温度計測と制御法は、分子線セルか
ら飛んできた分子線10が基板2表面に付着して、基板
2のふく射率が変化するため、全体の熱バランスがくず
れ、基板2の温度と熱電対6の指示値の相対関係が一定
でなくなり、基板2の正しい温度を計測できない。従っ
て、温度制御ができないという問題があった。
However, in the temperature measurement and control method with the above configuration, the molecular beam 10 that has flown from the molecular beam cell adheres to the surface of the substrate 2 and the emissivity of the substrate 2 changes, so the overall heat balance is lost and the substrate 2 Since the relative relationship between the temperature of 1 and the indicated value of the thermocouple 6 is not constant, the correct temperature of the substrate 2 cannot be measured. Therefore, there is a problem that the temperature cannot be controlled.

また、基板2の温度計測を熱電対6によらず、放射温度
計8によって行っても、基板2のふく射率が時間により
変化するため、正しい温度計測ができない。
Even if the temperature of the substrate 2 is measured not by the thermocouple 6 but by the radiation thermometer 8, the emissivity of the substrate 2 changes with time, so that the correct temperature cannot be measured.

〔発明の目的〕[Object of the Invention]

本発明は、上記従来の分子線エピタキシ装置のもつ欠点
を除去し、基板の正確な温度計測と温度制御が可能な分
子線エピタキシ装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a molecular beam epitaxy device which eliminates the drawbacks of the conventional molecular beam epitaxy device and enables accurate temperature measurement and temperature control of the substrate.

〔発明の概要〕[Outline of Invention]

本発明の分子線エピタキシ装置は、基板が鏡面反射する
性質を利用し、基板表面の垂線に対して対称位置に黒体
放射源と放射温度計とを配置し、基板の温度と黒体放射
源の温度とを独立に制御できるよう構成し、放射温度計
により基板表面で反射された黒体放射源からの熱量と基
板表面から放射された熱量とを検出することによって基
板表面の温度を検出できるようにするとともに温度を結
晶成長温度に正確に制御できるようにしたものであっ
て、特に基板の温度と黒体放射源の温度とを独立に制御
する手段が、基板の温度を計測し、調節器によりヒータ
を調節して基板の温度を制御する基板温度制御系と、黒
体放射源の温度を計測し、調節器によりヒータを調節し
て黒体放射源の温度を制御する黒体放射源温度制御系と
を備え、基板の温度を演算する演算部に黒体放射源の温
度をフィードバックしながら基板の加熱温度を制御する
構成となっていることを特徴とする。
The molecular beam epitaxy apparatus of the present invention utilizes the property that the substrate is specularly reflected, arranges a black body radiation source and a radiation thermometer in symmetrical positions with respect to a vertical line of the substrate surface, and measures the temperature of the substrate and the black body radiation source. The temperature of the substrate surface can be detected by detecting the amount of heat from the black body radiation source reflected by the substrate surface and the amount of heat radiated from the substrate surface by the radiation thermometer. In addition, the temperature can be accurately controlled to the crystal growth temperature.In particular, the means for independently controlling the temperature of the substrate and the temperature of the blackbody radiation source measures and adjusts the temperature of the substrate. Substrate temperature control system that controls the temperature of the substrate by adjusting the heater with a controller, and a black body radiation source that measures the temperature of the black body radiation source and adjusts the heater with the controller to control the temperature of the black body radiation source Equipped with a temperature control system, the temperature of the substrate Characterized in that it is configured to control the heating temperature of the substrate while feeding back the temperature of the black body radiation source calculating unit for calculating.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1図により説明する。第4
図と同一記号は同一部分を示す。
An embodiment of the present invention will be described below with reference to FIG. Fourth
The same symbols as those in the figures indicate the same parts.

第1図で11は黒体放射源,17は黒体放射源11の温
度を計測する熱電対,13は黒体放射源11を加熱する
ヒータである。14は基板2表面にたてた垂線で、放射
温度計8と黒体放射源11はこの垂線14に対して対称
に角度θをなすように配置されている。なお、15は分
子線10を発生させるための分子線セル,16は真空容
器1内を真空するための真空ポンプ,17は黒体放射源
11の温度を計測する熱電対である。
In FIG. 1, 11 is a black body radiation source, 17 is a thermocouple for measuring the temperature of the black body radiation source 11, and 13 is a heater for heating the black body radiation source 11. Reference numeral 14 is a perpendicular line erected on the surface of the substrate 2, and the radiation thermometer 8 and the black body radiation source 11 are arranged symmetrically with respect to the perpendicular line 14 at an angle θ. Reference numeral 15 is a molecular beam cell for generating the molecular beam 10, 16 is a vacuum pump for vacuuming the inside of the vacuum container 1, and 17 is a thermocouple for measuring the temperature of the black body radiation source 11.

以上のような構成において、基板2が完全に鏡面反射す
るとき、放射温度計8が検出する単位面積当りの熱量Q
は次式で表わされる。
In the above configuration, when the substrate 2 is completely specularly reflected, the heat quantity Q per unit area detected by the radiation thermometer 8 is detected.
Is expressed by the following equation.

Q=ε・σTW 4+(1−ε)・σTB 4…(1) ここで、εは基板2のふく射率,TWは基板2の温度,
Bは黒体放射源11の温度,σはステファン・ボルツ
マン定数である。黒体放射源11の温度TBは熱電対1
7によって計測される値である。したがって、黒体放射
源11の温度TBをヒータ13により独立に2通りに変
化させ、その時の熱量Qを放射温度計8で測定すれば、
(1)式より基板2の温度TWとふく射率εを求めるこ
とができる。このようにして、基板2の絶対温度の計測
と、この温度をフィードバックしてヒータ5の出力を制
御することが可能である。
Q = ε · σT W 4 + (1−ε) · σT B 4 (1) where ε is the emissivity of the substrate 2, T W is the temperature of the substrate 2,
T B is the temperature of the black body radiation source 11, and σ is the Stefan-Boltzmann constant. The temperature T B of the blackbody radiation source 11 is the thermocouple 1.
It is a value measured by 7. Therefore, if the temperature T B of the blackbody radiation source 11 is independently changed in two ways by the heater 13 and the heat quantity Q at that time is measured by the radiation thermometer 8,
The temperature T W of the substrate 2 and the emissivity ε can be obtained from the equation (1). In this way, it is possible to measure the absolute temperature of the substrate 2 and feed back this temperature to control the output of the heater 5.

なお、黒体放射源11の温度TBをヒータ13により変
化させる代りに、第2図に示すように、黒体放射源11
と基板2の間にチョッパ18を設け、黒体放射源11の
温度を一定にし、チョッパ18を回転させて基板2の表
面から放射された熱量ε・σTW 4と、黒体放射源11か
ら放射され基板2の表面で反射された熱量(1−ε)・
σTB 4及び基板表面から放射された熱量ε・σTW 4の和
とを別々に検出しても、基板2の表面の温度TWとふく
射率εとを計測することができる。
Instead of changing the temperature T B of the black body radiation source 11 by the heater 13, as shown in FIG.
A chopper 18 is provided between the substrate 2 and the substrate 2, the temperature of the black body radiation source 11 is kept constant, and the amount of heat radiated from the surface of the substrate 2 by rotating the chopper 18 ε · σT W 4 and the black body radiation source 11 The amount of heat radiated and reflected on the surface of the substrate 2 (1-ε)
The temperature T W of the surface of the substrate 2 and the emissivity ε can also be measured by separately detecting σT B 4 and the sum of the amount of heat ε · σT W 4 radiated from the substrate surface.

次に、結晶成長中のように基板2のふく射率εが時間と
ともに変化する場合には、黒体放射源11の温度TB
ヒータ13により変化させ、基板2の設定温度(結晶成
長温度)TWSに等しく設定する。黒体放射源11の設定
温度TBSと基板2の設定温度TWSとの間には、ふく射率
εが変化しない場合の前式(1)式と同様に、 Q=ε・σTWS 4+(1−ε)・σTBS 4…(2) が成立し、ここでTBS=TWSであるから Q=σTWS 4=σTBS 4…(3) となり、放射温度計8の検出する熱量Qは基板2のふく
射率εに関係なく、黒体放射源11の放射する熱量に等
しくなる。換言すると、黒体放射源11の温度を設定し
ようと考えている基板2の温度に設定して、放射温度計
8の検出熱量Qが黒体放射源11が放射する熱量σTWS
4またはσTB 4に等しくなるようにヒータ5の出力を変
化させることにより、基板2の正確な温度制御が可能と
なる。
Next, when the emissivity ε of the substrate 2 changes with time as during crystal growth, the temperature T B of the black body radiation source 11 is changed by the heater 13 to set the temperature of the substrate 2 (crystal growth temperature). Set equal to T WS . Between the set temperature T BS of the black body radiation source 11 and the set temperature T WS of the substrate 2, Q = ε · σT WS 4 +, as in the previous equation (1) when the emissivity ε does not change. (1-ε) · σT BS 4 (2) holds, and T BS = T WS , so that Q = σT WS 4 = σT BS 4 (3), and the amount of heat detected by the radiation thermometer 8 Q is equal to the amount of heat radiated by the black body radiation source 11 regardless of the emissivity ε of the substrate 2. In other words, by setting the temperature of the black body radiation source 11 to the temperature of the substrate 2 to be set, the detected heat quantity Q of the radiation thermometer 8 is the heat quantity σT WS radiated by the black body radiation source 11.
By changing the output of the heater 5 so as to be equal to 4 or σ T B 4 , accurate temperature control of the substrate 2 becomes possible.

次に、第3図にこれら基板2と黒体放射源11をそれぞ
れ独立に温度制御する制御系のブロック図を示す。基板
温度と黒体放射源温度の設定値TWSとTBSをあらかじめ
調節器9に設定しておき、それぞれの温度を放射温度計
8と熱電対17により検出し、設定値TWS,TBSからの
偏差ΔTW,ΔTSにより調節器9からの出力信号でヒー
タ5,13の出力を変化させて温度を制御する。このと
き、放射温度計8により検出される検出量は熱量Qであ
るため、式(1)または式(3)により温度TWが演算
される。したがって、黒体放射源温度TBは基板温度制
御系の温度演算部にもフィードバックされている。
Next, FIG. 3 shows a block diagram of a control system for independently controlling the temperatures of the substrate 2 and the black body radiation source 11. The set values T WS and T BS of the substrate temperature and the black body radiation source temperature are set in advance in the controller 9, and the respective temperatures are detected by the radiation thermometer 8 and the thermocouple 17, and the set values T WS and T BS are set. The output signals of the controller 9 are used to change the outputs of the heaters 5 and 13 according to the deviations ΔT W and ΔT S from the temperature control. At this time, since the detected amount detected by the radiation thermometer 8 is the amount of heat Q, the temperature T W is calculated by the equation (1) or the equation (3). Therefore, the black body radiation source temperature T B is also fed back to the temperature calculation unit of the substrate temperature control system.

なお、以上の発明で放射温度計8の代りに特定の波長ま
たは波長域を検出する放射温度計を用いて、この波長ま
たは波長域におけるふく射強度を検出しても同様の効果
が得られることはいうまでもない。
In the above invention, the radiation thermometer for detecting a specific wavelength or wavelength range may be used instead of the radiation thermometer 8 to detect radiation intensity in this wavelength or wavelength range, and the same effect can be obtained. Needless to say.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、基板表面にたてた
垂線に対して対称位置に放射温度計と黒体放射源を配置
し、黒体放射源温度と基板温度をそれぞれ独立に温度制
御することにより、基板のふく射率が一定のときはもち
ろん、ふく射率が時間とともに変化する場合について
も、基板の正確な温度の計測と温度制御ができ、この結
果、品質の優れた結晶が得られるという効果がある。
As described above, according to the present invention, the radiation thermometer and the black body radiation source are arranged at symmetrical positions with respect to the perpendicular line erected on the surface of the substrate, and the temperature of the black body radiation source and the temperature of the substrate are independently controlled. By doing so, not only when the emissivity of the substrate is constant, but also when the emissivity changes with time, it is possible to accurately measure the temperature of the substrate and control the temperature, and as a result, a crystal with excellent quality can be obtained. There is an effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の分子線エピタキシ装置の説明図、第2
図は本発明の分子線エピタキシ装置の他の実施例の説明
図、第3図は本発明の分子線エピタキシ装置における温
度制御する制御系のブロック図、第4図は従来の分子線
エピタキシ装置の説明図である。 1……真空容器、2……基板、5,13……ヒータ、8
……放射温度計、11……黒体放射源、17……熱電
対、18……チョッパ。
FIG. 1 is an explanatory view of a molecular beam epitaxy apparatus of the present invention, and FIG.
FIG. 4 is an explanatory view of another embodiment of the molecular beam epitaxy apparatus of the present invention, FIG. 3 is a block diagram of a control system for temperature control in the molecular beam epitaxy apparatus of the present invention, and FIG. 4 is a conventional molecular beam epitaxy apparatus. FIG. 1 ... vacuum container, 2 ... substrate, 5,13 ... heater, 8
...... Radiation thermometer, 11 ...... Black body radiation source, 17 ...... Thermocouple, 18 ...... Chopper.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板表面の温度を検出し、基板の加熱温度
を制御しながら基板に分子線を照射してエピタキシャル
成長させる分子線エピタキシ装置において、基板表面に
たてた垂線に対して対称の位置に黒体放射源と放射温度
計とを配置し、基板の温度と黒体放射源の温度とを独立
に制御し、前記放射温度計は黒体放射源から放射され基
板表面で反射された熱量と基板表面から放射された熱量
とを検出して基板表面の温度を計測するとともに基板表
面の温度を制御するようにし、前記の基板の温度と黒体
放射源の温度とを独立に制御する手段は、基板の温度を
計測し、調節器によりヒータを調節して基板の温度を制
御する基板温度制御系と、黒体放射源の温度を計測し、
調節器によりヒータを調節して黒体放射源の温度を制御
する黒体放射源温度制御系とを備え、基板の温度を演算
する演算部は黒体放射源の温度をフィードバックしなが
ら基板の加熱温度を制御するものであることを特徴とす
る分子線エピタキシ装置。
1. A molecular beam epitaxy apparatus for detecting a temperature of a substrate surface and irradiating the substrate with a molecular beam to epitaxially grow while controlling a heating temperature of the substrate, in a position symmetrical with respect to a perpendicular line erected on the substrate surface. A black body radiation source and a radiation thermometer are arranged in the, and the temperature of the substrate and the temperature of the black body radiation source are controlled independently, and the radiation thermometer is the amount of heat emitted from the black body radiation source and reflected on the substrate surface. And means for measuring the temperature of the substrate surface by detecting the amount of heat radiated from the substrate surface, controlling the substrate surface temperature, and independently controlling the substrate temperature and the blackbody radiation source temperature. Is a substrate temperature control system that measures the temperature of the substrate, controls the temperature of the substrate by adjusting the heater with a controller, and measures the temperature of the blackbody radiation source,
It is equipped with a black body radiation source temperature control system that controls the temperature of the black body radiation source by adjusting the heater with a controller, and the computing unit that computes the temperature of the substrate heats the substrate while feeding back the temperature of the black body radiation source. A molecular beam epitaxy device characterized by controlling temperature.
JP60140335A 1985-06-28 1985-06-28 Molecular beam epitaxy system Expired - Lifetime JPH0611027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140335A JPH0611027B2 (en) 1985-06-28 1985-06-28 Molecular beam epitaxy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140335A JPH0611027B2 (en) 1985-06-28 1985-06-28 Molecular beam epitaxy system

Publications (2)

Publication Number Publication Date
JPS622521A JPS622521A (en) 1987-01-08
JPH0611027B2 true JPH0611027B2 (en) 1994-02-09

Family

ID=15266431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140335A Expired - Lifetime JPH0611027B2 (en) 1985-06-28 1985-06-28 Molecular beam epitaxy system

Country Status (1)

Country Link
JP (1) JPH0611027B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763141B2 (en) * 2017-03-17 2020-09-01 Applied Materials, Inc. Non-contact temperature calibration tool for a substrate support and method of using the same
CN113252195B (en) * 2021-05-12 2024-01-26 新磊半导体科技(苏州)股份有限公司 Method for determining substrate temperature in molecular beam epitaxy equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033379Y2 (en) * 1980-05-07 1985-10-04 新日本製鐵株式会社 Radiation temperature measurement test device

Also Published As

Publication number Publication date
JPS622521A (en) 1987-01-08

Similar Documents

Publication Publication Date Title
US4561786A (en) Temperature measuring apparatus
US3715923A (en) Temperature measuring method and apparatus
US3492869A (en) Means of measuring surface temperature by reflection
JPH0674836A (en) Non-contact temperature measuring device based on automatic calibration sensor pair
KR900007887B1 (en) Temperature measuring system
US2846882A (en) Apparatus for measuring and/or controlling surface temperatures under non-black-body conditions
SE8704818D0 (en) DEVICE FOR SEATING THE TEMPERATURE IN A HEATING SYSTEM CONSISTING OF COOKING PLATE AND COOKERLY WITH CONTENTS
JPH0611027B2 (en) Molecular beam epitaxy system
JPH0779083B2 (en) Molecular beam epitaxy system
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
US3081632A (en) Direct-reading pyrometer microscope
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH0521412B2 (en)
JP2018049001A (en) Temperature control calibration method during thermal analysis of sample
JPH0215487B2 (en)
JPH06129911A (en) Method and apparatus for measurement of surface temperature of molten liquid inside crystal pulling furnace
JP2001274109A5 (en)
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JP3600873B2 (en) Substrate temperature measurement unit
JPS61201182A (en) Multi-element detector for x-ray ct device
SU412496A1 (en) METHOD OF RELATIVE MEASUREMENT OF THE DEGREE OF BLACKNESS OF SOLID TELTIJObi "l ;; .- ^! - ':? -?; ^ * ^?". WIJ in S, -' • <. -, - '.- ^ r ^ V •• fi 'L' ^ - * r-; • ..-- • .-.; ^ N ,. "s (f'J
JP3135088B2 (en) Radiation temperature measurement device
JPH09126896A (en) Method for compensating temperature of thermopile
JPH0643032A (en) Radiation thermometer
JPS6038627A (en) Temperature measuring apparatus