JP2640051B2 - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JP2640051B2
JP2640051B2 JP16302391A JP16302391A JP2640051B2 JP 2640051 B2 JP2640051 B2 JP 2640051B2 JP 16302391 A JP16302391 A JP 16302391A JP 16302391 A JP16302391 A JP 16302391A JP 2640051 B2 JP2640051 B2 JP 2640051B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
temperature
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16302391A
Other languages
Japanese (ja)
Other versions
JPH0510616A (en
Inventor
隆幸 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP16302391A priority Critical patent/JP2640051B2/en
Publication of JPH0510616A publication Critical patent/JPH0510616A/en
Application granted granted Critical
Publication of JP2640051B2 publication Critical patent/JP2640051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧縮機を使用した冷凍装
置、特に、−60℃以下の超低温を得る冷凍装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a compressor, and more particularly to a refrigeration system for obtaining an extremely low temperature of -60.degree.

【0002】[0002]

【従来の技術】従来、この種の冷凍装置は例えば実公昭
58−23101号公報に示されている。即ち高温側と
低温側の冷媒回路をそれぞれ独立した二系統の冷媒閉回
路にて構成し、高温側冷媒回路の蒸発器と低温側冷媒回
路の凝縮器とで熱交換器を構成し、高温側冷媒回路の冷
媒の蒸発によって低温側冷媒回路の冷媒を凝縮する様に
している。これによって低温側冷媒回路にはより低い沸
点(蒸発温度)の冷媒を用いる事ができるので低温側冷
媒回路の蒸発器によって極めて低い温度を得る事が可能
となる。
2. Description of the Related Art Conventionally, this type of refrigerating apparatus is disclosed in, for example, Japanese Utility Model Publication No. 58-23101. In other words, the refrigerant circuit on the high temperature side and the refrigerant circuit on the low temperature side are respectively constituted by two independent refrigerant closed circuits, and the heat exchanger is constituted by the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit. The refrigerant in the low-temperature side refrigerant circuit is condensed by the evaporation of the refrigerant in the refrigerant circuit. As a result, a refrigerant having a lower boiling point (evaporation temperature) can be used in the low-temperature side refrigerant circuit, so that an extremely low temperature can be obtained by the evaporator of the low-temperature side refrigerant circuit.

【0003】斯かる二元冷凍方式では低温側冷媒回路の
蒸発器において通常−80℃程度の低温を得るものであ
るが、より低い温度例えば−130℃という温度を得る
ためには、冷媒回路構成に改良を加えたり、封入冷媒組
成に種々の工夫をする必要がある。
[0003] In such a dual refrigerating system, a low temperature of about -80 ° C is usually obtained in the evaporator of the low-temperature side refrigerant circuit. To obtain a lower temperature, for example, -130 ° C, a refrigerant circuit configuration is required. And it is necessary to make various improvements to the composition of the charged refrigerant.

【0004】本件出願人は先行して発明した特願昭61
−91599号明細書等において、上述した後者の方
法、即ち、封入冷媒組成を工夫する方法にて−130℃
という超低温を実現した。
[0004] The present applicant has filed a Japanese Patent Application No. Sho 61
In the specification of -91599 and the like, the latter method described above, that is, a method of devising the composition of the charged refrigerant, at -130 ° C
Ultra low temperature was realized.

【0005】具体的には、高温側冷媒回路にR500や
R502を、低温側冷媒回路にR13B1(ブロモトリ
フルオロメタン)やR503を封入したものである。
More specifically, R500 and R502 are sealed in the high-temperature side refrigerant circuit, and R13B1 (bromotrifluoromethane) and R503 are sealed in the low-temperature side refrigerant circuit.

【0006】これによると通常の圧縮機を使用したもの
でも蒸発器において−130℃という超低温を達成でき
るが、蒸発器直前の減圧器に流入する冷媒(R50)も
−100℃以下の超低温となり、減圧器中、或いは近傍
の配管内で冷媒中の水分が氷結して目詰りを生ずる危険
がある。
According to this, an ultra-low temperature of -130 ° C. can be achieved in the evaporator even with a conventional compressor, but the refrigerant (R50) flowing into the decompressor immediately before the evaporator also has an ultra-low temperature of -100 ° C. or less. There is a risk that the moisture in the refrigerant freezes in the pressure reducer or in a nearby pipe, causing clogging.

【0007】このため、従来装置では減圧器近傍の配管
にヒーターを設け、このヒーターをタイマーによって1
2時間毎に通電すると共にこの通電と同時に圧縮機を停
止するよう構成している。
For this reason, in the conventional apparatus, a heater is provided in the pipe near the decompressor, and this heater is operated by a timer.
The compressor is stopped every two hours and the compressor is stopped at the same time.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記の構
成によると、ヒーターの通電は圧縮機の発停とは無関係
に定期的に行なわれるため、例えば図4に示すように庫
内温度が上昇して圧縮機を運転しなければならない場合
に、タイマーがタイムアップしてヒーターへの通電及び
圧縮機の強制停止が行なわれると、庫内温度が設定温度
の上限値を超えてどんどん上昇してしまい収納物に悪影
響を与えるという問題があった。(図4は設定温度の上
限値でタイマーがタイムアップした場合を示す)本発明
は斯かる点に鑑み為されたもので、氷結防止用ヒーター
の通電を庫内温度との関係で最適なタイミングで行なう
ことにより、庫内温度の上昇を確実に抑制し、収納物
(細胞、検体等)を長期間保存できるようにすることを
目的とする。
However, according to the above arrangement, the heater is energized periodically regardless of the start / stop of the compressor, so that, for example, as shown in FIG. If it is necessary to operate the compressor and the timer times out and the heater is energized and the compressor is forcibly stopped, the temperature inside the refrigerator exceeds the upper limit of the set temperature and rises steadily. There was a problem of adversely affecting things. (FIG. 4 shows the case where the timer times out at the upper limit value of the set temperature.) The present invention has been made in view of such a point, and the power supply to the icing prevention heater is optimally controlled in relation to the temperature in the refrigerator. It is an object of the present invention to surely suppress the rise in the internal temperature and to store stored items (cells, specimens, etc.) for a long period of time.

【0009】[0009]

【課題を解決するための手段】本発明は、圧縮機、凝縮
器、減圧装置、及び蒸発器を配管接続してなる冷凍装置
において、前記減圧装置或いは減圧装置近傍の配管を加
熱する加熱手段と、タイマー要素とを設け、タイマー要
素による所定時間内に圧縮機が停止した場合には圧縮機
の停止と同時に前記加熱手段を通電する一方、タイマー
要素による所定時間内に圧縮機の停止がない場合には圧
縮機を強制的に停止すると共に加熱手段を通電するよう
構成したものである。
According to the present invention, there is provided a refrigeration system comprising a compressor, a condenser, a decompression device, and an evaporator connected to a pipe, and a heating means for heating the decompression device or a pipe near the decompression device. , A timer element is provided, and when the compressor is stopped within a predetermined time by the timer element, the heating means is energized simultaneously with the stop of the compressor, while the compressor is not stopped within a predetermined time by the timer element. Is configured to forcibly stop the compressor and energize the heating means.

【0010】[0010]

【作用】本発明の冷凍装置は上記の構成により、例えば
冷凍装置の運転後において、タイマー要素による所定時
間内に圧縮機が停止した場合、即ち、庫内温度が設定温
度の下限値まで低下した時に圧縮機の停止と同時にヒー
ターに通電することができ、ヒーター通電による温度上
昇を常に下限値からとして庫内温度の上昇を抑制しつつ
減圧装置の配管内の氷結による目詰りを防止できる。
According to the refrigerating apparatus of the present invention, for example, after the operation of the refrigerating apparatus, if the compressor is stopped within a predetermined time by the timer element, that is, the internal temperature of the refrigerator decreases to the lower limit of the set temperature. At the same time, the heater can be energized simultaneously with the stoppage of the compressor, and the temperature rise due to the heater energization is always set to the lower limit, thereby suppressing the rise in the internal temperature and preventing clogging due to icing in the piping of the pressure reducing device.

【0011】また、タイマー要素による所定時間内に圧
縮機の停止がなかった場合にも従来のようにヒーターを
通電することができるため、減圧装置の配管内の氷結に
よる目詰りを確実に防止できる。
Further, even if the compressor is not stopped within a predetermined time by the timer element, the heater can be energized as in the prior art, so that clogging due to icing in the piping of the pressure reducing device can be reliably prevented. .

【0012】[0012]

【実施例】次に図面に於いて本発明の実施例を説明す
る。図1は本発明の冷凍装置の冷媒回路(1)を示して
いる。冷媒回路(1)はそれぞれ独立した第1の冷媒閉
回路としての高温側冷媒回路(2)と第2の冷媒閉回路
としての低温側冷媒回路(3)とから構成されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows a refrigerant circuit (1) of a refrigeration apparatus of the present invention. The refrigerant circuit (1) is composed of an independent high-temperature side refrigerant circuit (2) as a first refrigerant closed circuit and a low-temperature side refrigerant circuit (3) as a second refrigerant closed circuit.

【0013】(4)は高温側冷媒回路(2)を構成する
一相若しくは三相交流電源を用いる電動圧縮機であり、
電動圧縮機(4)の吐出側配管(4D)は補助凝縮器
(5)に接続され、補助凝縮器(5)は更に冷凍庫の貯
蔵室開口縁を加熱する露付防止パイプ(6)に接続さ
れ、次に電動圧縮機(4)のオイルクーラー(7)に接
続された後、凝縮器(8)に接続される。(9)は凝縮
器(8)冷却用の送風機である。凝縮器(8)を出た冷
媒配管は乾燥器(12)を経た後、減圧器(13)を介
して蒸発器を構成する蒸発器部分としての蒸発器(1
4)を経て冷媒液溜めとしてのアキュムレータ(15)
に接続される。
(4) an electric compressor using a one-phase or three-phase AC power source constituting the high-temperature side refrigerant circuit (2);
The discharge side pipe (4D) of the electric compressor (4) is connected to the auxiliary condenser (5), and the auxiliary condenser (5) is further connected to the dew-prevention pipe (6) for heating the opening edge of the storage compartment of the freezer. Then, after being connected to the oil cooler (7) of the electric compressor (4), it is connected to the condenser (8). (9) is a blower for cooling the condenser (8). The refrigerant pipe exiting the condenser (8) passes through a dryer (12), and then passes through a decompressor (13) to an evaporator (1) as an evaporator part constituting an evaporator.
4) The accumulator (15) as a coolant reservoir through
Connected to.

【0014】アキュムレータ(15)から出た配管は電
動圧縮機(4)の吸入側配管(4S)に接続される。
The pipe coming out of the accumulator (15) is connected to the suction pipe (4S) of the electric compressor (4).

【0015】高温側冷媒回路(2)には沸点の異なる冷
媒クロロジフルオロメタン(R22)と、1−クロロ−
1,1−ジフルオロエタン(R142b)と、ジクロロ
フルオロメタン(R21)とが充填され、その組成は例
えばR22が70重量%、R142bが25重量%、R
21が5重量%である。
In the high temperature side refrigerant circuit (2), a refrigerant chlorodifluoromethane (R22) having a different boiling point and 1-chloro-
1,1-difluoroethane (R142b) and dichlorofluoromethane (R21) are filled, and the composition is, for example, 70% by weight of R22, 25% by weight of R142b,
21 is 5% by weight.

【0016】電動圧縮機(4)から吐出された高温ガス
状冷媒は、補助凝縮器(5)、露付防止パイプ(6)、
オイルクーラー(7)及び凝縮器(8)で凝縮されて放
熱液化した後、乾燥器(12)で含有する水分を除去さ
れ、減圧器(13)にて減圧されて蒸発器(14)に次
々に流入して冷媒R22及びR142bが蒸発し、気化
熱を周囲から吸収して蒸発器(14)を冷却し、冷媒液
溜めとしてのアキュムレータ(15)を経て電動圧縮機
(4)に帰還する。
The high-temperature gaseous refrigerant discharged from the electric compressor (4) is supplied to an auxiliary condenser (5), an anti-dew pipe (6),
After being condensed by the oil cooler (7) and the condenser (8) and radiated and liquefied, the moisture contained therein is removed by the dryer (12), the pressure is reduced by the pressure reducer (13), and the pressure is reduced by the evaporator (14) one after another. And the refrigerant R22 and R142b evaporate, absorb the heat of vaporization from the surroundings, cool the evaporator (14), and return to the electric compressor (4) via the accumulator (15) as a refrigerant reservoir.

【0017】この時、電動圧縮機(4)の能力は例えば
1.5HPであり、運転中の蒸発器(14)の最終到達
温度は−25℃乃至−35℃になる。斯かる低温下では
冷媒中のR21は沸点が8.95℃であるので蒸発器
(14)では蒸発せず液状態のままであり、従って、冷
却には殆ど寄与しないが、電動圧縮機(4)の潤滑油や
乾燥器(12)で吸収し切れなかった混入水分をその内
に溶け込ませた状態で電動圧縮機(4)に帰還せしめる
機能と、その液冷媒の電動圧縮機(4)内での蒸発によ
り、圧縮機(4)の温度を低減させる機能を奏する。
At this time, the capacity of the electric compressor (4) is, for example, 1.5 HP, and the ultimate temperature of the evaporator (14) during operation is -25 ° C to -35 ° C. Under such a low temperature, R21 in the refrigerant has a boiling point of 8.95 ° C., so that it does not evaporate in the evaporator (14) and remains in a liquid state. Therefore, it hardly contributes to cooling. A) the function of returning the lubricating oil or the mixed water that could not be completely absorbed by the dryer (12) to the electric compressor (4) in a state of being dissolved therein; and the function of the liquid refrigerant in the electric compressor (4). The function of reducing the temperature of the compressor (4) by the evaporation in the compressor.

【0018】低温側冷媒回路(3)を構成する電動圧縮
機(10)の吐出側配管(10D)は油分離器(18)
に接続される。油分離器(18)からは電動圧縮機(1
0)に戻る油戻し管(19)が接続される。
The discharge side pipe (10D) of the electric compressor (10) constituting the low temperature side refrigerant circuit (3) is an oil separator (18).
Connected to. From the oil separator (18), the electric compressor (1
An oil return pipe (19) returning to 0) is connected.

【0019】油分離器(18)から出た冷媒配管は、蒸
発器(14)内に挿入された高圧側配管としての凝縮パ
イプ(23)に接続される。
The refrigerant pipe coming out of the oil separator (18) is connected to a condensing pipe (23) as a high-pressure pipe inserted into the evaporator (14).

【0020】蒸発器(14)と凝縮パイプ(23)は、
カスケードコンデンサ(25)を構成している。
The evaporator (14) and the condensing pipe (23)
It constitutes a cascade capacitor (25).

【0021】凝縮パイプ(23)の吐出配管は乾燥器
(28)を経て第1の気液分離器(29)に接続され
る。
The discharge pipe of the condensing pipe (23) is connected to a first gas-liquid separator (29) via a dryer (28).

【0022】気液分離器(29)から出た気相配管(3
0)は第1の中間熱交換器(32)内を通過して第2の
気液分離器(33)に接続される。
The gas-phase pipe (3) coming out of the gas-liquid separator (29)
0) passes through the first intermediate heat exchanger (32) and is connected to the second gas-liquid separator (33).

【0023】気液分離器(29)から出た液相配管(3
4)は乾燥器(35)を経た後減圧器(36)を経て第
1の中間熱交換器(32)に接続される。
The liquid phase pipe (3) coming out of the gas-liquid separator (29)
4) is connected to the first intermediate heat exchanger (32) via the depressurizer (36) after passing through the dryer (35).

【0024】気液分離器(33)から出た液相配管(3
8)は、乾燥器(39)を経た後減圧器(40)を経て
第2の中間熱交換器(42)に接続される。
The liquid phase pipe (3) coming out of the gas-liquid separator (33)
8) is connected to a second intermediate heat exchanger (42) via a depressurizer (40) after passing through a dryer (39).

【0025】気液分離器(33)から出た気相配管(4
3)は第2の中間熱交換器(42)内を通過した後、第
3の中間熱交換器(44)内を通過し、乾燥器(45)
を経て減圧器(46)に接続される。
The gas-phase pipe (4) exiting from the gas-liquid separator (33)
3) passes through the second intermediate heat exchanger (42), then passes through the third intermediate heat exchanger (44), and is dried (45).
Through a pressure reducer (46).

【0026】減圧器(46)は蒸発器としての蒸発パイ
プ(47)に接続され、更に蒸発パイプ(47)は第3
の中間熱交換器(44)に接続される。
The decompressor (46) is connected to an evaporator pipe (47) as an evaporator.
Is connected to the intermediate heat exchanger (44).

【0027】第3の中間熱交換器(44)は第2(4
2)及び第1の中間熱交換器(32)に次々に接続され
た後、電動圧縮機(10)の吸入側配管(10S)に接
続される。
The third intermediate heat exchanger (44) is connected to the second (4)
After being successively connected to 2) and the first intermediate heat exchanger (32), it is connected to the suction side pipe (10S) of the electric compressor (10).

【0028】ここで、減圧器(46)の入口及び出口の
配管には氷結防止用のヒーター(53)(54)が取付
けられている。
Here, heaters (53) and (54) for preventing icing are attached to the inlet and outlet pipes of the pressure reducer (46).

【0029】このヒーター(53)(54)は、マイク
ロコンピューター(55)にて通電制御される。
The energization of the heaters (53) and (54) is controlled by a microcomputer (55).

【0030】即ち、マイクロコンピューター(55)に
は18時間毎にタイムアップして信号を発生する第1の
タイマー要素(56)と、第1のタイマー要素(56)
がタイムアップした後に6時間を積算する第2のタイマ
ー要素(57)とを内蔵しており、これらタイマー要素
(56)(57)の信号に基づいて圧縮機(4)(1
0)やヒーター(53)(54)を通電制御する。
That is, the microcomputer (55) has a first timer element (56) which generates a signal by time-up every 18 hours, and a first timer element (56).
Has a built-in second timer element (57) for accumulating 6 hours after the time is up, and based on signals from these timer elements (56) (57), the compressor (4) (1)
0) and the heaters (53) and (54).

【0031】吸入側配管(10S)には更に電動圧縮機
(10)停止時に冷媒を貯留する膨張タンク(51)が
減圧器(52)を介して接続される。
An expansion tank (51) for storing a refrigerant when the electric compressor (10) is stopped is connected to the suction side pipe (10S) via a pressure reducer (52).

【0032】低温側冷媒回路(3)には沸点の異なる6
種類の混合冷媒が封入される。
The low-temperature side refrigerant circuit (3) has six different boiling points.
Various types of mixed refrigerants are enclosed.

【0033】即ち、R21(ジクロロフルオロメタ
ン)、R22(クロロジフルオロメタン)、R23(ト
リフルオロメタン)、R14(四弗化炭素)、R50
(メタン)、及びR740(アルゴン)からなる混合冷
媒が予め混合された状態で封入される。
That is, R21 (dichlorofluoromethane), R22 (chlorodifluoromethane), R23 (trifluoromethane), R14 (carbon tetrafluoride), R50
A mixed refrigerant composed of (methane) and R740 (argon) is sealed in a premixed state.

【0034】各冷媒の組成は、例えばR21が12重量
%、R22が38重量%、R23が16重量%、R14
が23重量%、R50が5重量%、R740が6重量%
である。
The composition of each refrigerant is, for example, R21 is 12% by weight, R22 is 38% by weight, R23 is 16% by weight, R14 is R14.
23% by weight, R50 5% by weight, R740 6% by weight
It is.

【0035】R50はメタンであり酸素との結合にて爆
発を生じる危険があるが、上記割合の各フロン冷媒と混
合することによって爆発の危険は無くなる。従って、混
合冷媒の漏洩事故が発生したとしても爆発事故は発生し
ない。
R50 is methane, and there is a danger of explosion due to the combination with oxygen. However, the danger of explosion is eliminated by mixing with the above ratio of each refrigerant. Therefore, even if a leakage accident of the mixed refrigerant occurs, an explosion accident does not occur.

【0036】次に低温側の冷媒の循環を説明すると、電
動圧縮機(10)から吐出された高温高圧のガス状混合
冷媒は油分離器(18)にて冷媒と混在している電動圧
縮機(10)の潤滑油の大部分を油戻し管(19)にて
電動圧縮機(10)に戻し、冷媒自体はカスケードコン
デンサ(25)にて蒸発器(14)より冷却されて混合
冷媒中の沸点の高い一部の冷媒(R21,R22,R2
3)を凝縮液化する。
Next, the circulation of the low-temperature refrigerant will be described. The high-temperature, high-pressure gaseous mixed refrigerant discharged from the electric compressor (10) is mixed with the refrigerant in the oil separator (18). Most of the lubricating oil of (10) is returned to the electric compressor (10) by the oil return pipe (19), and the refrigerant itself is cooled by the evaporator (14) by the cascade condenser (25) and is contained in the mixed refrigerant. Some refrigerants with high boiling points (R21, R22, R2
3) is condensed and liquefied.

【0037】凝縮パイプ(23)を出た混合冷媒は乾燥
器(28)を経て気液分離器(29)に流入する。この
時点では混合冷媒中のR14とR50とR740は沸点
が極めて低い為に未だ凝縮されておらずガス状態であ
り、R21,R22,R23の一部のみが凝縮液化され
ている為、R14とR50とR740は気相配管(3
0)に、R21とR22とR23は液相配管(34)へ
と分離される。
The mixed refrigerant flowing out of the condensing pipe (23) flows into the gas-liquid separator (29) via the dryer (28). At this point, R14, R50 and R740 in the mixed refrigerant have a very low boiling point and are not condensed yet and are in a gaseous state, and only a part of R21, R22 and R23 is condensed and liquefied. And R740 are gas phase piping (3
At 0), R21, R22 and R23 are separated into a liquid phase pipe (34).

【0038】気相配管(30)に流入した冷媒混合物は
第1の中間熱交換器(32)と熱交換して凝縮された
後、気液分離器(33)に至る。
The refrigerant mixture flowing into the gas phase pipe (30) exchanges heat with the first intermediate heat exchanger (32) and is condensed, and then reaches the gas-liquid separator (33).

【0039】ここで第1の中間熱交換器(32)には蒸
発パイプ(47)より帰還して来る低温の冷媒が流入
し、更に液相配管(34)に流入した液冷媒が乾燥器
(35)を経て減圧器(36)に減圧された後、第1の
中間熱交換器(32)に流入してそこで蒸発することに
より冷却に寄与する為、未凝縮のR14,R50,R7
40、及びR23の一部を冷却する結果、第1の中間熱
交換器(32)の中間温度は−56.4℃程となってい
る。従って気相配管(30)を通過した混合冷媒中のR
23は完全に凝縮液化され、第2の気液分離器(33)
に分流される。R14,R50、及びR740は更に沸
点が低い為に未だガス状態である。
Here, the low-temperature refrigerant returning from the evaporating pipe (47) flows into the first intermediate heat exchanger (32), and the liquid refrigerant flowing into the liquid phase pipe (34) is further dried ( After the pressure is reduced to the pressure reducer (36) through the pressure reducer (35), it flows into the first intermediate heat exchanger (32) and evaporates there, thereby contributing to cooling. Therefore, uncondensed R14, R50, and R7.
As a result of cooling some of R40 and R23, the intermediate temperature of the first intermediate heat exchanger (32) is about -56.4 ° C. Therefore, R in the mixed refrigerant passing through the gas phase pipe (30)
23 is completely condensed and liquefied, and the second gas-liquid separator (33)
Shunted. R14, R50 and R740 are still in a gaseous state because of their lower boiling points.

【0040】第2の中間熱交換器(42)では、第2の
気液分離器(33)で分流されたR23が乾燥器(3
9)で水分を除去され、減圧器(40)で減圧された
後、第2の中間熱交換器(42)へ流入し、蒸発パイプ
(47)から帰還してくる低温の冷媒と共に気相配管
(43)中のR14,R50、及びR740を冷却し、
このうちで蒸発温度が最も高いR14を凝縮させる。
In the second intermediate heat exchanger (42), R23 split by the second gas-liquid separator (33) is supplied to the dryer (3).
After the water is removed in 9) and the pressure is reduced in the pressure reducer (40), the gas flows into the second intermediate heat exchanger (42), and the gas phase piping together with the low-temperature refrigerant returned from the evaporation pipe (47). Cool R14, R50 and R740 in (43),
Among them, R14 having the highest evaporation temperature is condensed.

【0041】この結果、第2の中間熱交換器(42)の
中間温度は−84.5℃となる。
As a result, the intermediate temperature of the second intermediate heat exchanger (42) becomes -84.5 ° C.

【0042】この第2の中間熱交換器(42)を通過す
る気相配管(43)は、続いて第3の中間熱交換器(4
4)を通過する。
The gas-phase pipe (43) passing through the second intermediate heat exchanger (42) is subsequently connected to the third intermediate heat exchanger (4).
Go through 4).

【0043】ここで、第3の中間熱交換器(44)には
蒸発器(47)を出てすぐの冷媒が帰還されており、実
験によれば第3の中間熱交換器(44)の中間温度が−
109.8℃、入口付近の温度が−151.9℃とかな
り低い温度に達する。
Here, the refrigerant immediately after leaving the evaporator (47) is fed back to the third intermediate heat exchanger (44). According to the experiment, the third intermediate heat exchanger (44) Intermediate temperature is-
The temperature near the inlet reaches 109.8 ° C, which is considerably lower at -151.9 ° C.

【0044】このため、第3の中間熱交換器(44)で
は気相配管(43)中のR50、及びR740の一部が
凝縮し、これら液化したR14,R50、及びR740
の一部が減圧器(46)で減圧された後、蒸発パイプ
(47)に流入し、そこで蒸発して周囲を冷却する。
For this reason, in the third intermediate heat exchanger (44), a part of R50 and R740 in the gas phase pipe (43) is condensed and these liquefied R14, R50 and R740 are condensed.
After a part of the pressure is reduced by the pressure reducer (46), it flows into the evaporating pipe (47) where it evaporates and cools the surroundings.

【0045】実験によればこの時、蒸発パイプ(47)
の温度は−153.5℃という超低温となった。
According to the experiment, at this time, the evaporating pipe (47)
Was as low as -153.5 ° C.

【0046】斯かる蒸発パイプ(47)を例えば冷凍庫
に設置して庫内の冷却に使用することにより−152.
4℃の庫内温度を実現できた。
The evaporating pipe (47) is installed in, for example, a freezer and used for cooling the inside of the freezer.
A 4 ° C. internal temperature was realized.

【0047】蒸発パイプ(47)を出た冷媒は、第3の
中間熱交換器(44)、第2の中間熱交換器(42)、
第1の中間熱交換器(32)に次々に流入し、各熱交換
器で蒸発した冷媒と合流して吸入側配管(10S)から
電動圧縮機(10)に帰還する。
The refrigerant having exited from the evaporating pipe (47) is supplied to a third intermediate heat exchanger (44), a second intermediate heat exchanger (42),
The refrigerant successively flows into the first intermediate heat exchanger (32), merges with the refrigerant evaporated in each heat exchanger, and returns from the suction side pipe (10S) to the electric compressor (10).

【0048】電動圧縮機(10)から冷媒に混入して吐
出されるオイルは、大部分が油分離器(18)により分
離されて圧縮機(10)に戻されているが、ミスト状と
なって冷媒と共に油分離器(18)から吐出されてしま
ったものは、オイルとの相溶性の良いR21及びR22
に溶け込んだ状態で圧縮機(10)に戻される。
Most of the oil mixed with the refrigerant and discharged from the electric compressor (10) is separated by the oil separator (18) and returned to the compressor (10). What has been discharged from the oil separator (18) together with the refrigerant is R21 and R22 having good oil compatibility.
Is returned to the compressor (10) in a state of being dissolved in the air.

【0049】これにより、圧縮機(10)の潤滑不良や
ロックは防止できる。
Thus, poor lubrication and locking of the compressor (10) can be prevented.

【0050】また、R21は液状態のまま圧縮機(1
0)へ帰還してこの圧縮機(10)内で蒸発されるの
で、圧縮機(10)の吐出温度を低減できる。
Further, the compressor (1) is in a state of R21 in a liquid state.
Returning to (0), the refrigerant is evaporated in the compressor (10), so that the discharge temperature of the compressor (10) can be reduced.

【0051】斯かる構成の冷凍装置において、氷結防止
用のヒーター(53)(54)は図2に示すフローチャ
ートのように通電制御される。
In the refrigerating apparatus having such a configuration, the heaters (53) and (54) for preventing icing are energized as shown in the flowchart of FIG.

【0052】まず、S1ステップでマイクロコンピュー
ター(55)の第1のタイマー要素(56)が18時間
を積算したか否かを判定する。
First, in step S1, it is determined whether or not the first timer element (56) of the microcomputer (55) has accumulated 18 hours.

【0053】18時間経っていない場合には再びスター
トに戻る。
If 18 hours have not passed, the program returns to the start again.

【0054】18時間経過した場合にはS2ステップに
移り、18時間経過後に庫内の温度サーモ(61)によ
って圧縮機(4)(10)が停止したか否か判定する。
If 18 hours have elapsed, the process proceeds to step S2, and after 18 hours, it is determined whether or not the compressors (4) and (10) have been stopped by the temperature thermostat (61) in the refrigerator.

【0055】圧縮機(4)(10)の停止があった場合
には、S3ステップに移り、圧縮機(4)(10)の停
止と同時にヒーター(53)(54)を6分間通電す
る。そして、通電終了後はスタートに戻る。
When the compressors (4) and (10) are stopped, the process proceeds to step S3, and the heaters (53) and (54) are energized for 6 minutes simultaneously with the stop of the compressors (4) and (10). Then, after the energization ends, the process returns to the start.

【0056】S2ステップで圧縮機(4)(10)の停
止がなかった場合には、S4ステップに移り、第2のタ
イマー要素(57)が6時間を積算したか否かを判定す
る。
If the compressors (4) and (10) are not stopped in step S2, the process proceeds to step S4, and it is determined whether or not the second timer element (57) has accumulated six hours.

【0057】6時間経っていない場合には再びS2ステ
ップに戻る。
If 6 hours have not passed, the process returns to step S2.

【0058】6時間経過した場合、即ち、第2のタイマ
ー要素(57)による6時間以内に圧縮機(4)(1
0)の停止がなかった場合には、S5ステップに移り、
圧縮機(4)(10)を強制的に停止すると共に、これ
と同時にヒーター(53)(54)を6分間通電する。
そして、通電終了と同時に圧縮機(4)(10)の強制
停止を解除した後、スタートに戻る。
When six hours have elapsed, that is, within six hours due to the second timer element (57), the compressor (4) (1
If there is no stop of 0), the process proceeds to step S5,
The compressors (4) and (10) are forcibly stopped, and at the same time, the heaters (53) and (54) are energized for 6 minutes.
Then, after the forced stop of the compressors (4) and (10) is released at the same time as the completion of the energization, the process returns to the start.

【0059】このように構成された冷凍装置によれば、
マイクロコンピューター(55)の第1のタイマー要素
(56)により18時間が経過した後、第2のタイマー
要素(57)による6時間以内に圧縮機(4)(10)
が停止した場合には、図3に示すように圧縮機(4)
(10)の停止と同時にヒーター(53)(54)に通
電することができるため、斯かるヒーター(53)(5
4)への通電を常に庫内温度が設定温度の下限値にある
場合に行なうことができる。(庫内温度は温度サーモ
(61)による圧縮機(4)(10)の制御によって上
限値と下限値の間の設定温度に集束されている。)この
結果、ヒーター(53)(54)の通電による温度上昇
分Hも設定温度の下限値からとなり、庫内温度の上昇を
なるべく低く抑えることができる。
According to the refrigeration apparatus configured as described above,
After 18 hours have elapsed by the first timer element (56) of the microcomputer (55), the compressors (4) (10) must be within 6 hours by the second timer element (57).
Is stopped, the compressor (4) as shown in FIG.
Since the heaters (53) and (54) can be energized simultaneously with the stop of (10), the heaters (53) and (5) can be energized.
Power supply to 4) can be performed when the internal temperature is always at the lower limit of the set temperature. (The temperature in the refrigerator is focused on the set temperature between the upper limit value and the lower limit value by controlling the compressors (4) and (10) by the temperature thermometer (61).) As a result, the heaters (53) and (54) The temperature rise H due to energization is also from the lower limit of the set temperature, and the rise in the internal temperature can be suppressed as low as possible.

【0060】また、第2のタイマー要素(57)による
6時間以内に圧縮機(4)(10)の停止がなかった場
合には、従前のように圧縮機(4)(10)を強制停止
すると共にヒーター(53)(54)に通電するように
したので、最低でも1日に1回はヒーター(53)(5
4)に通電することができ、減圧器(46)の配管内の
氷結による目詰りを確実に防止できる。
If the compressors (4) and (10) are not stopped within six hours by the second timer element (57), the compressors (4) and (10) are forcibly stopped as before. And the heaters (53) and (54) were energized, so that the heaters (53) and (5) were at least once a day.
4), the clogging due to icing in the piping of the pressure reducer (46) can be reliably prevented.

【0061】尚、本実施例では−150℃という超低温
を達成する二元混合冷媒回路にて説明したが、これに限
定されるものではなく、例えば−60℃以下の庫内温度
を得る混合冷媒回路や二段圧縮冷媒回路で実施しても同
様の効果を奏する。
In this embodiment, the description has been given of the binary mixed refrigerant circuit which achieves an extremely low temperature of -150 ° C., but the present invention is not limited to this. The same effect can be obtained even when the present invention is implemented in a circuit or a two-stage compression refrigerant circuit.

【0062】[0062]

【発明の効果】以上のように本発明によれば、冷凍装置
の運転後において、タイマー要素による所定時間内に圧
縮機が停止した場合、即ち、庫内温度が設定温度の下限
値まで低下した時に圧縮機の停止と同時にヒーターに通
電することができ、ヒーターの通電が常に下限値から行
なわれるようにして庫内温度の上昇を抑制しつつ減圧装
置の配管内の氷結による目詰りを防止できる。
As described above, according to the present invention, after the operation of the refrigeration system, if the compressor is stopped within a predetermined time by the timer element, that is, the internal temperature of the refrigerator has decreased to the lower limit of the set temperature. At the same time, the heater can be energized at the same time as the compressor is stopped, so that energization of the heater is always performed from the lower limit, thereby suppressing the rise in the internal temperature and preventing clogging due to icing in the piping of the pressure reducing device. .

【0063】また、タイマー要素による所定時間内に圧
縮機の停止がなかった場合にも従来のようにヒーターを
通電することができるため、減圧装置の配管内の氷結に
よる目詰りを確実に防止できる。
Further, even if the compressor is not stopped within a predetermined time by the timer element, the heater can be energized as in the prior art, so that clogging due to icing in the piping of the pressure reducing device can be reliably prevented. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus.

【図2】ヒーターの制御を示すフローチャートである。FIG. 2 is a flowchart showing control of a heater.

【図3】ヒーターの制御を示すタイムチャートである。FIG. 3 is a time chart illustrating control of a heater.

【図4】従来のヒーターの制御を示すタイムチャートで
ある。
FIG. 4 is a time chart showing control of a conventional heater.

【符号の説明】 4,10 電動圧縮機 25 カスケードコンデンサ 46 減圧器 47 蒸発パイプ 53,54 ヒーター 55 マイクロコンピューター 56 第1のタイマー要素 57 第2のタイマー要素 61 温度サーモ[Description of Signs] 4,10 Electric compressor 25 Cascade condenser 46 Pressure reducer 47 Evaporation pipe 53,54 Heater 55 Microcomputer 56 First timer element 57 Second timer element 61 Temperature thermostat

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、及び蒸発器
を配管接続してなる冷凍装置において、前記減圧装置或
いは減圧装置近傍の配管を加熱する加熱手段と、タイマ
ー要素とを設け、タイマー要素による所定時間内に圧縮
機が停止した場合には圧縮機の停止と同時に前記加熱手
段を通電する一方、タイマー要素による所定時間内に圧
縮機の停止がない場合には圧縮機を強制的に停止すると
共に加熱手段を通電するよう構成したことを特徴とする
冷凍装置。
1. A refrigerating apparatus in which a compressor, a condenser, a decompression device, and an evaporator are connected by piping, wherein a heating means for heating the decompression device or a pipe near the decompression device is provided, and a timer element is provided. If the compressor is stopped within the predetermined time by the element, the heating means is energized simultaneously with the stop of the compressor, while if the compressor is not stopped within the predetermined time by the timer element, the compressor is forcibly stopped. A refrigeration apparatus characterized in that it is configured to stop and energize a heating means.
JP16302391A 1991-07-03 1991-07-03 Refrigeration equipment Expired - Lifetime JP2640051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16302391A JP2640051B2 (en) 1991-07-03 1991-07-03 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16302391A JP2640051B2 (en) 1991-07-03 1991-07-03 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH0510616A JPH0510616A (en) 1993-01-19
JP2640051B2 true JP2640051B2 (en) 1997-08-13

Family

ID=15765719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16302391A Expired - Lifetime JP2640051B2 (en) 1991-07-03 1991-07-03 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2640051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2910872B1 (en) * 2012-10-22 2020-03-11 Mitsubishi Electric Corporation Freezing device

Also Published As

Publication number Publication date
JPH0510616A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
JP3208151B2 (en) Refrigeration equipment
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
JP3965717B2 (en) Refrigeration equipment and refrigerator
JP5367100B2 (en) Dual refrigeration equipment
US20020033024A1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
JPH03503206A (en) Supercritical vapor compression cycle operating method and device
JPH11248264A (en) Refrigerating machine
US6161391A (en) Environmental test chamber fast cool down system and method therefor
JP2005257197A (en) Natural circulation parallel usage type air conditioner, and control method for natural circulation parallel usage type air conditioner
JP2004279014A (en) Co2 refrigerating cycle
JPH09196480A (en) Liquid refrigerating apparatus for refrigerating device
JP2640051B2 (en) Refrigeration equipment
KR102380369B1 (en) Cryocooler
JPH07234027A (en) Cascade refrigerator
KR102319331B1 (en) Cryogenic rapid refrigeration system
JP2003336918A (en) Cooling device
KR20080086160A (en) Dual refrigerant refrigeration equipment by compulsive circulation of secondary refrigerant
JP2562723B2 (en) Refrigerant composition and refrigeration system
JP2021116940A (en) Freezer and use method of the same
KR20080086159A (en) Dual refrigerant refrigeration equipment by compulsive circulation of secondary refrigerant
JP3328594B2 (en) Thermal storage refrigeration cycle apparatus and control method thereof
JP3182598B2 (en) Refrigeration equipment
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JP3674974B2 (en) Water cooler
JPH07234041A (en) Cascade refrigerating equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090502

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100502

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110502

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 15