JPS62248968A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62248968A
JPS62248968A JP9159986A JP9159986A JPS62248968A JP S62248968 A JPS62248968 A JP S62248968A JP 9159986 A JP9159986 A JP 9159986A JP 9159986 A JP9159986 A JP 9159986A JP S62248968 A JPS62248968 A JP S62248968A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
temperature
refrigerant circuit
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9159986A
Other languages
Japanese (ja)
Other versions
JPH0371624B2 (en
Inventor
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9159986A priority Critical patent/JPS62248968A/en
Publication of JPS62248968A publication Critical patent/JPS62248968A/en
Publication of JPH0371624B2 publication Critical patent/JPH0371624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は独立した二系統の冷媒回路を構成し、高温側冷
媒回路の蒸発器と低温側冷媒回路の凝縮器とで熱交換器
を構成する所謂二元冷凍方式の冷凍装置に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention comprises two independent refrigerant circuits, and a heat exchanger is formed between the evaporator of the high-temperature side refrigerant circuit and the condenser of the low-temperature side refrigerant circuit. The present invention relates to a so-called dual refrigeration type refrigeration system.

(ロ)従来の技術 従来此種所謂二元冷凍方式の冷凍装置は例えば実公昭5
8−23101号公報に示されている。
(b) Conventional technology Conventionally, this kind of so-called dual refrigeration type refrigeration equipment was developed, for example, in the
8-23101.

即ち高温側と低温側の冷媒回路をそれぞれ独立した二系
統の冷媒閉回路にて構成し、高温側冷媒回路の蒸発器と
低温側冷媒回路の凝縮器とで熱交換器を構成し、高温側
冷媒回路の冷媒の蒸発によって低温側冷媒回路の冷媒を
凝縮する様にしている。これによって低温側冷媒回路に
はより低い沸点(蒸発温度)の冷媒を用いる事ができる
ので低温側冷媒回路の蒸発器によって極めて低い温度を
得る事が可能となる。
In other words, the high-temperature side and low-temperature side refrigerant circuits are configured with two independent refrigerant closed circuits, and the evaporator of the high-temperature side refrigerant circuit and the condenser of the low-temperature side refrigerant circuit constitute a heat exchanger. The refrigerant in the low temperature side refrigerant circuit is condensed by evaporation of the refrigerant in the refrigerant circuit. This makes it possible to use a refrigerant with a lower boiling point (evaporation temperature) in the low-temperature side refrigerant circuit, making it possible to obtain an extremely low temperature with the evaporator of the low-temperature side refrigerant circuit.

(ハ)発明が解決しようとする問題点 斯かる二元冷凍方式では低温側冷媒回路の蒸発器に於い
て通常−80℃程の低温を得るものであるが、より低い
温度例えば−130°C以下の温度を得るためには沸点
の極めて低い例えばR50(メタン)等の冷媒を低温側
冷媒回路に於いて用いなければならず、そのために低温
側冷媒回路の圧縮機には多大に負荷が加わる事になり、
異常な温度上昇を来たして焼付きを生ずる問題があった
(c) Problems to be solved by the invention In such a dual refrigeration system, a low temperature of about -80°C is normally obtained in the evaporator of the low-temperature side refrigerant circuit, but it is possible to obtain a lower temperature of, for example, -130°C. In order to obtain the following temperatures, a refrigerant with an extremely low boiling point, such as R50 (methane), must be used in the low-temperature refrigerant circuit, which places a large load on the compressor of the low-temperature refrigerant circuit. Something happened,
There was a problem in that the temperature rose abnormally and caused seizure.

本発明は斯かる問題点を解決するために成されたもので
ある。
The present invention has been made to solve these problems.

(ニ)問題点を解決するための手段 実施例に沿って本発明の詳細な説明する。高温側冷媒回
路(2)の蒸発器(14A)(14B)は低温側冷媒回
路(3)の凝縮パイプ(23A)(23B)と共にカス
ケードコンデンサ(25A)(25B)を構成する。低
温側冷媒回路(3)は気液分離器(29)(33)、複
数の中間熱交換器(32) (42) (44)、電動
圧縮機(10)、蒸発パイプ(47)、複数の減圧器(
36)(40)(46)等から成り、R50を最終蒸発
冷媒とする複数種の非共沸混合冷媒を充填して蒸発パイ
プ(47)で−150°C等の極低温を得る。高温側冷
媒回路(2)にはR502冷媒と油戻し用のR12冷媒
を充填し、アキュムレータ(15)から電動圧縮機(4
)への配管の一部を電動圧縮機(10)のオイルクーラ
ー(11)に接続する。
(d) Means for solving the problems The present invention will be explained in detail with reference to embodiments. The evaporators (14A) (14B) of the high temperature side refrigerant circuit (2) constitute a cascade condenser (25A) (25B) together with the condensing pipes (23A) (23B) of the low temperature side refrigerant circuit (3). The low temperature side refrigerant circuit (3) includes a gas-liquid separator (29) (33), a plurality of intermediate heat exchangers (32) (42) (44), an electric compressor (10), an evaporation pipe (47), a plurality of Pressure reducer (
36), (40), and (46), etc., and is filled with a plurality of types of non-azeotropic mixed refrigerants with R50 as the final evaporative refrigerant to obtain an extremely low temperature of -150°C or the like in the evaporation pipe (47). The high temperature side refrigerant circuit (2) is filled with R502 refrigerant and R12 refrigerant for oil return, and the electric compressor (4) is charged from the accumulator (15).
) is connected to the oil cooler (11) of the electric compressor (10).

(ホ)作用 本発明によれば高温側冷媒回路(2)を流れ蒸発器(1
4A)(14B>にて温度の低下したR12冷媒がオイ
ルクーラー(11)にて蒸発するので温度が非常に高く
なる低温側冷媒回路(3)の電動圧縮機(10)を良好
に冷却できる。
(E) Function According to the present invention, the refrigerant flows through the high temperature side refrigerant circuit (2) and the evaporator (1).
4A) Since the R12 refrigerant whose temperature has decreased in (14B) is evaporated in the oil cooler (11), the electric compressor (10) of the low temperature side refrigerant circuit (3), which has a very high temperature, can be cooled well.

(へ)実施例 次に図面に於いて本発明の詳細な説明する。(f) Example The invention will now be described in detail with reference to the drawings.

第1図は本発明の冷凍装置(R)の冷媒回路(1)を示
している。冷媒回路(1)はそれぞれ独立した第1の冷
媒閉回路としての高温側冷媒回路(2)と第2の冷媒閉
回路としての低温側冷媒回路(3)とから構成されてい
る。(4)は高温側冷媒回路(2)を構成する一相若し
くは三相交流電源を用いる電動圧縮機であり、電動圧縮
機(4)の吐出側配管(4D)は補助凝縮器(5)に接
続され、補助凝縮器(5)は更に後に詳述する冷凍庫の
貯蔵室開口縁を加熱する鞘付防止バイブ(6)に接続さ
れ、次に電動圧縮機(4〉のオイルクーラー(7)に接
続された後、凝縮器(8)に接続きれる。(9〉は凝縮
器(8)冷却用の送風機である。凝縮器(8)を出た冷
媒配管は乾燥器(12)を経た後、減圧器(13)を介
して蒸発器を構成する蒸発器部分としての第1蒸発器(
14A)と第2蒸発器(14B)を経て冷媒液溜めとし
てのアキュl、レーク(15)に接続される。アキュム
レータ(15)から出た配管は低温側冷媒回路(3)を
構成する電動圧縮機(10)のオイルクーラー(11)
に接続きれ、その後電動圧縮機〈4)の吸入側配管(4
S)に接続される。第1蒸発器(14A)と第2蒸発器
(14B)は直列に接続され、全体として高温側冷媒回
路(2)の蒸発器を構成している。
FIG. 1 shows a refrigerant circuit (1) of a refrigeration system (R) of the present invention. The refrigerant circuit (1) is composed of a high temperature side refrigerant circuit (2) as a first refrigerant closed circuit and a low temperature side refrigerant circuit (3) as a second refrigerant closed circuit, which are independent from each other. (4) is an electric compressor that uses a one-phase or three-phase AC power source that constitutes the high temperature side refrigerant circuit (2), and the discharge side piping (4D) of the electric compressor (4) is connected to the auxiliary condenser (5). The auxiliary condenser (5) is further connected to a sheath prevention vibe (6) that heats the opening edge of the freezer storage chamber, which will be detailed later, and then to the oil cooler (7) of the electric compressor (4). After being connected, it can be connected to the condenser (8). (9> is a blower for cooling the condenser (8). After the refrigerant pipe exits the condenser (8), it passes through the dryer (12). The first evaporator (as an evaporator part that constitutes the evaporator via the pressure reducer (13)
14A) and a second evaporator (14B), it is connected to an accelerator and a rake (15) as a refrigerant reservoir. The pipe coming out of the accumulator (15) connects to the oil cooler (11) of the electric compressor (10) that constitutes the low-temperature side refrigerant circuit (3).
After that, connect the suction side piping (4) of the electric compressor (4).
S). The first evaporator (14A) and the second evaporator (14B) are connected in series, and together constitute the evaporator of the high temperature side refrigerant circuit (2).

高温側冷媒回路(2)には沸点の異なる冷媒R502と
R12(ジクロロジフルオロメタン)が充填され、その
組成は例えばR502が88.0重量%、R12が12
.0重量%である。電動圧縮機(4)から吐出きれた高
温ガス状冷媒は、補助凝縮器(5)、鞘付防止バイブ(
6)、オイルクーラー(7)及び凝縮器(8)で凝縮さ
れて放熱液化した後、乾燥器(12)で含有する水分を
除去され、減圧器(13)にて減圧されて第1及び第2
蒸発器(14A)(14B)に次々に流入して冷媒R5
02が蒸発し、気化熱を周囲から吸収して各蒸発器(1
4A)(14B)を冷却し、冷媒液溜めとしてのアキュ
ムレータ(15)から低温側冷媒回路(3)の電動圧縮
機(10)のオイルクーラー(11)を経て電動圧縮機
(4)に帰還する動作をする。
The high temperature side refrigerant circuit (2) is filled with refrigerants R502 and R12 (dichlorodifluoromethane) having different boiling points, and their composition is, for example, 88.0% by weight of R502 and 12% by weight of R12.
.. It is 0% by weight. The high-temperature gaseous refrigerant discharged from the electric compressor (4) is transferred to the auxiliary condenser (5) and the sheath prevention vibrator (
6), the oil cooler (7) and the condenser (8) are used to condense and liquefy heat, and then the moisture contained in the dryer (12) is removed, and the pressure is reduced in the pressure reducer (13). 2
Refrigerant R5 flows into the evaporator (14A) (14B) one after another.
02 is evaporated, the heat of vaporization is absorbed from the surroundings, and each evaporator (1
4A) (14B) and returns to the electric compressor (4) via the oil cooler (11) of the electric compressor (10) of the low temperature side refrigerant circuit (3) from the accumulator (15) as a refrigerant liquid reservoir. take action.

この時、電動圧縮機(4)の能力は例えば1.5HPで
あり、運転中の各蒸発器(14A)(14B>の最終到
達温度は一50℃になる。斯かる低温下では冷媒中のR
12は沸点が約−30°Cであるので各蒸発器(14A
)(14B)では蒸発せず液状態のままであり、従って
冷却には殆ど寄与しないが、電動圧縮機(4)の潤滑油
や乾燥器(12)で吸収し切れなかった混入水分をその
内に溶は込ませた状態で電動圧縮機(4)に帰還せしめ
る機能を奏する。第9図にアキュムレータ(15)の断
面図を示す。蒸発器(14B)に接続される配管(15
A)はアキュムレータ(15)内下端に開口し、オイル
クーラー(11)に接続きれる配管(15B)はアキュ
ムレータ(15)内に」三方より挿入されて下端部で折
曲され開口端は冷媒液位(H)より上方に臨んでいる。
At this time, the capacity of the electric compressor (4) is, for example, 1.5 HP, and the final temperature reached by each evaporator (14A) (14B>) during operation is -50°C. R
12 has a boiling point of about -30°C, so each evaporator (14A
) (14B) does not evaporate and remains in a liquid state, so it hardly contributes to cooling, but it absorbs the lubricating oil of the electric compressor (4) and moisture that could not be absorbed by the dryer (12). The function is to return the melted state to the electric compressor (4). FIG. 9 shows a sectional view of the accumulator (15). Piping (15) connected to the evaporator (14B)
A) opens at the lower end inside the accumulator (15), and the pipe (15B) that can be connected to the oil cooler (11) is inserted into the accumulator (15) from three sides and bent at the lower end, and the open end is connected to the refrigerant liquid level. (H) It is facing upward.

この配管(15B)の下端部には油戻し用の孔(15C
)が形成されている。即ちR12冷媒はこの孔(15C
)からアキュムレータ(15)より出て、前述の潤滑油
等を含んだ液体の状態で低温側冷媒回路(3)のオイル
クーラー(11)に流入する事になる。ここで電動圧縮
機(10)の温度は、後述する如<R50(メタン)等
の極めて沸点の低い冷媒を循環させるために、負荷が犬
きか く、温度も高温となる、オイルクーラー(11)に流入
したR12冷媒が蒸発するので冷却され焼付きや潤滑油
の劣化は助士される。即ち冷媒R12は高温側冷媒回路
(2)中の潤滑油を電動圧縮機(4)に戻す機能と、低
温側冷媒回路(3)の電動圧縮機(10)を冷却する機
能を奏する。又、これによって電動圧縮機(4)に液状
のR12冷媒が帰還しなくなるので電動圧縮機(4)の
弁等の損傷も生じなくなる。
An oil return hole (15C) is located at the lower end of this pipe (15B).
) is formed. In other words, R12 refrigerant flows through this hole (15C
) from the accumulator (15) and flows into the oil cooler (11) of the low-temperature side refrigerant circuit (3) in a liquid state containing the aforementioned lubricating oil and the like. Here, the temperature of the electric compressor (10) is determined by the oil cooler (11), which has a heavy load and high temperature in order to circulate a refrigerant with an extremely low boiling point such as R50 (methane), as described later. Since the R12 refrigerant that has flowed into the engine evaporates, it is cooled and seizure and lubricating oil deterioration are prevented. That is, the refrigerant R12 has the function of returning the lubricating oil in the high temperature side refrigerant circuit (2) to the electric compressor (4) and the function of cooling the electric compressor (10) of the low temperature side refrigerant circuit (3). Furthermore, since the liquid R12 refrigerant does not return to the electric compressor (4), damage to the valves, etc. of the electric compressor (4) will not occur.

低温側冷媒回路(3)を構成する電動圧縮機(10)の
吐出側配管(IOC)は補助凝縮器(17)に接続され
た後油分離器(18)に接続される。油分離器(18)
からは電動圧縮機(10)に戻る油戻し管(19)と乾
燥器(20)に接続される配管に分かれ、乾燥器(20
〉は分岐用三方管(21)に接続される。三方管(21
)から出た一方の配管は低温側冷媒回路(3)の第2の
吸入側熱交換器(22)周囲を熱交換的に巻回した後第
1蒸発器(14A)内に挿入された高圧側配管としての
第1凝縮バイブ(23A)に接続される。三方管(21
)から出た他方の配管は同様に低温側冷媒回路(3)の
第1の吸入側熱交換器(24)周囲を熱交換的に巻回し
た後第2蒸発器(14B)内に挿入された高圧側配管と
しての第2凝縮バイブ(23B)に接続きれる。第1蒸
発器(14A’)と第1凝縮パイプ(23A)及び第2
蒸発器(14B)と第2凝縮バイブ(23B)はそれぞ
れカスケードコンデンサ(25A)及び(25B)を構
成している。第1及び第2凝縮バイブ(23A)(23
B>は集合三方管(27)にて結合された後、乾燥器(
28)を経て第1の気液分離器(29)に接続きれる。
A discharge side pipe (IOC) of the electric compressor (10) constituting the low temperature side refrigerant circuit (3) is connected to an auxiliary condenser (17) and then to an oil separator (18). Oil separator (18)
The oil return pipe (19) returns to the electric compressor (10) and the pipe connects to the dryer (20).
> is connected to the branching three-way pipe (21). Three-way tube (21
) One of the pipes coming out of the low-temperature side refrigerant circuit (3) is wound around the second suction side heat exchanger (22) for heat exchange and then inserted into the first evaporator (14A). It is connected to the first condensing vibe (23A) as a side pipe. Three-way tube (21
) is similarly wound around the first suction side heat exchanger (24) of the low temperature side refrigerant circuit (3) for heat exchange, and then inserted into the second evaporator (14B). It can be connected to the second condensing vibe (23B) as the high pressure side piping. The first evaporator (14A'), the first condensing pipe (23A) and the second
The evaporator (14B) and the second condensing vibe (23B) constitute cascade condensers (25A) and (25B), respectively. First and second condensing vibes (23A) (23
B> are connected by a collecting three-way pipe (27), and then put into a dryer (
28) to the first gas-liquid separator (29).

気液分離器(29)から出た気相配管(30)は第1の
中間熱交換器(32)内を通過して第2の気液分離器(
33)に接続される。気液分離器(29)から出た液相
配管(34〉は乾燥器(35)を経た後減圧器(36)
を経て第1の中間熱交換器(32)と第2の中間熱交換
器(42)の間に接続される。気液分離器(33)から
出た液相配管(38)は第3の中間熱交換器(44)に
熱交換的に配設した乾燥器(39)を経た後減圧器(4
0)を経て第2の中間熱交換器(42)と第3の中間熱
交換器(44)の間に接続される。気液分離器(33)
から出た気相配管(43)は第2の中間熱交換器(42
)内を通過した後、第3の中間熱交換器(44)内を通
過し、同様に第3の中間熱交換器(44)に熱交換的に
配設した乾燥器(45)を経て減圧器(46)に接続さ
れる。減圧器(46)は蒸発器としての蒸発バイブ(4
7〉に接続され、更に蒸発パイプ(47)は第3の中間
熱交換器(44)に接続される。第3の中間熱交換器(
44)は第2 (42)及び第1の中間熱交換器(32
)に次々に接続された後、アキュムレータ(49)に接
続され、アキュムレータ(49)は更に第1の吸入側熱
交換器(24)に接続され、更に第2の吸入側熱交換器
(22)を経て電動圧縮機(10)の吸入側配管(10
5)に接続される。吸入側配管(tOS)には更に電動
圧縮機(10)停止時に冷媒を貯留する膨張タンク(5
1)が減圧器(52)を介して接続される。
The gas phase piping (30) coming out of the gas-liquid separator (29) passes through the first intermediate heat exchanger (32) and enters the second gas-liquid separator (
33). The liquid phase pipe (34) coming out of the gas-liquid separator (29) passes through a dryer (35) and then a pressure reducer (36).
It is connected between the first intermediate heat exchanger (32) and the second intermediate heat exchanger (42) via the intermediate heat exchanger (32). The liquid phase pipe (38) coming out of the gas-liquid separator (33) passes through a dryer (39) arranged for heat exchange in a third intermediate heat exchanger (44), and then is transferred to a pressure reducer (4).
0) between the second intermediate heat exchanger (42) and the third intermediate heat exchanger (44). Gas-liquid separator (33)
The gas phase pipe (43) coming out from the second intermediate heat exchanger (42
), then passes through the third intermediate heat exchanger (44), and is depressurized through the dryer (45), which is also disposed in the third intermediate heat exchanger (44) for heat exchange. (46). The pressure reducer (46) is an evaporator vibrator (4) as an evaporator.
7>, and the evaporation pipe (47) is further connected to a third intermediate heat exchanger (44). Third intermediate heat exchanger (
44) is the second (42) and first intermediate heat exchanger (32)
), and then connected to an accumulator (49), which is further connected to a first suction side heat exchanger (24), and further connected to a second suction side heat exchanger (22). to the suction side piping (10) of the electric compressor (10).
5). The suction side pipe (tOS) is further provided with an expansion tank (5) that stores refrigerant when the electric compressor (10) is stopped.
1) is connected via a pressure reducer (52).

低温側冷媒回路(3)には沸点の異なる四種類の混合冷
媒が封入される。即ち、R12(ジクロロジフルオロメ
タン)、R13B1(プロモトリフルオロメタン)、R
14(テトラフルオロメタン)及びR50(メタン)か
ら成る混合冷媒が予め混合された状態で封入される。各
冷媒の組成は例えばR50が4.0重量%、R14が2
2.0重量%、R13B1が39.0重量%、R12が
35.0重量%である。R50はメタンであり酸素との
結合にて爆発を生じるが上記割合の各フロン冷媒と混合
することによって爆発の危険性は無くなる。従って混合
冷媒の漏洩事故が発生したとしても爆発事故は発生しな
い。
Four types of mixed refrigerants having different boiling points are sealed in the low temperature side refrigerant circuit (3). That is, R12 (dichlorodifluoromethane), R13B1 (promotrifluoromethane), R
A mixed refrigerant consisting of 14 (tetrafluoromethane) and R50 (methane) is sealed in a premixed state. The composition of each refrigerant is, for example, 4.0% by weight of R50 and 2% by weight of R14.
2.0% by weight, R13B1 is 39.0% by weight, and R12 is 35.0% by weight. R50 is methane, which causes an explosion when combined with oxygen, but the danger of explosion is eliminated by mixing it with each fluorocarbon refrigerant in the above proportions. Therefore, even if a mixed refrigerant leakage accident occurs, an explosion accident will not occur.

ここで実施例では高温側冷媒回路(2)の蒸発器を二つ
の蒸発器部分即ち第1第2蒸発器(14A)(1/IB
)に分割し、低温側冷媒回路(3)の高圧側配管を第1
第2凝縮パイプ(23A)(23B)に分割したことに
より、二つのカスケードコンデンサ(25A)(25B
)を構成したが、それに限られず、本発明の趣旨を逸脱
しない範囲で更に多くのカスケードコンデンサに分割し
ても同等差支えない。
Here, in the embodiment, the evaporator of the high temperature side refrigerant circuit (2) is divided into two evaporator parts, namely a first and second evaporator (14A) (1/IB
), and connect the high pressure side piping of the low temperature side refrigerant circuit (3) to the first
By dividing into the second condensing pipe (23A) (23B), two cascade condensers (25A) (25B)
), but the present invention is not limited thereto, and the capacitor may be divided into even more cascade capacitors without departing from the spirit of the present invention.

次に冷媒の循環を説明すると、電動圧縮機(10)から
吐出された高温高圧のガス状混合冷媒は補助凝縮器(1
7)にて予冷された後、油分離器(18)にて冷媒と混
在している電動圧縮機(10)の潤滑油の大部分を油戻
し管(19)にて電動圧縮機(10)に戻し、冷媒自体
は乾燥器(20)を経た後、三方管(21)にて二分さ
れる。三方管〈21)にて二分きれた冷媒はそれぞれ別
々に吸入側熱交換器(22)若しくは(24)にて予冷
きれた後、それぞれカスケードコンデンサ(25A)若
しくは(25B)にて第1 (14A)若しくは第2の
蒸発器(14B)より冷却されて混合冷媒中の沸点の高
い一部の冷媒を凝縮液化した後、三方管(27)に於い
て合流する。この時混合冷媒は二分きれてそれぞれ量の
少ない状態で別々にカスケードコンデンサ(25A)若
しくは(25B)に於いて冷却されるため、十分なる熱
交換が行なわれ、凝縮作用は良好に達成される。
Next, to explain the circulation of the refrigerant, the high temperature and high pressure gaseous mixed refrigerant discharged from the electric compressor (10) is transferred to the auxiliary condenser (10).
7), most of the lubricating oil mixed with the refrigerant in the electric compressor (10) is removed from the oil separator (18) through the oil return pipe (19) to the electric compressor (10). After passing through the dryer (20), the refrigerant itself is divided into two by a three-way pipe (21). The refrigerant divided into two by the three-way pipe (21) is precooled separately in the suction side heat exchanger (22) or (24), and then transferred to the first (14A) in the cascade condenser (25A) or (25B), respectively. ) or the second evaporator (14B) to condense and liquefy part of the refrigerant with a high boiling point in the mixed refrigerant, and then merge in the three-way pipe (27). At this time, the mixed refrigerant is divided into two parts and cooled in small amounts separately in the cascade condenser (25A) or (25B), so that sufficient heat exchange is carried out and the condensation effect is achieved satisfactorily.

三方管(27)を出た混合冷媒は乾燥器(28)を経て
気液分離器(29)に流入する。この時点では混合冷媒
中のR14とR50は沸点が極めて低い為に未だ凝縮さ
れておらずガス状態であり、R12とR13B1のみが
凝縮液化きれている為、R14とR50は気相配管(3
0)に、R12とR13B1は液相配管(34)へと分
離される。気相配管(30)に流入した冷媒混合物は第
1の中間熱交換器(32)と熱交換して凝縮された後、
気液分離器(33)に至る。
The mixed refrigerant that has exited the three-way pipe (27) passes through the dryer (28) and flows into the gas-liquid separator (29). At this point, R14 and R50 in the mixed refrigerant have extremely low boiling points, so they are not condensed yet and are in a gaseous state. Only R12 and R13B1 have been condensed and liquefied, so R14 and R50 are connected to the gas phase piping (3
0), R12 and R13B1 are separated into liquid phase piping (34). The refrigerant mixture that has flowed into the gas phase pipe (30) is condensed by exchanging heat with the first intermediate heat exchanger (32), and then
This leads to a gas-liquid separator (33).

ここで第1の中間熱交換器(32)には蒸発バイブ(4
7)より帰還して来る低温の冷媒が流入し、更に液相配
管(34)に流入したR13B1が乾燥器(35)を経
て減圧器(36)で減圧された後、第1の中間熱交換器
(32)に流入してそこで蒸発することにより冷却に寄
与する為、第1の中間熱交換器(32)の温度は一80
°C程となっている。従って気相配管(30)を通過し
た混合冷媒中のR14の大部分は凝縮液化きれ、R50
は更に沸点が低い為に未だガス状態である。よってR1
4は気液分離器(33)から液相配管(38)へ又、R
50は気相配管(43)へと分離され、R14は乾燥器
(39)を経て減圧器(40)にて減圧され第2の中間
熱交換器(42)と第3の中間熱交換器(44)の間に
流入して第2の中間熱交換器(42)内で蒸発する。第
2の中間熱交換器(42)には蒸発バイブ(47)から
の帰還低温冷媒が流入すると共にR14の蒸発が更に冷
却に寄与するため、第2の中間熱交換器(42)の温度
は一100’C程となっている。更に第3の中間熱交換
器(44)には蒸発バイブ(47)からの帰還低温冷媒
が直ぐに流入しているために、その温度は一120°C
程の極めて低い温度となっているので、第2及び第3の
中間熱交換器(42)(44)と熱交換した気相配管(
43)を通過する最も沸点の低い冷媒R50は凝縮液化
され、乾燥器(45)を経て減圧器(46)にて減圧さ
れた後、蒸発バイブ(47)に流入してそこで蒸発する
。この時の蒸発バイブ(47)の温度は一150℃に到
達している。これが本発明の冷凍装置・(R)の最終到
達温度であり、この蒸発バイブ(47)を後述する冷凍
庫の貯蔵室に熱交換的に配設することにより貯蔵室−1
2= 内を一140°Cの超低温の環境とすることが可能とな
る。蒸発バイブ(47)から流出した冷媒(大部分がR
50)は前述の如く第3、第2、第1の中間熱交換器(
44)(42)(32)に次々に流入、流出し、各冷媒
R14、R13B1、R12と合流しながらアキュムレ
ータ(49)にて未蒸発の冷媒を分離した後吸入側熱交
換器(24)(22)に次々に流入して冷却した後、電
動圧縮機(10)に吸入される。
Here, the first intermediate heat exchanger (32) has an evaporating vibrator (4
7) The low-temperature refrigerant that returns from the pipe flows in, and the R13B1 that flows into the liquid phase pipe (34) passes through the dryer (35) and is depressurized in the pressure reducer (36), and then is transferred to the first intermediate heat exchanger. Since the first intermediate heat exchanger (32) contributes to cooling by flowing into the heat exchanger (32) and evaporating there, the temperature of the first intermediate heat exchanger (32) is -80℃.
It is about °C. Therefore, most of the R14 in the mixed refrigerant that has passed through the gas phase pipe (30) is condensed and liquefied, and the R50
has a lower boiling point, so it is still in a gaseous state. Therefore, R1
4 is from the gas-liquid separator (33) to the liquid phase pipe (38), and R
50 is separated into a gas-phase pipe (43), and R14 is depressurized by a pressure reducer (40) through a dryer (39) and then connected to a second intermediate heat exchanger (42) and a third intermediate heat exchanger ( 44) and evaporates in the second intermediate heat exchanger (42). The return low-temperature refrigerant from the evaporator vibe (47) flows into the second intermediate heat exchanger (42), and the evaporation of R14 further contributes to cooling, so the temperature of the second intermediate heat exchanger (42) is The temperature is about -100'C. Furthermore, since the return low-temperature refrigerant from the evaporator vibrator (47) immediately flows into the third intermediate heat exchanger (44), its temperature is -120°C.
Since the temperature is extremely low, the gas phase piping (which exchanged heat with the second and third intermediate heat exchangers (42) and (44))
The refrigerant R50 having the lowest boiling point passing through the refrigerant R50 (43) is condensed and liquefied, passed through the dryer (45) and reduced in pressure in the depressurizer (46), and then flows into the evaporation vibrator (47) where it is evaporated. At this time, the temperature of the evaporating vibrator (47) has reached -150°C. This is the final temperature reached by the refrigeration system (R) of the present invention, and by disposing this evaporating vibrator (47) in a storage compartment of a freezer described later in a heat exchange manner, storage compartment-1
2= It becomes possible to create an ultra-low temperature environment of -140°C inside. Refrigerant (mostly R) flowed out from the evaporator vibrator (47).
50) are the third, second, and first intermediate heat exchangers (
44) The refrigerant flows into and out of (42) and (32) one after another, and while merging with each refrigerant R14, R13B1, and R12, the unevaporated refrigerant is separated in the accumulator (49), and then the suction side heat exchanger (24) ( 22) one after another to be cooled, and then sucked into the electric compressor (10).

ここで第1の気液分離器(29)にて液相配管(34)
に流入したR12は第1の中間熱交換器(32)に流入
するものの、既に極めて低い温度となっているため蒸発
せず液状態のままであり、従って冷却には同等寄与しな
いが、油分離器(18)で分離し切れなかった残留潤滑
油や各乾燥器で吸収し切れなかった混入水分をその内に
溶は込ませた状態で電動圧縮機(10)に帰還せしめる
機能を奏する。電動圧縮機(10)の潤滑油が低温側冷
媒回路(13)内を循環すると超低温であることにより
、各部に残留する現象が発生し、目詰りの原因となる。
Here, the liquid phase piping (34) is connected to the first gas-liquid separator (29).
The R12 that has flowed into the first intermediate heat exchanger (32) flows into the first intermediate heat exchanger (32), but since it is already at an extremely low temperature, it does not evaporate and remains in a liquid state, so it does not contribute equally to cooling, but oil separation It functions to return residual lubricating oil that could not be separated in the dryer (18) and mixed water that could not be completely absorbed in the dryers to the electric compressor (10) in a dissolved state. When the lubricating oil of the electric compressor (10) circulates in the low-temperature side refrigerant circuit (13), the extremely low temperature causes the lubricating oil to remain in various parts, causing clogging.

その為にR12で略完全なる潤滑油の帰還を達成してい
る。
Therefore, R12 achieves almost complete return of lubricating oil.

以上を繰り返えすことにより冷媒回路(1)は定常状態
で蒸発バイブ(47)に−150”Cの超低温を発生す
る様動作するが、電動圧縮機(4)(10)は1.5H
P程度の能力で済み、格別大なる能力を必要としない。
By repeating the above, the refrigerant circuit (1) operates to generate an extremely low temperature of -150"C in the evaporator vibrator (47) in a steady state, but the electric compressors (4) and (10) operate at 1.5H.
It only requires a P level ability, and does not require any particularly great ability.

とれはカスケードコンデンサ(25A)(25B)部分
の熱交換が良、好に行なわれている事と混合冷媒の選択
が大きく寄与している。これによって電動圧縮機による
騒音の削減と低消費電力が達成きれる。又、−150℃
の達成によって後述する冷凍庫内の生体資料を氷の再結
晶化点より低い温度に冷却する事が可能となり、永久保
存が達成きれることになる。更に高温側冷媒回路(2)
の冷媒は第1蒸発器(14A)から第2蒸発器(14B
)へと流れ、分流するものでは無いので両蒸発器(14
A)(14B)の温度バランスが何等かの原因で崩れて
も、冷媒流量の偏りは発生し得す、従って低温側冷媒回
路(3)の第1凝縮パイプ(23A)と第2凝縮パイプ
(23B>の相方の安定した冷却が達成され、良好なる
凝縮作用が達成される。
This is largely due to the good heat exchange in the cascade condenser (25A) (25B) and the selection of the mixed refrigerant. This makes it possible to reduce the noise and power consumption of the electric compressor. Also, -150℃
By achieving this, it will be possible to cool the biological materials in the freezer to a temperature lower than the recrystallization point of ice, which will be described later, and permanent preservation will be achieved. Furthermore, the high temperature side refrigerant circuit (2)
The refrigerant is transferred from the first evaporator (14A) to the second evaporator (14B).
), and since it is not divided, both evaporators (14
A) Even if the temperature balance of (14B) collapses for some reason, a deviation in the refrigerant flow rate may occur. Therefore, the first condensing pipe (23A) and the second condensing pipe ( 23B> is achieved, and a good condensation effect is achieved.

次に第2図は本発明の冷凍装置(R)の制御用電気回路
の概略を示す。(4M)は高温側冷媒回路(2)の電動
圧縮機(4〉駆動用のモーターであり、−相若しくは三
相の交流電源(AC>(AC)間に接続される。即ちモ
ーター(4M)は電源(AC)(AC)が投入されてい
る間は連続運転とされる。(IOM)は低温側冷媒回路
(3)の電動圧縮機(10)駆動用のモーターであり、
電磁リレー(60)の接点(60A)と直列に電源(A
C)(AC)に接続される。接点(60A)は電磁リレ
ー(60)のコイル(60C)に通電されて閉じ、モー
ター(IOM>を運転せしめる。(61)は後述する冷
凍庫貯蔵室の温度調節器であり、電R(AC) (AC
)間に接続され、貯蔵室内の温度を実質的に検出し、設
定温度の上下に適当なディファレンシャルを設定し、上
限温度で出力端子(61A)(61B)間に電圧を発生
し、下限温度で発生を停止する。この設定温度は一14
5℃乃至−150℃である。出力端子(61A)(61
B)間には温調リレー(62)のコイル(62C)とタ
イマー(63)の接点(63A)が直列接続される。温
調リレー(62)はコイル(62C)に通電きれて接点
(62A)を閉じる。(65)は第1図の低温側冷媒回
路(3)の電動圧縮機(10)吐出側配管(IOD)に
、補助凝縮器(17)の前段側に於いて設けられる高圧
スイッチである。高圧スイッチ(65)は電源(AC)
(AC)に対してタイマー(63)と直列に接続され、
電動圧縮機(10)吐出側の圧力が上昇して圧縮機(1
0)に過大な負荷をかけるようになる、例えば26kg
/cm’に上昇すると接点を開き、圧力が十分に安全な
状態例えば8kg/cn′12に低下すると接点を閉じ
る。タイマー(63)は高圧スイッチ(63)の接点が
閉じた後、3乃至5分経過後に接点(63A)を閉じ、
高圧スイッチ(65)が開いて接点(63A)を開く。
Next, FIG. 2 schematically shows a control electric circuit for the refrigeration system (R) of the present invention. (4M) is a motor for driving the electric compressor (4>) of the high temperature side refrigerant circuit (2), and is connected between -phase or three-phase AC power supply (AC>(AC). That is, motor (4M) is a continuous operation while the power supply (AC) is turned on. (IOM) is a motor for driving the electric compressor (10) of the low temperature side refrigerant circuit (3),
A power supply (A) is connected in series with the contact (60A) of the electromagnetic relay (60).
C) Connected to (AC). The contact (60A) energizes the coil (60C) of the electromagnetic relay (60) and closes it, operating the motor (IOM). (A.C.
), it essentially detects the temperature inside the storage chamber, sets an appropriate differential above and below the set temperature, generates a voltage between the output terminals (61A) and (61B) at the upper limit temperature, and generates a voltage between the output terminals (61A) and (61B) at the lower limit temperature. Stop occurrence. This set temperature is -14
The temperature is 5°C to -150°C. Output terminal (61A) (61
The coil (62C) of the temperature control relay (62) and the contact (63A) of the timer (63) are connected in series between B). The temperature control relay (62) closes the contact (62A) by energizing the coil (62C). (65) is a high-pressure switch provided in the electric compressor (10) discharge side piping (IOD) of the low temperature side refrigerant circuit (3) in FIG. 1, upstream of the auxiliary condenser (17). The high voltage switch (65) is the power supply (AC)
(AC) is connected in series with the timer (63),
The pressure on the discharge side of the electric compressor (10) increases and the compressor (10)
0), for example 26 kg.
/cm' opens the contacts and closes them when the pressure drops to a sufficiently safe condition, for example 8 kg/cm'12. The timer (63) closes the contact (63A) after 3 to 5 minutes have passed after the contact of the high pressure switch (63) has closed.
The high voltage switch (65) opens and contacts (63A) open.

(66)は低温始動サーモスタットであり、高温冷媒回
路(2)のアキュムレータ(15)の温度を感知する様
に取り付けられている。アキュムレータ(15)には各
蒸発器(14A)(14B)で蒸発した冷媒及び未蒸発
の冷媒が流入するため、蒸発器(14A)(14B)と
略同様の低温となるものであるが、低温始動サーモスタ
ット(66)はアキュムレータ(15)の温度が例えば
−35℃に低下して接点を閉じ、−10°Cに上昇して
接点を開く動作をする。低温始動サーモスタット(6(
i)は両側に温調リレー(62)の接点(62A)及び
タイマー(68)とで直列回路を構成して電源(AC)
(AC)に接続される。タイマー(68)と低温始動サ
ーモスタット(66)間にはタイマー(68)の切換え
スイッチ(69)のコモン端子が接続され、切換えスイ
ッチ(69)の端子(69A)と電源(AC)間には電
磁リレー(60)のコイル(60C)が接続され、端子
(69B)と電源(AC)間には第1図の減圧器(46
)の前後に交熱的に設けられるヒーター(70)(71
)が並列に接続される。タイマー(68)は常には切換
えスイッチ(69)を端子(69A)に閉じており、通
電されて積算し、この積算が例えば12時間になるとス
イッチ(69)を端子(69B)に例えば15分間閉じ
て再び端子(69A)に閉じる動作をする。
(66) is a low temperature start thermostat, which is installed to sense the temperature of the accumulator (15) of the high temperature refrigerant circuit (2). The refrigerant evaporated in each evaporator (14A) (14B) and the unevaporated refrigerant flow into the accumulator (15), so the temperature is almost the same as that of the evaporator (14A) (14B), but the temperature is lower. The starting thermostat (66) closes the contacts when the temperature of the accumulator (15) drops to, for example, -35°C, and opens the contacts when the temperature rises to -10°C. Low temperature start thermostat (6 (
i) The power supply (AC) is configured by forming a series circuit with the contact (62A) of the temperature control relay (62) and the timer (68) on both sides.
(AC). The common terminal of the changeover switch (69) of the timer (68) is connected between the timer (68) and the low temperature start thermostat (66), and the electromagnetic terminal is connected between the changeover switch (69) terminal (69A) and the power supply (AC). The coil (60C) of the relay (60) is connected, and the pressure reducer (46) shown in Figure 1 is connected between the terminal (69B) and the power supply (AC).
) Heaters (70) (71
) are connected in parallel. The timer (68) always closes the changeover switch (69) to the terminal (69A), and integrates electricity when it is energized. When this integration reaches, for example, 12 hours, it closes the switch (69) to the terminal (69B) for, for example, 15 minutes. and close the terminal (69A) again.

次に第3図のタイミングチャートを参照して動作を説明
する。冷凍装置(R)が据え付けられて時刻(to)で
電源(AC)(AC)を投入するとモーター(4M)が
起動し、電動圧縮機(4)が動作して高温側冷媒回路(
2)内を冷媒が循環し始める。この時アキュムレータ(
15)は常温に近い状態であるから低温始動サーモスタ
ット(66)は開放状態であり、従って温度調節器(6
1)の如何に係わらず、電磁リレー(60)のコイル(
60C)には通電詐れず、従って接点(60A)は開い
ているため、モーター(IOM)は起動せず、低温側冷
媒回路(3)の電動圧縮機(10)は動作しない。この
様な高温側冷媒回路(2〉のみの冷却運転が継続され、
第1及び第2蒸発器(14A)(14B)に液状冷媒が
たまることによって温度が低下して行き、それに伴って
アキュムレータ(15)の温度が低下して時刻(t、)
に−35°Cになると低温始動サーモスタット(66)
が接点を閉じる。この閉動作の寸前の時点では電動圧縮
機(10〉は停止しているから当然高圧スイッチ(65
)は閉じており、又、電源投入から3乃至5分は当然経
過しているからタイマー(63)も接点(63A)を閉
じている。更に貯蔵室内の温度も当然設定温度より高い
から、温度調節器(61)も出力を発生しているので温
調リレー(62)の接点(62A)は閉じている。従っ
て低温始動サーモスタット(66)が閉じた時点で電磁
リレー(60)のコイル(60C>に通電されて接点(
60A >が閉じ、モーター(IOM)が起動して電動
圧縮機(10)より混合冷媒が吐出され回路(3)内を
循環され始める。
Next, the operation will be explained with reference to the timing chart of FIG. When the refrigeration system (R) is installed and the power (AC) is turned on at time (to), the motor (4M) starts, the electric compressor (4) operates, and the high temperature side refrigerant circuit (
2) Refrigerant begins to circulate inside. At this time, the accumulator (
15) is close to room temperature, the low temperature start thermostat (66) is open, and therefore the temperature regulator (66) is in an open state.
Regardless of 1), the coil (
60C) is not energized and therefore the contact (60A) is open, the motor (IOM) does not start and the electric compressor (10) of the low temperature side refrigerant circuit (3) does not operate. Cooling operation of only the high-temperature side refrigerant circuit (2>) continues,
As the liquid refrigerant accumulates in the first and second evaporators (14A) (14B), the temperature decreases, and the temperature of the accumulator (15) decreases at time (t,).
When the temperature reaches -35°C, the low temperature start thermostat (66)
closes the contact. Just before this closing operation, the electric compressor (10) is stopped, so naturally the high pressure switch (65) is stopped.
) is closed, and since 3 to 5 minutes have naturally passed since the power was turned on, the timer (63) has also closed its contact (63A). Furthermore, since the temperature in the storage chamber is naturally higher than the set temperature, the temperature regulator (61) is also generating an output, so the contact (62A) of the temperature control relay (62) is closed. Therefore, when the cold start thermostat (66) closes, the coil (60C> of the electromagnetic relay (60) is energized and the contact (
60A> is closed, the motor (IOM) is started, and the mixed refrigerant is discharged from the electric compressor (10) and begins to be circulated within the circuit (3).

この時低温側冷媒回路(3)各部の温度は依然高く、従
って内部の冷媒は殆どがガス状となっているために回路
内の圧力は高い。その上電動圧縮機(10)から冷媒が
押し出されるために吐出側配管(10D)の圧力が急激
に上昇する。これを放置すると高圧力によって電動圧縮
機(10)構成部品が損傷を受けるが、この圧力上昇の
ピーク値が時刻(t2)で許容限界である26kg/a
m”に達すると高圧スイッチ(65)がそれを感知して
接点を開くので接点(63A)が開き、それによって温
調リレー(62)の接点(62A)が強制的に開放せら
れ、コイル(60C)が非通電となって接点(60A)
が開きモーター(101’l)は停止する。これによっ
て電動圧縮機(lO)吐出側の圧力上昇は阻止され、損
傷は防止される。
At this time, the temperature of each part of the low-temperature side refrigerant circuit (3) is still high, and since most of the refrigerant inside is in a gaseous state, the pressure inside the circuit is high. Moreover, since the refrigerant is pushed out from the electric compressor (10), the pressure in the discharge side pipe (10D) increases rapidly. If this is left unchecked, the components of the electric compressor (10) will be damaged by the high pressure, but the peak value of this pressure rise is 26 kg/a, which is the permissible limit at time (t2).
m'', the high voltage switch (65) senses it and opens the contact, which opens the contact (63A), which forces the contact (62A) of the temperature control relay (62) to open, and the coil ( 60C) becomes de-energized and the contact (60A)
opens and the motor (101'l) stops. This prevents pressure from rising on the discharge side of the electric compressor (lO) and prevents damage.

電動圧縮機(10)の停止によって吐出側配管(10D
)の圧力は低下してf3 kg / cm ”まで下が
るがチャタリング藺止用のタイマー(63)の存在によ
って高圧スイッチ(65)の閉動作から3乃至5分間は
接点は閉じず、従ってモーター(IOM)は起動しない
By stopping the electric compressor (10), the discharge side piping (10D
The pressure of the motor (IOM ) does not start.

この間に低温側冷媒回路(3)内の圧力は第1若しくは
第2蒸発器(14A)(14B)から第1若しくは第2
凝縮器(23A)(23B>に於いて冷却された冷媒が
多少なりとも循環されて蒸発する為に、前回の起動時よ
り温度が低下し、圧力も低下している。タイマー(63
)による遅延時間が時刻(t、)に経過すると再び接点
(63A>が閉ざされて前述同様にモーター(IOM)
が起動されるが、吐出側配管(IOD)の圧力が26k
gハかに達した時点で再び高圧スイッチ(65)が開放
してモーター(10)は停止する。この様なモーター(
IOM)の起動と停止を繰り返えし、沸点の高い冷媒が
蒸発して徐々に冷却作用を発揮して行くことによって第
1の中間熱交換器(32)から徐々に温度が低下して行
き、モーター(IOM)起動時の吐出側配管(IOD)
の圧力上昇のピーク値が26kg/cm”に達しなくな
るとモーター(IOM)は連続運転に入る。
During this time, the pressure in the low temperature side refrigerant circuit (3) changes from the first or second evaporator (14A) (14B) to the first or second evaporator (14A) (14B).
Since the refrigerant cooled in the condensers (23A) (23B> is circulated to some extent and evaporated, the temperature and pressure have decreased since the last startup.The timer (63)
) When the delay time due to ) has elapsed at time (t, ), the contact (63A> is closed again and the motor (IOM)
is started, but the pressure in the discharge side piping (IOD) is 26k
When g reaches H, the high voltage switch (65) is opened again and the motor (10) is stopped. A motor like this (
As the IOM) is repeatedly started and stopped, the refrigerant with a high boiling point evaporates and gradually exerts a cooling effect, so that the temperature gradually decreases from the first intermediate heat exchanger (32). , Discharge side piping (IOD) when starting the motor (IOM)
When the peak value of the pressure increase no longer reaches 26 kg/cm'', the motor (IOM) enters continuous operation.

電動圧縮機(10)が連続運転されることによって沸点
の低い冷媒も凝縮されて徐々に冷却作用を発揮し始め、
各中間熱交換器<32)(42)(44)と蒸発バイブ
(47)の温度が徐々に低下して行って前述の最終到達
温度を得る。その後貯蔵室の温度が温度調節器(61)
で設定する下限温度に達すると出力端子(61A)<6
1B)間の出力の発生を停止するので接点(62A)が
開き、更に接点(60A)も開く為、モーター(10M
)が停止し、冷却運転は停止する。その後貯蔵室内の温
度が徐々に上昇して、温度調節器(61)で設定する上
限温度に達すると再び接点(62A>が閉じ、更に接点
(60A>が閉じてモーター(IOM)が起動され再び
冷却運転が開始される。以上を繰り返して貯蔵室は平均
して設定温度例えば−140℃に維持されることになる
By continuously operating the electric compressor (10), the refrigerant with a low boiling point is also condensed and gradually begins to exert a cooling effect.
The temperatures of each intermediate heat exchanger (32) (42) (44) and the evaporating vibe (47) are gradually lowered to reach the final temperature mentioned above. After that, the temperature in the storage room is adjusted by the temperature controller (61)
When the lower limit temperature set in is reached, the output terminal (61A) <6
1B), the contact (62A) opens, and the contact (60A) also opens, so the motor (10M
) will stop, and cooling operation will stop. After that, the temperature inside the storage room gradually rises and when it reaches the upper limit temperature set by the temperature controller (61), the contact (62A> closes again, and the contact (60A>) closes again to start the motor (IOM) and restart it. Cooling operation is started. By repeating the above steps, the storage chamber is maintained at the set temperature, for example, -140° C. on average.

ここでタイマー(68)は接点(62A>及び低温始動
サーモスタット(66)が閉じている間、即ちモーター
(IOM)が運転されている時間を積算しており、この
積算が12時間に達すると切換えスイッチ(69)を端
子(69B)に閉じるのでモーター(10M)の運転は
禁止きれ、ヒーター(70)(71)に通電されて発熱
する。ここで第3の中間熱交換器(44)を出て減圧器
(46)に流入するR50は−120”C以下の極めて
低い温度に達している。従ってこの冷媒中に極めて微量
の水分(これは冷媒の補充作業中等に侵入するものであ
る。)が混入していれば配管内に氷結が発生する。とこ
ろで減圧器は通常細い径の配管にて構成されるため、こ
の減圧器(46)部分で氷結が成長すると目詰りが発生
し、冷媒が流れなくなってしまうが、本発明ではヒータ
ー(70)(71〉によって定期的に減圧器(46)を
加熱する為、この氷結晶は融解されて成長せず、従って
斯かる事故は防止される。このヒーター(70)(71
)の発熱は15分で終了し、再び端子(69A)にスイ
ッチ(69)が閉じてモーター(IOM)が起動され前
述同様低温側冷媒回路(3)の冷却運転が開始されるこ
とになる。
Here, the timer (68) integrates the time that the contact (62A>) and the cold start thermostat (66) are closed, that is, the time that the motor (IOM) is operating, and when this integration reaches 12 hours, the switch is switched. Since the switch (69) is closed to the terminal (69B), the operation of the motor (10M) is prohibited, and the heaters (70) and (71) are energized and generate heat.Here, the third intermediate heat exchanger (44) is turned off. The R50 flowing into the pressure reducer (46) has reached an extremely low temperature of -120"C or less. Therefore, there is an extremely small amount of moisture in this refrigerant (this enters during refrigerant replenishment work, etc.). If it is mixed in, ice will form in the pipes.By the way, pressure reducers are usually constructed of small diameter pipes, so if ice grows in this pressure reducer (46), it will clog and the refrigerant will drain. However, in the present invention, since the pressure reducer (46) is periodically heated by the heaters (70) (71), the ice crystals are melted and do not grow, thus preventing such an accident. This heater (70) (71
) ends in 15 minutes, the switch (69) is closed again to the terminal (69A), the motor (IOM) is activated, and the cooling operation of the low temperature side refrigerant circuit (3) is started as described above.

次に第4図は本発明を適用せる冷凍庫(75)の前方斜
視図を示し、第5図はその要部断面図を示す。更に第6
図は冷凍装置(R)の冷媒回路(1)の具体的構成を説
明する図である。冷凍庫(75)は理化学実験室等に設
置されるものであり、(74)は上方開口の貯蔵室(7
6)を内部に形成する本体であり、その上方開口は後辺
を回動自在に枢支された断熱扉(77)によって開閉自
在に閉室されている。本体(74)側部には温度調節器
(61)や電動圧縮機(4) (10)等を収容設置す
る機械室(78)が形成されており、その前面には貯蔵
室(76)内の温度を感知して記録紙にその時間推移を
記録する自記温度記録計(79)や貯蔵室(76)の異
常高温で警報を発する衆知の警報器(80)及び温度調
節器(61)の設定変更用摘み(81)が設けられる。
Next, FIG. 4 shows a front perspective view of a freezer (75) to which the present invention is applied, and FIG. 5 shows a sectional view of a main part thereof. Furthermore, the sixth
The figure is a diagram illustrating a specific configuration of a refrigerant circuit (1) of a refrigeration system (R). The freezer (75) is installed in physical and chemical laboratories, etc., and (74) is the storage room (74) with an upward opening.
6), the upper opening of which is openably closed by a heat insulating door (77) rotatably supported on the rear side. A machine room (78) is formed on the side of the main body (74) to house and install a temperature controller (61), electric compressors (4), (10), etc., and in front of it is a machine room (78) that accommodates the temperature controller (61), electric compressors (4), (10), etc. A self-recording temperature recorder (79) that senses the temperature of the room and records its change over time on recording paper, a common knowledge alarm (80) that issues an alarm in case of abnormally high temperature in the storage room (76), and a temperature controller (61). A setting change knob (81) is provided.

又、(82)は通気用スリットである。Further, (82) is a ventilation slit.

第5図は本体(74)部分の細断面図を示している。(
83)は上方開口の鋼板製外箱、(84)は同様に上方
開口のアルミニウム製内箱であり、内箱(84〉は外箱
(83)内に組み込まれ、両箱(83)(84)間にそ
れぞれ独立した上方に開口した箱状の外断熱材(85)
及び内断熱材(86)から成る二重の断熱層が形成きれ
て両箱(83)(84)の開口縁はブレーカ(87)で
接続きれている。内箱(84)の外面には蒸発パイプ(
47)が熱伝導的に配設上れ、内断熱材(86)内に埋
設されており、又、外箱(76)開口縁内面には鞘付防
止パイプ(6)が熱伝導的に配設されている。内断熱材
(86)は外断熱材(85)内に載置されているのみで
完全に分離しているため、蒸発パイプ(47)の冷却作
用によって内断熱材(86)が収縮しても外断熱材(8
5)には同等影響を与えず、従って断熱材の割れが発生
せず、又、十分なる断熱性能も維持するものである。外
箱(83)背面には開口(88)が形成され、又、外断
熱材(85)にもそれに対応して切欠(89)が形成さ
れており、との切欠(89)内に開口(88)より後述
する如き断熱材(90)によってモールドされたカスケ
ードコンデンサ(25A)(25B)等が収納配設され
覆板(91)にて覆われている。(92)は発泡スチロ
ール製の内蓋、(93)は断熱扉(77)内周面のガス
ケット、<94)は運搬用キャスターである。
FIG. 5 shows a cross-sectional view of the main body (74). (
83) is a steel plate outer box with an upward opening, (84) is an aluminum inner box with an upward opening, and the inner box (84> is built into the outer box (83), ) Box-shaped external insulation material (85) with independent upward openings between each
A double heat insulating layer consisting of the inner heat insulating material (86) and the inner heat insulating material (86) has been formed, and the opening edges of both boxes (83) and (84) are connected with the breaker (87). An evaporation pipe (
47) is disposed in a thermally conductive manner and buried in the inner insulation material (86), and a sheath prevention pipe (6) is disposed in a thermally conductive manner on the inner surface of the opening edge of the outer box (76). It is set up. The inner insulation material (86) is placed inside the outer insulation material (85) and is completely separated, so even if the inner insulation material (86) contracts due to the cooling action of the evaporation pipe (47), External insulation material (8
5) is not affected to the same extent, therefore, cracking of the heat insulating material does not occur, and sufficient heat insulating performance is maintained. An opening (88) is formed on the back surface of the outer box (83), and a corresponding notch (89) is formed in the outer heat insulating material (85). 88), cascade capacitors (25A) (25B) etc. molded with a heat insulating material (90) as described later are housed and covered with a cover plate (91). (92) is an inner cover made of polystyrene foam, (93) is a gasket on the inner peripheral surface of the heat insulating door (77), and <94) is a caster for transportation.

次に第6図は冷凍装置(R)の冷媒回路(1)の具体的
構成を示すもので、図中第1図と同一符号は同一のもの
である。低温側冷媒回路(3)の補助凝縮器(17)は
空気吸引型の送風機(9)に対して高温側冷媒回路(2
)の凝縮器(8)の風上側に配置せられ同時に冷却され
る様にしている。第1及び第2蒸発器(14A)(14
B)は内部中空のタンク状を成しており、この内部に上
方より螺旋状に巻回成形された第1及び第2凝縮パイプ
(23A)(23B)がそれぞれ挿入されている。(6
6A)はアキュムレータ(15)に溶接固定された低温
始動サーモスタット(66)固定用の筒体である。(9
6)は後述する各中間熱交換器(32)(42)(44
)等から成りそれを断熱材(97)によってモールドし
て箱状と成した中間熱交換器部を示している。蒸発パイ
プ(47)は内箱(84)外面に予めアルミニウムテー
プ或いは接着剤等によって蛇行状に固定されるものであ
るが、貯蔵室(76)内各部の温度分布を出来る実費な
くするために、冷媒の流れる順序が、内箱(84)の上
部周囲から下部周囲へ回り、最後に底辺を回る様に配設
きれている。
Next, FIG. 6 shows a specific configuration of the refrigerant circuit (1) of the refrigeration system (R), in which the same reference numerals as in FIG. 1 are the same. The auxiliary condenser (17) of the low temperature side refrigerant circuit (3) is connected to the high temperature side refrigerant circuit (2) with respect to the air suction type blower (9).
) is placed on the windward side of the condenser (8) so that it is cooled at the same time. First and second evaporators (14A) (14
B) has the shape of a hollow tank, into which first and second condensation pipes (23A) and (23B) wound in a spiral manner are respectively inserted from above. (6
6A) is a cylindrical body for fixing a low temperature starting thermostat (66) that is welded and fixed to the accumulator (15). (9
6) is each intermediate heat exchanger (32) (42) (44) described later.
), etc., and is molded with a heat insulating material (97) to form a box-like intermediate heat exchanger section. The evaporation pipe (47) is fixed in advance to the outer surface of the inner box (84) in a meandering manner with aluminum tape or adhesive, but in order to reduce the temperature distribution in each part of the storage chamber (76), it is necessary to The order in which the refrigerant flows is from around the top of the inner box (84) to around the bottom, and finally around the bottom.

第7図に中間熱交換器部(96)の構造を示す。点線で
囲む部分が第1、第2及び第3の中間熱交換器(32)
<42)(44)、第2の気液分離器(33)、乾燥器
(39)(45)、減圧器(40)及びアキュムレータ
(49)を内包する中間熱交換器部(96)である。各
中間熱交換器(32)(42) (44)は比較的大径
の外側配管(9g)(99)(100)を螺旋状に複数
段巻回して偏平としたものを相互に重合し、その内側を
間隔を存して各気相配管(30)(43)が内側配管と
なって通過する螺旋二重管構造で構成されており、図中
(A)部分が第1の中間熱交換器(32)を、(B)部
分が第2の中間熱交換器(42)を、又、(C)部分が
第3の中間熱交換器(44)となる。この螺旋の内側に
第2の気液分離器(33)、乾燥器(39)(45)、
減圧器(40)及びアキュムレータ(49)が収納され
てデッドスペースを少なくし、寸法の小型化を図ってい
る。
FIG. 7 shows the structure of the intermediate heat exchanger section (96). The parts surrounded by dotted lines are the first, second and third intermediate heat exchangers (32)
<42) (44), a second gas-liquid separator (33), a dryer (39) (45), a pressure reducer (40) and an accumulator (49), which is an intermediate heat exchanger section (96). . Each of the intermediate heat exchangers (32), (42), and (44) is formed by winding relatively large-diameter outer pipes (9g), (99), and (100) in multiple stages in a spiral shape to make them flat, which are then mutually polymerized. It has a spiral double pipe structure in which the gas phase pipes (30) and (43) pass through the inner pipe at intervals, and the part (A) in the figure is the first intermediate heat exchanger. The part (B) serves as the second intermediate heat exchanger (42), and the part (C) serves as the third intermediate heat exchanger (44). Inside this spiral, a second gas-liquid separator (33), a dryer (39) (45),
A pressure reducer (40) and an accumulator (49) are housed to reduce dead space and reduce size.

次に構成を説明する。(101)は乾燥器(28)と第
1の気液分離器(29)とを結ぶ配管である。第1の気
液分離器(29)から上方に出る気相配管(30)は封
止した入口(INI )より外側配管(98)内に入り
、内部を螺旋状に周回して通過した後、出口(OUTt
)より出て第2の気液分離器(33)に入る。気相配管
(30)内を流下するガス状冷媒はこの通過の際に気相
配管(30)と外側配管(98)の間隔を上昇する低温
冷媒によって凝縮される。第2の気液分離器(33)か
ら出た気相配管(43)は入口(IN2)より外側配管
(99)内に入る。第1の気液分離器(29)にて分離
された液冷媒は減圧器(36)により減圧された後、外
側配管(98)の出口(OUTt)と(99)の入口(
IN2)を結ぶ連通管(102)途中に流入せられて外
側配管(98)内で蒸発し、蒸発パイプ(47)より帰
還して来る冷媒と共に気相配管(30)内のガス状冷媒
の凝縮に寄与する。外側配管(99)内に入った気相配
管(43)は出口(OUTt )より出て再び入口(I
NK)より外側配管(100)内に入り、螺旋状に周回
して出口(OUT、)より出る。以上の各出口と入口部
の外側配管は封止されている。第2の気液分離器(33
)で分離れされた液冷媒は外側配管(100)と熱交換
的に設けた乾燥器(39)を経て減圧器(40)により
減圧された後、外側配管(99)の出口(OUTt)と
(100)の入口(IN、)を結ぶ連結管(103)途
中に流入せられて外側配管(99)内で蒸発し、蒸発バ
イブ(47)より帰還して来る冷媒と共に気相配管(4
3)内のガス状冷媒の凝縮に寄与する。気相配管(43
)内を流下して来る冷媒R50は外側配管(100)内
を通下する際に更に凝縮されて殆ど液化し外側配管(1
00)と熱交換的に設けた乾燥器(45)を経て減圧器
(46〉に至る。(105)は蒸発バイブ(47)の出
口側に接続される配管で外側配管(100)の出口(O
UT8)に接続されて気相配管(43)外側の間隔と連
通される。又、(106)は外側配管(98)の入口(
INI)に於いて気相配管(30)外側の間隔とアキュ
ムレータ(49)とを連通ずる配管である。即ち蒸発パ
イプ(47〉からの帰還冷媒は配管(105)より外側
配管(100)と気相配管(43)との間隔内に流入し
てそこを上昇し、気相配管(43)内を流下して来る冷
媒を凝縮し、連通管(103)にて減圧器(40)から
の冷媒・と合流して外側配管(99)と気相配管(43
)の間隔内に流入してそこを上昇し、気相配管(43)
内の冷媒を凝縮し、更に連通管(102)にて減圧器(
36)からの冷媒と合流して外側配管(98)と気相配
管(30)の゛間隔内に流入してそこを上昇し、気相配
管(30)内の冷媒を凝縮した後、配管(106)を通
過してアキュムレータ(49)に至り、配管(108)
にて吸入側熱交換器(24)に流入する。以上の如く気
相配管(30)或いは(43)内を流下する冷媒の流れ
と、蒸発パイプ(47)より気相配管(30)或いは(
43)と外側配管(100)(99)(98)間を上昇
して来る冷媒の流れとは相互に対向流となっている。
Next, the configuration will be explained. (101) is a pipe connecting the dryer (28) and the first gas-liquid separator (29). The gas phase pipe (30) exiting upward from the first gas-liquid separator (29) enters the outer pipe (98) through the sealed inlet (INI), passes around the inside in a spiral shape, and then passes through the outer pipe (98). Exit (OUTt
) and enters the second gas-liquid separator (33). The gaseous refrigerant flowing down in the gas phase pipe (30) is condensed by the low temperature refrigerant rising in the gap between the gas phase pipe (30) and the outer pipe (98) during this passage. The gas phase pipe (43) coming out of the second gas-liquid separator (33) enters the outer pipe (99) from the inlet (IN2). The liquid refrigerant separated in the first gas-liquid separator (29) is depressurized by the pressure reducer (36), and then the outlet (OUTt) of the outer pipe (98) and the inlet (99)
The gaseous refrigerant in the gas phase pipe (30) is condensed together with the refrigerant that flows into the communication pipe (102) connecting the IN2), evaporates in the outer pipe (98), and returns from the evaporation pipe (47). Contribute to The gas phase pipe (43) that entered the outer pipe (99) exits from the outlet (OUTt) and returns to the inlet (I).
It enters the outer pipe (100) from the outside pipe (100), circulates in a spiral shape, and exits from the outlet (OUT, ). The outer piping of each outlet and inlet section is sealed. Second gas-liquid separator (33
) The liquid refrigerant separated by the outer pipe (100) passes through a dryer (39) provided for heat exchange, is depressurized by a pressure reducer (40), and then is transferred to the outlet (OUTt) of the outer pipe (99). The refrigerant flows into the connecting pipe (103) connecting the inlet (IN,) of (100), evaporates in the outer pipe (99), and returns from the evaporator vibrator (47) together with the gas phase pipe (4).
3) Contributes to the condensation of the gaseous refrigerant within. Gas phase piping (43
) The refrigerant R50 flowing down inside the outside pipe (100) is further condensed and almost liquefied as it passes through the outside pipe (100).
It reaches the pressure reducer (46>) through the dryer (45) installed for heat exchange with the outside pipe (100). O
UT8) and communicates with the outer space of the gas phase pipe (43). In addition, (106) is the inlet (
This is a pipe that communicates between the outer space of the gas phase pipe (30) and the accumulator (49) in the INI). That is, the return refrigerant from the evaporation pipe (47) flows from the pipe (105) into the space between the outer pipe (100) and the gas phase pipe (43), rises there, and flows down inside the gas phase pipe (43). The incoming refrigerant is condensed, merged with the refrigerant from the pressure reducer (40) in the communication pipe (103), and transferred to the outer pipe (99) and the gas phase pipe (43).
) and rise there, and the gas phase pipe (43)
The refrigerant inside is condensed, and then the communication pipe (102) is connected to a pressure reducer (
36), flows into the gap between the outer pipe (98) and the gas phase pipe (30), rises there, condenses the refrigerant in the gas phase pipe (30), and then flows into the pipe (36). 106) to the accumulator (49), and the pipe (108)
It flows into the suction side heat exchanger (24). As described above, the flow of refrigerant flowing down inside the gas phase pipe (30) or (43) and the flow of refrigerant flowing down inside the gas phase pipe (30) or (43) and the flow from the evaporation pipe (47) to the gas phase pipe (30) or (
43) and the flow of refrigerant rising between the outer pipes (100), (99), and (98) are mutually opposing flows.

次に第8図に冷凍庫(75)の背方斜視図を示し、冷凍
装置(R)の組み込む手順を説明する。外箱(83)背
面には開口(88)と並列して開口(110)が形成さ
れ、それに対応して外断熱材(85)にも切欠(111
)が形成されている。断熱材(90)内にはカスケード
コンデンサ(25A)(25B)と共に吸入側熱交換器
(22)(24)、アキュムレータ(15)及び乾燥器
(28)をモールドする。断熱材(90)と(97)の
成形方法は被モールド部品を樹脂袋内に収容し、その状
態で箱状の発泡型内に設置し、袋の中にウレタン断熱材
を発泡充填して成形するものである。断熱材(97)か
らは減圧器(46)と配管(105)を延出しておき、
切欠(111)奥部の導出部(112)(112)より
導出される蒸発バイブ(47)と溶接により接続する。
Next, FIG. 8 shows a rear perspective view of the freezer (75), and the procedure for assembling the refrigeration apparatus (R) will be explained. An opening (110) is formed on the back side of the outer box (83) in parallel with the opening (88), and correspondingly, a notch (111) is also formed in the outer insulation material (85).
) is formed. In the heat insulating material (90), the cascade condensers (25A) (25B), suction side heat exchangers (22) (24), accumulator (15), and dryer (28) are molded. The molding method for the insulation materials (90) and (97) is to house the parts to be molded in a resin bag, place them in a box-shaped foam mold in that state, and fill the bag with foam and mold the urethane insulation material. It is something to do. A pressure reducer (46) and piping (105) are extended from the insulation material (97),
The notch (111) is connected by welding to the evaporating vibrator (47) led out from the lead-out part (112) (112) at the back.

断熱材(90)から延在せしめた減圧器(13)等の配
管は切欠(89)の機械室(78)側の壁面より導出さ
れる配管と溶接接続する。第1の気液分離器(29)と
乾燥器(35)は断熱材(90)外側に位置せしめ、断
熱材(90)と(97)も相互に配管接続した状態で切
欠(89)(111)内に組み込み、隙間にはグラスウ
ール等を装填した後、覆板(91)で切欠(89)と(
111)を覆う事により組み込みを完了する。又、電動
圧縮機(4)(10)、凝縮器(8)、送風機(9)及
び膨張タンク(51)等は機械室(78)内に予め設置
しておき、これによって冷凍庫(75)は完成する。
Pipes such as the pressure reducer (13) extending from the heat insulating material (90) are welded and connected to piping led out from the wall surface of the notch (89) on the machine room (78) side. The first gas-liquid separator (29) and the dryer (35) are located outside the heat insulating material (90), and the insulating materials (90) and (97) are also connected to each other with piping, and the notches (89) (111) ) and fill the gap with glass wool, etc., then use the cover plate (91) to connect the notch (89) and (
111) to complete the installation. In addition, electric compressors (4) (10), condenser (8), blower (9), expansion tank (51), etc. are installed in advance in the machine room (78), so that the freezer (75) Complete.

(ト)発明の効果 本発明によれば高温側冷媒回路の蒸発器にて温度が低下
した液状の油戻し用の冷媒を低温側冷媒回路の電動圧縮
機の潤滑油冷却器内で蒸発せしめるので、高温となる低
温側冷媒回路の電動圧縮機を良好に冷却して焼付きや潤
滑油の劣化を防止できると共に、高温側冷媒回路の電動
圧縮機の液戻りによる損傷の発生も防止きれる等の効果
を奏する。
(G) Effects of the Invention According to the present invention, the liquid oil return refrigerant whose temperature has decreased in the evaporator of the high temperature side refrigerant circuit is evaporated in the lubricating oil cooler of the electric compressor of the low temperature side refrigerant circuit. It is possible to properly cool the electric compressor in the low-temperature side refrigerant circuit, which gets hot, to prevent seizure and deterioration of the lubricating oil, and also to prevent damage caused by liquid return to the electric compressor in the high-temperature side refrigerant circuit. be effective.

【図面の簡単な説明】[Brief explanation of drawings]

各図は本発明の実施例を示し、第1図は冷凍装置の冷媒
回路図、第2図は同制御用電気回路図、第3図は冷凍装
置の動作を説明するタイミングチャート、第4図は冷凍
庫の斜視図、第5図は冷凍庫本体の側断面図、第6図は
冷凍装置の冷媒回路の具体的構成を示す図、第7図は中
間熱交換器部の斜視図、第8図は冷凍庫の後方斜視図、
第9図は高温側冷媒回路のアキュムレータの断面図であ
る。 (R)・・・冷凍装置、 (2)・・・高温側冷媒回路
、(3)・・・低温側冷媒回路、 (4)(10)・・
・電動圧縮機、(11)・・・オイルクーラー、 (1
4A)(14B)・・・蒸発器、(15)・・・アキュ
ムレータ、 (23A)(23B)・・・凝縮バイブ、
(25A)(25B)・・・カスケードコンデンサ。 出願人 三洋電機株式会社外1名 代理人 弁理士 西野卓嗣 外1名 第8図 第9図
Each figure shows an embodiment of the present invention, and FIG. 1 is a refrigerant circuit diagram of the refrigeration system, FIG. 2 is an electric circuit diagram for controlling the same, FIG. 3 is a timing chart explaining the operation of the refrigeration system, and FIG. 4 5 is a side sectional view of the freezer body, FIG. 6 is a diagram showing the specific configuration of the refrigerant circuit of the refrigeration system, FIG. 7 is a perspective view of the intermediate heat exchanger section, and FIG. 8 is a perspective view of the freezer. is a rear perspective view of the freezer,
FIG. 9 is a sectional view of the accumulator of the high temperature side refrigerant circuit. (R)... Refrigeration device, (2)... High temperature side refrigerant circuit, (3)... Low temperature side refrigerant circuit, (4) (10)...
・Electric compressor, (11)...Oil cooler, (1
4A) (14B)... Evaporator, (15)... Accumulator, (23A) (23B)... Condensing vibe,
(25A) (25B)...Cascade capacitor. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Takuji Nishino and one other person Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 1、それぞれ圧縮機から吐出された冷媒を凝縮した後蒸
発せしめて冷却作用を発揮する独立した冷媒閉回路を構
成する高温側冷媒回路と低温側冷媒回路とから成り、前
記高温側冷媒回路の蒸発器と前記低温側冷媒回路の凝縮
器とで熱交換器を構成した冷凍装置に於いて、前記高温
側冷媒回路には冷却作用を発揮する沸点の低い冷媒と圧
縮機の潤滑油を帰還せしめるための比較的沸点の高い冷
媒を封入し、前記熱交換器を経て前記高温側冷媒回路の
圧縮機へ帰還する配管の一部にて前記低温側冷媒回路の
圧縮機の潤滑油冷却器を構成した冷凍装置。
1. Consisting of a high-temperature side refrigerant circuit and a low-temperature side refrigerant circuit, each of which constitutes an independent refrigerant closed circuit that condenses and then evaporates the refrigerant discharged from the compressor to exert a cooling effect, and the evaporation of the high-temperature side refrigerant circuit In a refrigeration system in which a heat exchanger is constituted by a condenser and a condenser in the low temperature side refrigerant circuit, the refrigerant with a low boiling point that exerts a cooling effect and lubricating oil for the compressor are returned to the high temperature side refrigerant circuit. A lubricating oil cooler for the compressor of the low temperature side refrigerant circuit is configured by a part of the piping which is filled with a refrigerant having a relatively high boiling point and returns to the compressor of the high temperature side refrigerant circuit via the heat exchanger. Refrigeration equipment.
JP9159986A 1986-04-21 1986-04-21 Refrigerator Granted JPS62248968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9159986A JPS62248968A (en) 1986-04-21 1986-04-21 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9159986A JPS62248968A (en) 1986-04-21 1986-04-21 Refrigerator

Publications (2)

Publication Number Publication Date
JPS62248968A true JPS62248968A (en) 1987-10-29
JPH0371624B2 JPH0371624B2 (en) 1991-11-13

Family

ID=14031019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9159986A Granted JPS62248968A (en) 1986-04-21 1986-04-21 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62248968A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267855U (en) * 1988-11-08 1990-05-23
WO2007132804A1 (en) * 2006-05-15 2007-11-22 Sanyo Electric Co., Ltd. Refrigeration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267855U (en) * 1988-11-08 1990-05-23
WO2007132804A1 (en) * 2006-05-15 2007-11-22 Sanyo Electric Co., Ltd. Refrigeration system
JP2007303793A (en) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd Refrigerating device
KR101364381B1 (en) * 2006-05-15 2014-02-17 파나소닉 헬스케어 주식회사 Refrigeration system
US8826686B2 (en) 2006-05-15 2014-09-09 Panasonic Healthcare Co., Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
JPH0371624B2 (en) 1991-11-13

Similar Documents

Publication Publication Date Title
US4788829A (en) Low-temperature refrigeration system
US4756164A (en) Cold plate refrigeration method and apparatus
JP3965717B2 (en) Refrigeration equipment and refrigerator
US5372011A (en) Air conditioning and heat pump system utilizing thermal storage
KR100227878B1 (en) Combined multi-modal air conditioning apparatus and negative energy storage system
US2794322A (en) Variable temperature refrigeration
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
US5709090A (en) Refrigerating system and operating method thereof
WO2001079772A1 (en) Refrigerator with thermal storage
US4712387A (en) Cold plate refrigeration method and apparatus
JP3125778B2 (en) Air conditioner
JP2000088431A (en) Brine cooler
JPH09196480A (en) Liquid refrigerating apparatus for refrigerating device
JPS6273046A (en) Refrigerator
JPS62248968A (en) Refrigerator
JPS62248962A (en) Refrigerator
JPH07234027A (en) Cascade refrigerator
JPH01244251A (en) Refrigerating plant
JP2003194427A (en) Cooling device
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2000193328A (en) Freezer
JPS62294855A (en) Refrigerator
JPH0745985B2 (en) Refrigeration equipment
JPS62294853A (en) Refrigerator
CN217686110U (en) Evaporation type low-temperature refrigerating unit device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term