JPH09196480A - Liquid refrigerating apparatus for refrigerating device - Google Patents

Liquid refrigerating apparatus for refrigerating device

Info

Publication number
JPH09196480A
JPH09196480A JP8003592A JP359296A JPH09196480A JP H09196480 A JPH09196480 A JP H09196480A JP 8003592 A JP8003592 A JP 8003592A JP 359296 A JP359296 A JP 359296A JP H09196480 A JPH09196480 A JP H09196480A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
refrigerating
refrigerant liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8003592A
Other languages
Japanese (ja)
Inventor
Kazuhide Hori
万秀 堀
Makoto Fujita
誠 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Appliances Inc
Original Assignee
Hitachi Ltd
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Appliances Inc filed Critical Hitachi Ltd
Priority to JP8003592A priority Critical patent/JPH09196480A/en
Publication of JPH09196480A publication Critical patent/JPH09196480A/en
Priority to US08/915,512 priority patent/US5965290A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely obtain a specified liquid super-cooling degree by a method wherein a by-pass circuit is provided on a refrigerant liquid piping, and a liquid refrigerating apparatus which refrigerates a refrigerant liquid by vacuumizing one part of the refrigerant liquid of a high pressure, of the total refrigerant circulation amount, and evaporating it, with the evaporation latent heat, is provided for the refrigerating of the refrigerant liquid. SOLUTION: This liquid refrigerating apparatus also works as a receiver tank 4, and a refrigerant liquid stays inside. Also, at a lower part in the liquid refrigerating apparatus 3, a refrigerating pipe 7 is provided, and normally, the refrigerating pipe 7 is immersed in the refrigerant liquid. When a compressor suction gas of a low temperature passes through the refrigerating pipe 7, the gas heat-exchanges with the liquid staying in the liquid refrigerating apparatus 3, and the liquid is super-cooled. By this method, the specified super-cooling degree of the refrigerant liquid can be stabilized, and a flush gas in the liquid piping can be prevented from generating, and a stable operation state can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍装置用液冷却器
に関する。
TECHNICAL FIELD The present invention relates to a liquid cooler for a refrigeration system.

【0002】[0002]

【従来の技術】従来、冷凍装置に使用されてきた特定フ
ロン(CFC系冷媒)は、1996年年初より生産全廃
となる、指定フロン(HCFC系冷媒)は1996年よ
り生産の総量規制開始となり、それらの代替として安全
性,性能等の面からHFC系冷媒が注目されているが、
その中でも、冷凍装置用冷媒は、R404A,R507
の二種が有力となっている。
2. Description of the Related Art Specified CFCs (CFC-based refrigerants) that have been used in refrigeration systems have been completely abolished since the beginning of 1996. Specified CFCs (HCFC-based refrigerants) have been regulated for total production in 1996. As an alternative to these, HFC-based refrigerants are attracting attention in terms of safety and performance,
Among them, refrigerants for refrigeration systems are R404A and R507.
The two types are influential.

【0003】空冷式冷凍装置では、特に冷媒液を冷却す
る機構を備えていないか又は必要に応じて空冷凝縮器に
空冷液冷却器を付加し、空冷凝縮器で凝縮した冷媒液
を、空冷液冷却器に送入し、冷媒液を、周囲空気で冷却
することによって冷媒液を過冷却していた。
The air-cooling type refrigerating apparatus does not have a mechanism for cooling the refrigerant liquid, or an air-cooling liquid cooler is added to the air-cooling condenser if necessary, and the refrigerant liquid condensed in the air-cooling condenser is cooled by the air-cooling liquid. The refrigerant liquid was supercooled by sending it into a cooler and cooling the refrigerant liquid with ambient air.

【0004】[0004]

【発明が解決しようとする課題】これまで冷凍装置に使
われてきた特定フロン(CFC),指定フロン(HCFC)
の代替えとなり得る冷媒が、確定されていなかったた
め、代替冷媒の研究開発が進められる一方で、1996
年年初より生産全廃となる特定フロン(CFC)は、指
定フロン(HCFC)等への転換が図られてきた。
Specified CFCs (CFCs) and designated CFCs (HCFCs) that have been used in refrigeration systems.
Since a refrigerant that could be used as an alternative refrigerant has not been determined, research and development of an alternative refrigerant is underway, while
From the beginning of the year, designated CFCs (CFCs), whose production has been abolished, have been converted to designated CFCs (HCFCs).

【0005】既にその転換の技術は確立しており、各冷
凍機メーカからHCFC他用冷凍装置が発売されてい
る。
The technology for the conversion has already been established, and refrigerating machines for HCFC and others are put on the market by refrigerating machine makers.

【0006】しかし、指定フロン(HCFC)は、19
96年より総量規制が始まるため、代替冷媒への転換を
進めなければならず、冷凍装置用代指冷媒は、安全性,
性能等の面からHFC系冷媒のR404A,R507の
二種が、現在のところ有力となっている。
However, the designated CFC (HCFC) is 19
Since the total amount regulation started in 1996, it has been necessary to promote the conversion to alternative refrigerants.
Two types of HFC refrigerants, R404A and R507, are currently dominant in terms of performance and the like.

【0007】R404A,R507両冷媒と、現在最も
一般的に使用されているHCFC系冷媒のR22とを種
々比較すると下記の通りである。
A comparison of both R404A and R507 refrigerants with R22, which is the most commonly used HCFC refrigerant at present, is as follows.

【0008】 圧縮機排除容積を一定として、同一の
環論冷凍サイクルにて、冷媒循環量を比較すると、R2
2に対し、R404A,R507の方が大である。
Comparing the refrigerant circulation amounts in the same ring theory refrigeration cycle with the compressor displacement volume kept constant, R2 is
R404A and R507 are larger than R2.

【0009】 各々の液の比熱は、R22に対し、R
404A,R507の方が大である。
The specific heat of each liquid is R22 with respect to R22.
404A and R507 are larger.

【0010】例として、蒸発温度−5℃,凝縮温度48
℃,圧縮機吸込ガス温度0℃,減圧装置入口液の過冷却
度0deg の場合、冷媒循環量は、R22に対し、R40
4Aは約1.4倍、R507は約1.5倍、また、液の比
熱はR22に対し、R404A,R507とも約1.3 倍で
ある。更に、R404A,R507はR22に対し液の
密度,粘度は小であるが、冷媒循環量大のため、液配管
における圧力損失が、大であり、同一配管径路では、圧
力損失がR22に対しR404A,R507とも約2
倍、圧力損失による液の飽和温度降下度がR22に対し
R404Aは約1.7倍、R507は約1.8倍となる。
As an example, an evaporation temperature of -5 ° C. and a condensation temperature of 48
℃, compressor suction gas temperature 0 ℃, decompression device inlet liquid supercooling degree 0 deg, the refrigerant circulation amount is R22, R40
4A is approximately 1.4 times, R507 is approximately 1.5 times, and the specific heat of the liquid is approximately 1.3 times that of R22 for both R404A and R507. Further, R404A and R507 have smaller liquid densities and viscosities than R22, but due to the large refrigerant circulation amount, the pressure loss in the liquid pipe is large, and in the same pipe path, the pressure loss is R404A and R404A. , R507 is about 2
The saturation temperature drop of the liquid due to the pressure loss is about 1.7 times for R404A and about 1.8 times for R507 compared to R22.

【0011】これらのことから、R404A,R507
は、過冷却度を取り難く、かつ、液配管での飽和温度降
下度が大のため、液配管中でフラッシュガスが発生し易
い冷媒であると言え、これは、蒸発温度が、比較的高い
領域で顕著である。冷凍装置においてフラッシュガスの
発生を防止することは、必須であり、そのために液配管
の圧力損失の低減を図ることだけでなく凝縮器にて凝縮
した冷媒液を更に冷却して、所要の液過冷却度を得るこ
とが重要である。
From these things, R404A and R507
Can be said to be a refrigerant in which flash gas is likely to be generated in the liquid pipe because it is difficult to obtain the degree of supercooling and the degree of saturation temperature drop in the liquid pipe is large. This is because the evaporation temperature is relatively high. Noticeable in the area. It is essential to prevent the generation of flash gas in the refrigeration system.For that reason, not only to reduce the pressure loss in the liquid pipe, but also to further cool the refrigerant liquid condensed in the condenser to obtain the required liquid excess. It is important to obtain the degree of cooling.

【0012】空冷式冷凍装置において、空冷凝縮器に空
冷液冷却器を付加する方法等あるが、R404A,R5
07は、液の過冷却度を取り難いので凝縮器出口の液は
過冷却度が小さく、運転条件によっては殆どゼロであ
る。従って凝縮器出口の液を液冷却器に送入した場合、
液中に少量ではあっても気泡が混じることや、わずかな
圧力損失のために、気泡が生じることとなり、液過冷却
が阻害される。凝縮器出口の液を一旦、レシーバタンク
に溜めて、これを液冷却器に送付した場合、液中に気泡
が混じることは防止できても、配管経路が長く、かつ、
複雑になるといった欠点でけでなく圧力損失が増大する
ため気泡が生じ、液過冷却が阻害されることにもなる。
In the air-cooled refrigeration system, there are methods such as adding an air-cooled liquid cooler to the air-cooled condenser, but there are R404A and R5.
In No. 07, since the degree of supercooling of the liquid is difficult to obtain, the degree of supercooling of the liquid at the condenser outlet is small, and it is almost zero depending on the operating conditions. Therefore, when the liquid at the condenser outlet is sent to the liquid cooler,
Even if the amount is a small amount in the liquid, bubbles are mixed, and bubbles are generated due to a slight pressure loss, and liquid supercooling is hindered. If the liquid at the condenser outlet is temporarily stored in the receiver tank and sent to the liquid cooler, even if it is possible to prevent bubbles from mixing in the liquid, the piping path is long and
In addition to the drawback of being complicated, not only the pressure loss increases, but also bubbles are generated and the liquid subcooling is hindered.

【0013】また、夏季は周囲空気温度が高く、冷媒液
との温度差が小さくなることや、フィン材外表面の汚
れ、据付場所によっては直射日光が当る懸念がある等種
々の要因のために、所期の液過冷却度を得られないこと
が考えられ、これらの要因と関係なく、確実に所要の液
過冷却度を得ることが必要である。
In addition, in summer, the ambient air temperature is high, the temperature difference with the refrigerant liquid is small, the outer surface of the fin material is dirty, and direct sunlight may be exposed depending on the installation location. It is considered that the desired degree of liquid subcooling cannot be obtained, and it is necessary to reliably obtain the required degree of liquid supercooling regardless of these factors.

【0014】[0014]

【課題を解決するための手段】所期の冷媒液の過冷却度
を得るために、冷媒液を周囲空気で冷却するのは、両者
の熱交換の効率を低下させる種々の要因がある。
Cooling the refrigerant liquid with ambient air in order to obtain the desired degree of supercooling of the refrigerant liquid has various factors that reduce the efficiency of heat exchange between the two.

【0015】そこで本発明はそれに代る確実な方法とし
て、冷媒液配管にバイパス回路を設け全冷媒循環量のう
ち一部の高圧の冷媒液を減圧してそれを蒸発させ、その
蒸発潜熱で冷媒液を冷却する、又は、低温の圧縮機吸込
ガスで冷媒液を冷却するものであり、冷媒液の冷却のた
めに液冷却器を設ける。
Therefore, in the present invention, as a reliable alternative method, a bypass circuit is provided in the refrigerant liquid pipe to decompress a part of the high-pressure refrigerant liquid out of the total refrigerant circulation amount to evaporate it, and the latent heat of vaporization causes the refrigerant The liquid is cooled, or the refrigerant liquid is cooled by a low-temperature compressor suction gas, and a liquid cooler is provided for cooling the refrigerant liquid.

【0016】液冷却器は、二重管式のもの又は、レシー
バタンクの下部に配管を設けてレシーバタンクを兼ねた
液冷却器としたものである。
The liquid cooler is of a double pipe type or a liquid cooler which also serves as a receiver tank by providing a pipe under the receiver tank.

【0017】二重管式のものは、一方にバイパス回路を
循環する冷媒又は低温の圧縮機吸込ガスを通し、他方に
冷媒液を通して、冷媒液を冷却する。
The double pipe type cools the refrigerant liquid by passing the refrigerant or low-temperature compressor suction gas circulating through the bypass circuit on one side and the refrigerant liquid on the other side.

【0018】レシーバタンクを兼ねたものは、レシーバ
タンク内下部に設けた配管内に、バイパス回路を循環す
る冷媒又は低温の圧縮機吸込ガスを通し、レシーバタン
ク内下部に滞留している冷媒液を冷却する。
The one that also serves as a receiver tank is configured such that the refrigerant circulating in the bypass circuit or the low-temperature compressor suction gas is passed through the pipe provided in the lower portion of the receiver tank, and the refrigerant liquid retained in the lower portion of the receiver tank is discharged. Cooling.

【0019】[0019]

【発明の実施の形態】液バイパス回路を設ける方法で
は、通常冷凍装置に備えられているレシーバタンクから
流出する高圧の冷媒液の一部を液バイパス回路に送入
し、これを所定の圧力まで減圧した後液冷却器内で蒸発
させて、この蒸発潜熱に相当する熱量を中温の冷媒液か
ら顕熱として熱交換させることにより、液過冷却度を取
りにくい、R404A,R507でも所期の液過冷却度
を得る。
BEST MODE FOR CARRYING OUT THE INVENTION According to the method of providing a liquid bypass circuit, a part of high-pressure refrigerant liquid flowing out from a receiver tank normally provided in a refrigerating device is fed into the liquid bypass circuit and is brought to a predetermined pressure. After depressurizing, the liquid is evaporated in the liquid cooler, and the amount of heat corresponding to this evaporation latent heat is exchanged as heat from the medium-temperature refrigerant liquid as sensible heat, making it difficult to achieve liquid subcooling. Get the degree of supercooling.

【0020】尚、液バイパス回路を循環する冷媒は、液
冷却器で蒸発した後、蒸発器出口冷媒ガスとともに圧縮
機に吸入されて冷凍サイクル内を循環する。また、本発
明による液冷却が必要となるのは、概ね蒸発温度が−1
5℃以上の蒸発温度領域であるので、これを温度スイッ
チ又は、圧力スイッチ等により検知し、液バイパス回路
中に設けた電磁弁を開閉して制御する。
The refrigerant circulating in the liquid bypass circuit is evaporated in the liquid cooler and then taken into the compressor together with the refrigerant gas at the outlet of the evaporator to circulate in the refrigeration cycle. Further, the liquid cooling according to the present invention is generally required when the evaporation temperature is -1.
Since it is in the evaporation temperature region of 5 ° C. or higher, this is detected by a temperature switch, a pressure switch or the like, and the solenoid valve provided in the liquid bypass circuit is opened / closed for control.

【0021】低温の圧縮機吸込ガスを利用する方法で
は、低温の圧縮機吸込ガスを液冷却器に送入し、中温の
冷媒液と熱交換して、液過冷却度を取りにくいR404
A,R507でも所期の液過冷却度を得る。
In the method utilizing the low temperature compressor suction gas, the low temperature compressor suction gas is fed into the liquid cooler and exchanges heat with the medium temperature refrigerant liquid to make it difficult to obtain the degree of liquid subcooling.
The desired degree of liquid supercooling is obtained with A and R507.

【0022】この際、圧縮機吸込ガスが過熱されるが、
吸込ガスが完全に乾き状態でない場合はこれを解消する
ことができ、また同一条件で吸込ガス過熱度だけを変え
た場合、R404A,R507は過熱度が大の方が冷凍
能力も大となるといった長所もある。また圧縮機吐出ガ
ス温度の制御に関しては、R404A,R507は、R
22に比し、圧縮機吐出ガス温度は低くなる特性がある
のに加えて、従来からの液インジェクション制御を利用
すれば吐出ガス温度過昇に関して懸念は無い。
At this time, the compressor suction gas is overheated,
If the suction gas is not completely dry, this can be eliminated, and if only the suction gas superheat degree is changed under the same conditions, R404A and R507 have a higher superheat degree and a higher refrigerating capacity. There are also advantages. Regarding the control of the compressor discharge gas temperature, R404A and R507 are
Compared with No. 22, in addition to the characteristic that the compressor discharge gas temperature becomes lower, there is no concern regarding the discharge gas temperature excessive rise by utilizing the conventional liquid injection control.

【0023】図1ないし図4に本発明による実施例の冷
凍サイクル系統図を示す。
1 to 4 show a refrigeration cycle system diagram of an embodiment according to the present invention.

【0024】図1において、液冷却器3はレシーバタン
ク4を兼ねており、その内部には、冷媒液が滞留してい
る。また液冷却器3内の下部には冷却管7が設けてあ
り、通常は滞留している冷媒液に浸っている。低温の圧
縮器吸込ガスが冷却管7の中を通過する時に、液冷却器
3内に滞留している液と熱交換し、液を過冷却する。
In FIG. 1, the liquid cooler 3 also serves as the receiver tank 4, and the refrigerant liquid stays therein. A cooling pipe 7 is provided in the lower part of the liquid cooler 3 and is normally immersed in the refrigerant liquid that has stagnated. When the low-temperature compressor suction gas passes through the cooling pipe 7, it exchanges heat with the liquid retained in the liquid cooler 3 to supercool the liquid.

【0025】図2において、レシーバタンク4から流出
する液と低温の圧縮機吸込ガスとが液冷却器8で熱交換
し、液を過冷却する。
In FIG. 2, the liquid flowing out from the receiver tank 4 and the low temperature compressor suction gas exchange heat with each other in the liquid cooler 8 to supercool the liquid.

【0026】図3において、液冷却器3はレシーバタン
クを兼ねており、その内部には、冷媒液が滞留してい
る。また液冷却器3内の下部には、冷却管7が設けてあ
り、通常は滞留している冷媒液に浸っている。
In FIG. 3, the liquid cooler 3 also serves as a receiver tank, and the refrigerant liquid stays in the inside thereof. A cooling pipe 7 is provided in the lower part of the liquid cooler 3 and is normally immersed in the refrigerant liquid that has stagnated.

【0027】液冷却器3から流出する冷媒液の一部は、
液バイパス配管9を循環し、電磁弁10,減圧装置11
を経て冷却管7内で蒸発する。その蒸発潜熱で、液冷却
器3内の冷媒液を冷却し、液を過冷却する。
A part of the refrigerant liquid flowing out from the liquid cooler 3 is
It circulates through the liquid bypass pipe 9, and has a solenoid valve 10 and a pressure reducing device 11.
And evaporates in the cooling pipe 7. The latent heat of vaporization cools the refrigerant liquid in the liquid cooler 3 to supercool the liquid.

【0028】図4において、レシーバタンク4から流出
する冷媒液の一部は、液バイパス配管9を循環し、電磁
弁10,減圧装置11を経て、液冷却器8にて、蒸発
し、その蒸発潜熱で冷媒液を冷却し、液を過冷却する。
尚、図3,図4において、蒸発器6の出口に設けた圧力
スイッチ12又は温度スイッチ13で、蒸発器出口ガス
の圧力又は温度を検知し、蒸発温度が概ね−15℃以上
に相当する領域で電磁弁10を開き、それ以下の蒸発温
度領域で電磁弁10を閉じる。
In FIG. 4, a part of the refrigerant liquid flowing out from the receiver tank 4 circulates in the liquid bypass pipe 9, passes through the solenoid valve 10 and the pressure reducing device 11, and is evaporated in the liquid cooler 8 to be evaporated. The latent liquid cools the refrigerant liquid and supercools the liquid.
In FIGS. 3 and 4, the pressure switch 12 or the temperature switch 13 provided at the outlet of the evaporator 6 detects the pressure or temperature of the gas at the outlet of the evaporator, and the region where the evaporation temperature is approximately −15 ° C. or higher. The electromagnetic valve 10 is opened with and the electromagnetic valve 10 is closed in the evaporation temperature region below that.

【0029】[0029]

【発明の効果】本発明によれば、冷媒液の所要の過冷却
度を安定して、かつ確実に取ることができるので、概ね
−15℃以上の蒸発温度領域での液配管中のフラッシュ
ガスの発生といった問題を解決し、安定した運転状態が
得られる。また、冷凍能力,成績係数に関しては、理論
冷凍サイクルにおいて、凝縮温度45℃,蒸発温度−5
℃,圧縮機吸込ガス温度0℃で液過冷却度0deg である
ものを、液バイパスによる方法によって液過冷却度を3
deg とした場合、液バイパス量は全冷媒循環量の6%
で、冷凍能力,成績係数ともに液バイパス無に対して9
9.7% となる。一方、同条件下で、圧縮機吸込ガスを
利用した場合、冷凍能力,成績係数は、圧縮機吸込ガス
を利用しない場合に対して103%,102%となり、
運転状態の安定化のみでなく、冷凍能力,成績係数の向
上をも図ることができる。
EFFECTS OF THE INVENTION According to the present invention, the required degree of supercooling of the refrigerant liquid can be stably and surely taken, so that the flash gas in the liquid pipe in the evaporation temperature range of approximately -15 ° C or higher. It is possible to solve the problems such as occurrence of the above and obtain a stable operating state. Regarding the refrigerating capacity and the coefficient of performance, in the theoretical refrigeration cycle, the condensation temperature was 45 ° C and the evaporation temperature was -5.
℃, compressor suction gas temperature 0 ℃, liquid subcooling degree 0deg, liquid bypass method by the liquid subcooling degree 3
When deg is set, the liquid bypass amount is 6% of the total refrigerant circulation amount.
Therefore, both the refrigerating capacity and the coefficient of performance are 9 for the case without liquid bypass.
It will be 9.7%. On the other hand, under the same conditions, when the compressor suction gas is used, the refrigerating capacity and the coefficient of performance are 103% and 102%, respectively, compared with the case where the compressor suction gas is not used,
Not only can the operating conditions be stabilized, but the refrigeration capacity and coefficient of performance can also be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧縮機吸込ガスを利用して冷媒液を過冷却し液
冷却器がレシーバタンクを兼ねる場合の冷凍サイクル系
統図。
FIG. 1 is a refrigeration cycle system diagram in the case where a refrigerant liquid is supercooled by using a compressor suction gas and a liquid cooler also serves as a receiver tank.

【図2】図1のレシーバタンクと別途、液冷却器を設け
る場合の系統図。
FIG. 2 is a system diagram when a liquid cooler is provided separately from the receiver tank of FIG.

【図3】液冷媒の一部をバイパスして蒸発させ、その蒸
発潜熱を利用して冷媒液を過冷却し、液冷却器がレシー
バタンクを兼ねる場合の冷凍サイクル系統図。
FIG. 3 is a refrigeration cycle system diagram in the case where a part of the liquid refrigerant is bypassed to be evaporated and the latent heat of evaporation is used to supercool the refrigerant liquid, and the liquid cooler also serves as a receiver tank.

【図4】図3のレシーバタンクと別途、液冷却器を設け
る場合の系統図。
FIG. 4 is a system diagram when a liquid cooler is provided separately from the receiver tank of FIG.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…凝縮機、3,8…液冷却器、4…レシ
ーバタンク、5…膨張弁、6…蒸発器、7…冷却管、
9,10…電磁弁、11…減圧装置、12…圧力スイッ
チ、13…温度スイッチ、14…アキュムレータ。
1 ... Compressor, 2 ... Condenser, 3, 8 ... Liquid cooler, 4 ... Receiver tank, 5 ... Expansion valve, 6 ... Evaporator, 7 ... Cooling pipe,
9, 10 ... Solenoid valve, 11 ... Pressure reducing device, 12 ... Pressure switch, 13 ... Temperature switch, 14 ... Accumulator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】冷媒にHFC系のR404A,R507を
使用した冷凍装置において、液冷媒を適度に過冷却し
て、液配管中のフラッシュガス発生を防止し、冷凍能力
の低下を抑え、かつ、運転状態を安定に保つための液冷
却器を備えたことを特徴とする冷凍装置用液冷却器。
1. A refrigeration apparatus using HFC-based R404A and R507 as a refrigerant, by appropriately supercooling a liquid refrigerant to prevent flash gas generation in a liquid pipe and to suppress deterioration of refrigerating capacity. A liquid cooler for a refrigerating apparatus, comprising a liquid cooler for maintaining a stable operating state.
JP8003592A 1996-01-12 1996-01-12 Liquid refrigerating apparatus for refrigerating device Pending JPH09196480A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8003592A JPH09196480A (en) 1996-01-12 1996-01-12 Liquid refrigerating apparatus for refrigerating device
US08/915,512 US5965290A (en) 1996-01-12 1997-08-13 Non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8003592A JPH09196480A (en) 1996-01-12 1996-01-12 Liquid refrigerating apparatus for refrigerating device

Publications (1)

Publication Number Publication Date
JPH09196480A true JPH09196480A (en) 1997-07-31

Family

ID=11561746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8003592A Pending JPH09196480A (en) 1996-01-12 1996-01-12 Liquid refrigerating apparatus for refrigerating device

Country Status (1)

Country Link
JP (1) JPH09196480A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
JP2000193328A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Freezer
JP2001355924A (en) * 2001-06-25 2001-12-26 Daikin Ind Ltd Air conditioner
KR100364534B1 (en) * 1999-10-27 2002-12-16 엘지전자 주식회사 Multi air conditioner
JP2004170048A (en) * 2002-11-22 2004-06-17 Daikin Ind Ltd Air conditioning system
WO2006091190A1 (en) * 2005-02-18 2006-08-31 Carrier Corporation Refrigeration circuit with improved liquid/vapour receiver
JP2007155315A (en) * 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
JP2009024939A (en) * 2007-07-19 2009-02-05 Fujitsu General Ltd Refrigerant tank and heat pump system
US7690211B2 (en) 2005-11-15 2010-04-06 Hitachi Appliances, Inc. Refrigerating apparatus
US7900467B2 (en) 2007-07-23 2011-03-08 Hussmann Corporation Combined receiver and heat exchanger for a secondary refrigerant
WO2012176072A3 (en) * 2011-06-16 2013-07-18 Advansor A/S Refrigeration system
EP3584519A1 (en) * 2018-06-05 2019-12-25 Heatcraft Refrigeration Products LLC Cooling system
JP7025086B1 (en) * 2021-08-24 2022-02-24 株式会社日本イトミック Heat pump device
WO2023095325A1 (en) * 2021-11-29 2023-06-01 三菱電機株式会社 Refrigeration cycle device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
JP2000193328A (en) * 1998-12-25 2000-07-14 Mitsubishi Electric Corp Freezer
KR100364534B1 (en) * 1999-10-27 2002-12-16 엘지전자 주식회사 Multi air conditioner
JP2001355924A (en) * 2001-06-25 2001-12-26 Daikin Ind Ltd Air conditioner
JP2004170048A (en) * 2002-11-22 2004-06-17 Daikin Ind Ltd Air conditioning system
WO2006091190A1 (en) * 2005-02-18 2006-08-31 Carrier Corporation Refrigeration circuit with improved liquid/vapour receiver
JP2007155315A (en) * 2005-11-08 2007-06-21 Toyo Eng Works Ltd Natural refrigerant cooling system
US7690211B2 (en) 2005-11-15 2010-04-06 Hitachi Appliances, Inc. Refrigerating apparatus
JP2009024939A (en) * 2007-07-19 2009-02-05 Fujitsu General Ltd Refrigerant tank and heat pump system
US7900467B2 (en) 2007-07-23 2011-03-08 Hussmann Corporation Combined receiver and heat exchanger for a secondary refrigerant
WO2012176072A3 (en) * 2011-06-16 2013-07-18 Advansor A/S Refrigeration system
US8966934B2 (en) 2011-06-16 2015-03-03 Hill Phoenix, Inc. Refrigeration system
EP3584519A1 (en) * 2018-06-05 2019-12-25 Heatcraft Refrigeration Products LLC Cooling system
US10663196B2 (en) 2018-06-05 2020-05-26 Heatcraft Refrigeration Products Llc Cooling system
JP7025086B1 (en) * 2021-08-24 2022-02-24 株式会社日本イトミック Heat pump device
WO2023026344A1 (en) * 2021-08-24 2023-03-02 株式会社日本イトミック Heat pump device
KR20230033633A (en) * 2021-08-24 2023-03-08 가부시키가이샤 니혼 이토믹 heat pump unit
CN116018486A (en) * 2021-08-24 2023-04-25 株式会社日本伊藤美珂 Heat pump device
CN116018486B (en) * 2021-08-24 2024-01-26 株式会社日本伊藤美珂 Heat pump device and control method thereof
US11965680B2 (en) 2021-08-24 2024-04-23 Nihon Itomic Co., Ltd. Heat pump device
WO2023095325A1 (en) * 2021-11-29 2023-06-01 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
KR100339128B1 (en) Refrigerating device, refrigerating apparatus, air-cooling type condenser unit and compressor unit used for refrigerating device
EP3128257B1 (en) Method for operating a refrigeration cycle device
EP3121532B1 (en) Refrigeration cycle apparatus
JPH0718602B2 (en) Operation method and apparatus for supercritical vapor compression cycle
JPH11248264A (en) Refrigerating machine
JPH09196480A (en) Liquid refrigerating apparatus for refrigerating device
KR20160091107A (en) Cooling Cycle Apparatus for Refrigerator
TW202020382A (en) Fluid temperature regulation system and refrigeration apparatus
KR100990073B1 (en) Refrigerating apparatus
KR102477314B1 (en) A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator
KR102380369B1 (en) Cryocooler
JP2004020070A (en) Heat pump type cold-hot water heater
JP3237867B2 (en) Ammonia refrigeration equipment
KR102185416B1 (en) Cooling system
JP2646877B2 (en) Thermal storage refrigeration cycle device
JPH06159743A (en) Heat accumulation type cooling device
JPH05180519A (en) Heat regenerating freezing cycle device
JP3674974B2 (en) Water cooler
JP2002310518A (en) Refrigerating apparatus
JP2640051B2 (en) Refrigeration equipment
KR20230160235A (en) fluid temperature control system
JPS61276664A (en) Heat pump device
JP2021032534A (en) Refrigerator and liquid temperature adjusting device
KR20230155668A (en) Compressor refrigerant bypass circulation method in winter refrigerant cycle
Ch et al. A review: increase in performance of vapour compression refrigeration system using fan

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees