JPH07234027A - Cascade refrigerator - Google Patents

Cascade refrigerator

Info

Publication number
JPH07234027A
JPH07234027A JP4777394A JP4777394A JPH07234027A JP H07234027 A JPH07234027 A JP H07234027A JP 4777394 A JP4777394 A JP 4777394A JP 4777394 A JP4777394 A JP 4777394A JP H07234027 A JPH07234027 A JP H07234027A
Authority
JP
Japan
Prior art keywords
refrigerant circuit
temperature side
side refrigerant
condenser
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4777394A
Other languages
Japanese (ja)
Inventor
Ikutami Taniguchi
育民 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4777394A priority Critical patent/JPH07234027A/en
Publication of JPH07234027A publication Critical patent/JPH07234027A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Abstract

PURPOSE:To provide a cascade refrigerator in which a pull-down time of a low temperature side refrigerant circuit can be shortened without increasing refrigerating capacity of a high temperature side refrigerant circuit. CONSTITUTION:A compressor 32, a condenser 34, an expansion valve 37 and an evaporator 41 are sequentially annularly connected to form a high temperature side refrigerant circuit 51. A compressor 2, a condenser 21, an expansion valve 7, an evaporator 8 and an accumulator 9 are sequentially annularly connected to form a low temperature side refrigerant circuit 52. The evaporator 41 and the condenser 21 are provided in a heat exchanging manner to form a cascade condenser 4. A discharge side tube 3 of the compressor 2 of the circuit 52 is provided in a heat exchanging manner with the accumulator 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、庫内を極低温若しくは
超低温に冷却する冷凍庫等に用いられ、高温側冷媒回路
と低温側冷媒回路とを備えて、前記高温側冷媒回路の蒸
発器により、低温側冷媒回路の冷媒を凝縮させるよう構
成した多元冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a freezer or the like for cooling the inside of a refrigerator to an extremely low temperature or an ultralow temperature, and is provided with a high temperature side refrigerant circuit and a low temperature side refrigerant circuit, and is provided with an evaporator of the high temperature side refrigerant circuit. The present invention relates to a multi-source refrigeration system configured to condense the refrigerant in a low temperature side refrigerant circuit.

【0002】[0002]

【従来の技術】従来より庫内を極低温若しくは超低温に
冷却する冷凍庫等には、例えば実開平5−10955号
公報(F25B7/00)に二元冷凍装置として示され
るような多元冷凍装置が用いられている。係る多元冷凍
装置は、低温側冷媒回路と高温側冷媒回路とをカスケー
ドコンデンサで接続し、低温側冷媒回路の蒸発器で冷却
される庫内を例えば−60℃〜−80℃等の極低温に冷
却している。
2. Description of the Related Art Conventionally, for a freezer or the like for cooling the inside to an extremely low temperature or an ultra-low temperature, a multi-source refrigerating device as shown as a dual refrigerating device in, for example, Japanese Utility Model Publication No. 5-10955 (F25B7 / 00) is used. Has been. In such a multi-source refrigeration system, the low temperature side refrigerant circuit and the high temperature side refrigerant circuit are connected by a cascade condenser, and the inside of the refrigerator cooled by the evaporator of the low temperature side refrigerant circuit is kept at an extremely low temperature such as −60 ° C. to −80 ° C. It is cooling.

【0003】そして、高温側冷媒回路内には、例えばフ
ロンR22(沸点温度−40.8℃)等の沸点温度の比
較的高い冷媒を封入すると共に、低温側冷媒回路内には
フロンR23(沸点温度−82.03℃)等の沸点の低
い冷媒を封入し、高温側冷媒回路の蒸発器と低温側冷媒
回路の凝縮器を交熱的に設けてカスケードコンデンサを
構成し、高温側冷媒回路の蒸発器によって低温側冷媒回
路の高圧冷媒を凝縮させている。
In the high temperature side refrigerant circuit, a refrigerant having a relatively high boiling point temperature such as Freon R22 (boiling point temperature -40.8 ° C.) is enclosed, and in the low temperature side refrigerant circuit, Freon R23 (boiling point). A refrigerant having a low boiling point such as a temperature of −82.03 ° C.) is enclosed, and an evaporator of the high temperature side refrigerant circuit and a condenser of the low temperature side refrigerant circuit are provided in a heat exchange manner to form a cascade condenser. The high pressure refrigerant in the low temperature side refrigerant circuit is condensed by the evaporator.

【0004】以下、図4を用いて係る従来の多元冷凍装
置100を説明すると、多元冷凍装置100は、例えば
高温側冷媒回路101と低温側冷媒回路102とから構
成されている。低温側冷媒回路102の圧縮機2の吐出
側配管3は、密閉容器状の凝縮器21に接続され、凝縮
器21の出口側配管14はサブクーラ5に接続されてい
る。更に、サブクーラ5の出口側配管6は減圧装置であ
る膨張弁7を介して蒸発器8に接続されている。この膨
張弁7は蒸発器8の出口側配管15の温度を検知し、こ
の温度が一定になるように絞り量が自動制御される。
The conventional multi-source refrigeration system 100 will be described below with reference to FIG. 4. The multi-source refrigeration system 100 comprises, for example, a high temperature side refrigerant circuit 101 and a low temperature side refrigerant circuit 102. The discharge side pipe 3 of the compressor 2 of the low temperature side refrigerant circuit 102 is connected to the closed vessel condenser 21, and the outlet side pipe 14 of the condenser 21 is connected to the subcooler 5. Further, the outlet side pipe 6 of the subcooler 5 is connected to an evaporator 8 via an expansion valve 7 which is a pressure reducing device. The expansion valve 7 detects the temperature of the outlet side pipe 15 of the evaporator 8, and the throttle amount is automatically controlled so that this temperature becomes constant.

【0005】また、蒸発器8の出口側配管15はアキュ
ムレータ19に接続され、アキュムレータ19は圧縮機
2の吸入側配管10に接続されて環状の低温側冷媒回路
102を構成している。図中Faは庫内冷却用の送風
機、12は高圧圧力スイッチ、Aはオイルセパレーター
である。また、圧縮機2の吐出側配管3と蒸発器8の出
口側配管15間には開閉弁Bを介して膨張タンク16が
接続されている。尚、Cは圧縮機2を冷却するための送
風機である。
The outlet side pipe 15 of the evaporator 8 is connected to an accumulator 19, and the accumulator 19 is connected to the suction side pipe 10 of the compressor 2 to form an annular low temperature side refrigerant circuit 102. In the figure, Fa is a blower for cooling the inside of the refrigerator, 12 is a high pressure switch, and A is an oil separator. An expansion tank 16 is connected between the discharge side pipe 3 of the compressor 2 and the outlet side pipe 15 of the evaporator 8 via an opening / closing valve B. Incidentally, C is a blower for cooling the compressor 2.

【0006】一方、高温側冷媒回路101の圧縮機32
の吐出側配管33には凝縮器34が接続され、凝縮器3
4は受液器35に接続されている。そして、受液器35
の出口側配管36は膨張弁37を経た後、蒸発器41と
なり、低温側冷媒回路102のサブクーラ5内を通過
し、更に、低温側冷媒回路102の凝縮器21内を交熱
的に通過してアキュムレータ38に接続されている。係
る高温側冷媒回路101の蒸発器41と低温側冷媒回路
102の凝縮器21によりカスケードコンデンサ4が構
成されている。アキュムレータ38は圧縮機32の吸入
側配管39に接続されて環状の高温側冷媒回路101を
構成している。前記膨張弁37は蒸発器41の出口側配
管36の温度を検出して開度を調整する。また、40は
高圧圧力スイッチであり、Fbは凝縮器34を空冷する
ための送風機である。
On the other hand, the compressor 32 of the high temperature side refrigerant circuit 101
A condenser 34 is connected to the discharge side pipe 33 of the condenser 3
4 is connected to the liquid receiver 35. And the liquid receiver 35
After passing through the expansion valve 37, the outlet side pipe 36 becomes an evaporator 41, passes through the inside of the subcooler 5 of the low temperature side refrigerant circuit 102, and further passes through the inside of the condenser 21 of the low temperature side refrigerant circuit 102 in a heat exchange manner. Connected to the accumulator 38. The evaporator 41 of the high temperature side refrigerant circuit 101 and the condenser 21 of the low temperature side refrigerant circuit 102 constitute the cascade condenser 4. The accumulator 38 is connected to the suction side pipe 39 of the compressor 32 to form an annular high temperature side refrigerant circuit 101. The expansion valve 37 detects the temperature of the outlet side pipe 36 of the evaporator 41 and adjusts the opening degree. Further, 40 is a high pressure switch, and Fb is a blower for air-cooling the condenser 34.

【0007】次に動作説明を行う。高温側冷媒回路10
1内には例えば前記R22冷媒が所定量封入され、低温
側冷媒回路102内には前記R23冷媒が所定量封入さ
れているものとする。図示しない制御装置により多元冷
凍装置100が運転されると、例えば先ず高温側冷媒回
路101が運転され、それによってカスケードコンデン
サ4の温度が所定の温度に低下した後に低温側冷媒回路
102が運転されるものとする。高温側冷媒回路101
の圧縮機32が起動し、高温高圧のガス冷媒が配管33
に吐出されると、冷媒は配管33から凝縮器34に流入
し、そこで送風機Fbにより空冷され、凝縮液化して受
液器35に流入する。
Next, the operation will be described. High temperature side refrigerant circuit 10
It is assumed that, for example, a predetermined amount of the R22 refrigerant is enclosed in the inside of 1, and a predetermined amount of the R23 refrigerant is enclosed in the low temperature side refrigerant circuit 102. When the multi-source refrigeration system 100 is operated by a control device (not shown), for example, the high temperature side refrigerant circuit 101 is first operated, and thereby the temperature of the cascade condenser 4 is lowered to a predetermined temperature, and then the low temperature side refrigerant circuit 102 is operated. I shall. High temperature side refrigerant circuit 101
The compressor 32 is started and the high-temperature and high-pressure gas refrigerant is supplied to the pipe 33.
Then, the refrigerant flows from the pipe 33 into the condenser 34, where it is air-cooled by the blower Fb, condensed and liquefied, and then flows into the liquid receiver 35.

【0008】そして、受液器35で気液分離され、液冷
媒は膨張弁37にて減圧されて蒸発器41に流入し、蒸
発しながら先ずサブクーラ5にて冷却作用を発揮する。
サブクーラ5を出た冷媒はカスケードコンデンサ4内に
流入し、そこで蒸発して冷却作用を発揮した後、アキュ
ムレータ38を経て配管39より圧縮機32に吸い込ま
れる。
Then, the liquid receiver 35 separates gas and liquid, the liquid refrigerant is decompressed by the expansion valve 37, flows into the evaporator 41, and first performs a cooling action in the subcooler 5 while evaporating.
The refrigerant discharged from the subcooler 5 flows into the cascade condenser 4, evaporates there to exert a cooling effect, and then is sucked into the compressor 32 through the pipe 39 through the accumulator 38.

【0009】この高温側冷媒回路101の運転によっ
て、例えばカスケードコンデンサ4の温度が所定の温度
に低下すると、制御装置は低温側冷媒回路102の運転
を開始する。そして、圧縮機2より吐出された高温高圧
のガス冷媒は配管3より凝縮器21が構成するカスケー
ドコンデンサ4内に流入する。カスケードコンデンサ4
内は前述の如く高温側冷媒回路101の蒸発器41によ
り冷却されているため、流入した高温のガス冷媒はそこ
で冷却されて凝縮液化する。そして、冷媒は配管14を
経てサブクーラ5に流入する。サブクーラ5内も高温側
冷媒回路101の蒸発器41により前述の如く冷却作用
を受けているため冷媒は更に冷却されて凝縮液化し配管
6に流出する。
When the temperature of the cascade condenser 4 is lowered to a predetermined temperature by the operation of the high temperature side refrigerant circuit 101, the control device starts the operation of the low temperature side refrigerant circuit 102. Then, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the cascade condenser 4 formed by the condenser 21 from the pipe 3. Cascade capacitor 4
Since the inside is cooled by the evaporator 41 of the high temperature side refrigerant circuit 101 as described above, the inflowing high temperature gas refrigerant is cooled there and condensed and liquefied. Then, the refrigerant flows into the subcooler 5 via the pipe 14. Since the inside of the subcooler 5 is also cooled by the evaporator 41 of the high temperature side refrigerant circuit 101 as described above, the refrigerant is further cooled, condensed and liquefied, and flows out to the pipe 6.

【0010】そして、冷媒は配管6より膨張弁7に至り
そこで減圧された後、蒸発器8に流入し、そこで蒸発し
て冷却作用を発揮する。この蒸発器8と熱交換した冷気
は送風機Faにより庫内に循環され、それによって庫内
は所定の極低温に冷却維持される。前記蒸発器8を出た
冷媒は配管15からアキュムレータ19に入り、そこに
一旦貯留されて未蒸発液冷媒とガス冷媒とが分離され、
ガス冷媒が配管10より圧縮機2に吸い込まれる。
Then, the refrigerant reaches the expansion valve 7 through the pipe 6 and is depressurized there, and then flows into the evaporator 8 where it is evaporated and exhibits a cooling effect. The cool air that has exchanged heat with the evaporator 8 is circulated in the refrigerator by the blower Fa, so that the inside of the refrigerator is cooled and maintained at a predetermined extremely low temperature. The refrigerant discharged from the evaporator 8 enters the accumulator 19 from the pipe 15, and is temporarily stored therein to separate the non-evaporated liquid refrigerant and the gas refrigerant,
The gas refrigerant is sucked into the compressor 2 through the pipe 10.

【0011】[0011]

【発明が解決しようとする課題】この種多元冷凍装置
は、以上のような冷媒循環を繰り返して最終的に低温側
冷媒回路102の蒸発器8にて極低温を得るものである
が、低温側冷媒回路102には前述の如く沸点の低い冷
媒が封入されるため、低温側冷媒回路102の運転開始
時、即ち、プルダウン時にはその高圧圧力が極めて高く
なる問題がある。
This kind of multi-source refrigerating system is to obtain the cryogenic temperature in the evaporator 8 of the low temperature side refrigerant circuit 102 by repeating the above-mentioned refrigerant circulation, but the low temperature side. Since the refrigerant circuit 102 is filled with the refrigerant having a low boiling point as described above, there is a problem that the high pressure becomes extremely high at the start of operation of the low temperature side refrigerant circuit 102, that is, at the time of pulling down.

【0012】そのため、従来では低温側冷媒回路102
に封入する冷媒量に見合った大きさのカスケードコンデ
ンサを設計したり、高温側冷媒回路101として冷凍能
力の大きいものを使用する(大出力の圧縮機32を使用
する)等して対処しており、著しいコストの高騰を引き
起こしていた。また、場合よっては高圧の圧力上昇はや
むを得ないものとし、高圧圧力スイッチ12にて低温側
冷媒回路102の圧縮機2を停止させ、この圧縮機2の
運転・停止を繰り返すうちに高温側冷媒回路101にて
徐々にカスケードコンデンサ4を冷却して行き、プルダ
ウンを終了させていたため、低温側冷媒回路102のプ
ルダウンに長時間を要する問題があった。
Therefore, the low temperature side refrigerant circuit 102 is conventionally used.
This is dealt with by designing a cascade condenser of a size commensurate with the amount of refrigerant to be sealed in, or using a high-temperature side refrigerant circuit 101 having a large refrigerating capacity (using a high-output compressor 32). , Was causing a sharp rise in costs. In some cases, it is unavoidable that the high-pressure pressure rises, and the high-pressure pressure switch 12 is used to stop the compressor 2 of the low-temperature side refrigerant circuit 102, and the high-temperature-side refrigerant circuit is repeatedly operated and stopped. Since the cascade condenser 4 is gradually cooled at 101 to finish the pull-down, there is a problem that it takes a long time to pull-down the low temperature side refrigerant circuit 102.

【0013】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、高温側冷媒回路の冷凍能
力を増大させる等すること無く、低温側冷媒回路のプル
ダウン時間を短縮することができる多元冷凍装置を提供
することを目的とする。
The present invention has been made to solve the above-mentioned conventional technical problems, and shortens the pull-down time of the low temperature side refrigerant circuit without increasing the refrigerating capacity of the high temperature side refrigerant circuit. It is an object of the present invention to provide a multi-source refrigerating device that can be used.

【0014】[0014]

【課題を解決するための手段】請求項1の発明の多元冷
凍装置は、圧縮機、凝縮器、減圧装置、蒸発器等を順次
環状に冷媒配管で接続して成る高温側冷媒回路と、圧縮
機、凝縮器、減圧装置、蒸発器等を順次環状に冷媒配管
で接続して成る低温側冷媒回路とを備え、高温側冷媒回
路には沸点温度の高い冷媒を封入し、低温側冷媒回路に
は沸点の低い冷媒を封入すると共に、高温側冷媒回路の
蒸発器と低温側冷媒回路の凝縮器とを交熱的に結合させ
るカスケードコンデンサを備えたものであって、低温側
冷媒回路の高圧側の一部をこの低温側冷媒回路の低圧側
に交熱的に結合させる構成を備えているものである。
According to a first aspect of the present invention, there is provided a multi-stage refrigeration system which comprises a compressor, a condenser, a decompressor, an evaporator, and the like, which are connected in series in a cyclic manner with a refrigerant pipe, and a compression circuit. Low temperature side refrigerant circuit which is formed by sequentially connecting a machine, a condenser, a decompression device, an evaporator and the like with a refrigerant pipe, and a high boiling point temperature refrigerant is filled in the high temperature side refrigerant circuit, and a low temperature side refrigerant circuit is provided. Is a refrigerant that has a low boiling point and is equipped with a cascade condenser that cross-thermally couples the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit. A part of the low temperature side refrigerant circuit is coupled to the low pressure side in a heat exchange manner.

【0015】請求項2の発明の多元冷凍装置は、圧縮
機、凝縮器、減圧装置、蒸発器等を順次環状に冷媒配管
で接続して成る高温側冷媒回路と、圧縮機、凝縮器、減
圧装置、蒸発器、アキュムレータ等を順次環状に冷媒配
管で接続して成る低温側冷媒回路とを備え、高温側冷媒
回路には沸点温度の高い冷媒を封入し、低温側冷媒回路
には沸点の低い冷媒を封入すると共に、高温側冷媒回路
の蒸発器と低温側冷媒回路の凝縮器とを交熱的に結合さ
せるカスケードコンデンサを備えたものであって、低温
側冷媒回路の高圧側の一部をアキュムレータ内で予備冷
却する構成を備えているものである。
In the multi-source refrigeration system of the second aspect of the present invention, a high temperature side refrigerant circuit formed by sequentially connecting a compressor, a condenser, a pressure reducing device, an evaporator and the like in a refrigerant pipe, a compressor, a condenser and a pressure reducing device. A low-temperature side refrigerant circuit that is formed by sequentially connecting a device, an evaporator, an accumulator, etc. in an annular shape with refrigerant pipes, a high-temperature side refrigerant circuit is filled with a high-boiling point refrigerant, and a low-temperature side refrigerant circuit has a low boiling point. While enclosing the refrigerant, it is provided with a cascade condenser that heat-exchanges the evaporator of the high-temperature side refrigerant circuit and the condenser of the low-temperature side refrigerant circuit with a part of the high-pressure side of the low-temperature side refrigerant circuit. It is provided with a structure for precooling in the accumulator.

【0016】請求項3の発明の多元冷凍装置は、圧縮
機、凝縮器、減圧装置、蒸発器等を順次環状に冷媒配管
で接続して成る高温側冷媒回路と、圧縮機、凝縮器、減
圧装置、蒸発器、アキュムレータ等を順次環状に冷媒配
管で接続して成る低温側冷媒回路とを備え、高温側冷媒
回路には沸点温度の高い冷媒を封入し、低温側冷媒回路
には沸点の低い冷媒を封入すると共に、高温側冷媒回路
の蒸発器と低温側冷媒回路の凝縮器とを交熱的に結合さ
せるカスケードコンデンサを備えたものであって、低温
側冷媒回路の圧縮機から吐出された冷媒をアキュムレー
タ内で冷却した後カスケードコンデンサへ供給する構成
と、カスケードコンデンサで冷却された後の冷媒を高温
側冷媒回路の低圧側の冷媒と交熱的に結合させて冷却す
る構成とを備えているものである。
In the multi-source refrigeration system of the third aspect of the present invention, a high temperature side refrigerant circuit formed by sequentially connecting a compressor, a condenser, a pressure reducing device, an evaporator and the like in a ring with a refrigerant pipe, a compressor, a condenser and a pressure reducing device. A low-temperature side refrigerant circuit that is formed by sequentially connecting a device, an evaporator, an accumulator, etc. in an annular shape with refrigerant pipes, a high-temperature side refrigerant circuit is filled with a high-boiling point refrigerant, and a low-temperature side refrigerant circuit has a low boiling point. It is equipped with a cascade condenser that seals the refrigerant and thermally couples the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit, and is discharged from the compressor of the low temperature side refrigerant circuit. It is provided with a configuration in which the refrigerant is cooled in the accumulator and then supplied to the cascade condenser, and a configuration in which the refrigerant after being cooled by the cascade condenser is heat-exchanged with the refrigerant on the low pressure side of the high temperature side refrigerant circuit to cool the refrigerant. It is intended.

【0017】請求項4の発明の多元冷凍装置は、圧縮
機、凝縮器、減圧装置、蒸発器等を順次環状に冷媒配管
で接続して成る高温側冷媒回路と、圧縮機、凝縮器、減
圧装置、蒸発器等を順次環状に冷媒配管で接続して成る
低温側冷媒回路とを備え、高温側冷媒回路には沸点温度
の高い冷媒を封入し、低温側冷媒回路には沸点の低い冷
媒を封入すると共に、高温側冷媒回路の蒸発器と低温側
冷媒回路の凝縮器とを交熱的に結合させるカスケードコ
ンデンサを備えたものであって、低温側冷媒回路の高圧
側の冷媒をこの低温側冷媒回路の低圧側に交熱的に結合
させてこの高圧側の冷媒を冷却するものである。
According to a fourth aspect of the present invention, in the multi-source refrigeration system, a compressor, a condenser, a decompression device, a high temperature side refrigerant circuit in which a compressor, a condenser, a decompression device, an evaporator and the like are sequentially connected in an annular shape by a refrigerant pipe. A low-temperature side refrigerant circuit, which is formed by sequentially connecting a device, an evaporator, and the like with annular refrigerant pipes, a high-temperature side refrigerant circuit is filled with a high-boiling point refrigerant, and a low-temperature side refrigerant circuit is filled with a low-boiling point refrigerant. It is provided with a cascade condenser that seals the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit in a heat exchange manner, wherein the high pressure side refrigerant of the low temperature side refrigerant circuit is transferred to the low temperature side. The low pressure side of the refrigerant circuit is thermally and thermally coupled to cool the high pressure side refrigerant.

【0018】[0018]

【作用】本発明の多元冷凍装置によれば、低温側冷媒回
路の高圧側と低圧側(アキュムレータ)とを交熱的に結
合させたので、低温側冷媒回路の圧縮機から吐出された
高温高圧のガス冷媒を冷却し、カスケードコンデンサに
て容易に凝縮液化させることができるようになる。従っ
て、プルダウン時の低温側冷媒回路の高圧圧力を低く抑
えられるため、所定の庫内温度に達するまでのプルダウ
ン時間を極めて短縮させることができ、急速冷凍が容易
となる。
According to the multi-source refrigeration system of the present invention, since the high pressure side and the low pressure side (accumulator) of the low temperature side refrigerant circuit are heat-exchanged with each other, the high temperature and high pressure discharged from the compressor of the low temperature side refrigerant circuit. The gas refrigerant can be cooled and easily condensed and liquefied by the cascade condenser. Therefore, the high pressure of the low temperature side refrigerant circuit at the time of pulling down can be suppressed to be low, so that the pulling down time until the temperature reaches the predetermined internal cold storage temperature can be extremely shortened, and quick freezing becomes easy.

【0019】また、カスケードコンデンサを小さくする
ことができると共に、高温側冷媒回路の冷凍能力を小さ
くすることが可能となる。特に、低温側冷媒回路の圧縮
機から吐出された冷媒を最初にアキュムレータに流し、
その後カスケードコンデンサ、高温側冷媒回路の低圧側
(サブクーラ5)の順で通過させるので、吐出温度が最
も高いときにアキュムレータ内の冷媒のガス化を促進さ
せることができ、圧縮機の液圧縮を優先して防止でき
る。同時に吐出冷媒の温度が下がるため、カスケードコ
ンデンサから出る冷媒温度をより低下させることができ
るようになるものである。
Further, the cascade condenser can be made small and the refrigerating capacity of the high temperature side refrigerant circuit can be made small. In particular, the refrigerant discharged from the compressor of the low temperature side refrigerant circuit is first passed through the accumulator,
After that, the cascade condenser and the low-pressure side (subcooler 5) of the high-temperature side refrigerant circuit are passed in this order, so the gasification of the refrigerant in the accumulator can be promoted when the discharge temperature is highest, and the liquid compression of the compressor is prioritized. Can be prevented. At the same time, since the temperature of the discharged refrigerant is lowered, the temperature of the refrigerant discharged from the cascade condenser can be further lowered.

【0020】[0020]

【実施例】次に図面に基づき本発明の実施例を説明す
る。図1は本発明の多元冷凍装置1の冷媒回路図、図2
は本発明の多元冷凍装置1を構成する低温側冷媒回路5
2のアキュムレータ9の一部切欠側面図、図3は本発明
の多元冷凍装置1を構成する低温側冷媒回路52のアキ
ュムレータ9の平面図をそれぞれ示している。本発明の
多元冷凍装置1は、高温側冷媒回路51(沸点の高い冷
媒)と低温側冷媒回路52(沸点の低い冷媒)とから構
成されている。低温側冷媒回路52の圧縮機2の吐出側
配管3は、アキュムレータ9内を通過した後、密閉容器
状の凝縮器21に接続され、凝縮器21の出口側配管1
4はサブクーラ5に接続されている。更に、サブクーラ
5の出口側配管6は減圧装置である膨張弁7を介して蒸
発器8に接続されている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a multi-source refrigeration system 1 of the present invention, FIG.
Is a low temperature side refrigerant circuit 5 that constitutes the multi-source refrigeration system 1 of the present invention.
2 is a partially cutaway side view of the accumulator 9 of FIG. 2, and FIG. 3 is a plan view of the accumulator 9 of the low temperature side refrigerant circuit 52 which constitutes the multi-source refrigeration system 1 of the present invention. The multi-source refrigeration system 1 of the present invention includes a high temperature side refrigerant circuit 51 (refrigerant having a high boiling point) and a low temperature side refrigerant circuit 52 (refrigerant having a low boiling point). The discharge side pipe 3 of the compressor 2 of the low temperature side refrigerant circuit 52 is connected to the condenser 21 in the shape of a closed container after passing through the accumulator 9, and the outlet side pipe 1 of the condenser 21.
4 is connected to the subcooler 5. Further, the outlet side pipe 6 of the subcooler 5 is connected to an evaporator 8 via an expansion valve 7 which is a pressure reducing device.

【0021】また、蒸発器8の出口側配管15はアキュ
ムレータ9に接続され、アキュムレータ9は圧縮機2の
吸入側配管10に接続されて環状の低温側冷媒回路52
を構成している。図1中Faは庫内冷却用の送風機、1
2は高圧圧力スイッチである。また、圧縮機2の吐出側
配管3と蒸発器8の出口側配管15間には膨張タンク1
6が接続され、更に、膨張弁7は低温側冷媒回路52を
高圧側と低圧側とに分けると共に、蒸発器8の出口側配
管15の温度を検出して開度を調整するものである。
The outlet side pipe 15 of the evaporator 8 is connected to the accumulator 9, and the accumulator 9 is connected to the suction side pipe 10 of the compressor 2 to form an annular low temperature side refrigerant circuit 52.
Are configured. In FIG. 1, Fa is a blower for cooling the inside of the refrigerator, 1
2 is a high pressure switch. The expansion tank 1 is provided between the discharge side pipe 3 of the compressor 2 and the outlet side pipe 15 of the evaporator 8.
Further, the expansion valve 7 divides the low temperature side refrigerant circuit 52 into a high pressure side and a low pressure side, and detects the temperature of the outlet side pipe 15 of the evaporator 8 to adjust the opening degree.

【0022】一方、高温側冷媒回路51の圧縮機32の
吐出側配管33には凝縮器34が接続され、凝縮器34
は受液器35に接続されている。そして、受液器35の
出口側配管36は膨張弁37を経た後、蒸発器41とな
り、低温側冷媒回路52のサブクーラ5内を通過し、更
に、低温側冷媒回路52の凝縮器21内を交熱的に通過
してアキュムレータ38に接続されている。係る高温側
冷媒回路51の蒸発器41と低温側冷媒回路52の凝縮
器21によりカスケードコンデンサ4が構成されてい
る。アキュムレータ38は圧縮機32の吸入側配管39
に接続されて環状の高温側冷媒回路51を構成してい
る。前記膨張弁37は蒸発器41の出口側配管36の温
度を検出して開度を調整する。また、40は高圧圧力ス
イッチであり、Fbは凝縮器34を空冷するための送風
機である。
On the other hand, a condenser 34 is connected to the discharge side pipe 33 of the compressor 32 of the high temperature side refrigerant circuit 51, and the condenser 34
Is connected to the liquid receiver 35. Then, the outlet side pipe 36 of the liquid receiver 35 becomes the evaporator 41 after passing through the expansion valve 37, passes through the inside of the subcooler 5 of the low temperature side refrigerant circuit 52, and further passes through the inside of the condenser 21 of the low temperature side refrigerant circuit 52. They pass through in a heat exchange manner and are connected to the accumulator 38. The evaporator 41 of the high temperature side refrigerant circuit 51 and the condenser 21 of the low temperature side refrigerant circuit 52 constitute the cascade condenser 4. The accumulator 38 is a suction side pipe 39 of the compressor 32.
To form an annular high temperature side refrigerant circuit 51. The expansion valve 37 detects the temperature of the outlet side pipe 36 of the evaporator 41 and adjusts the opening degree. Further, 40 is a high pressure switch, and Fb is a blower for air-cooling the condenser 34.

【0023】ここで、低温側冷媒回路52の低圧側(圧
縮機2の吸込側)に設けられた前記アキュムレータ9
は、図2及び図3に示す如く密閉された略円筒形の容器
9aの上部に前記配管10、15が接続されたものであ
り、配管15より容器9a内に入ったガス冷媒及び未蒸
発の液冷媒はそこで気液分離し、ガス分だけが配管10
より圧縮機2に吸い込まれるよう構成されている。ま
た、圧縮機2の前記吐出側配管3(高圧側の配管)下部
は容器9aの側面より容器9a内に入り、内部でUター
ンして同じく容器9aの側面より引き出されている。従
って、アキュムレータ9内の配管は主に液冷媒と熱交換
することになる。
Here, the accumulator 9 provided on the low pressure side of the low temperature side refrigerant circuit 52 (the suction side of the compressor 2).
2 is a system in which the pipes 10 and 15 are connected to the upper portion of a substantially cylindrical container 9a which is closed as shown in FIGS. The liquid refrigerant is then separated into gas and liquid, and only the gas component is pipe 10
It is configured to be sucked into the compressor 2 more. The lower portion of the discharge side pipe 3 (high-pressure side pipe) of the compressor 2 enters the container 9a from the side surface of the container 9a, makes a U-turn inside, and is pulled out from the side surface of the container 9a as well. Therefore, the piping in the accumulator 9 mainly exchanges heat with the liquid refrigerant.

【0024】次に動作説明を行う。高温側冷媒回路51
内には例えば前記R22冷媒が所定量封入され、低温側
冷媒回路52内には前記R23冷媒が所定量封入されて
いるものとする。図示しない制御装置により多元冷凍装
置1が運転されると、例えば先ず高温側冷媒回路51が
運転され、それによってカスケードコンデンサ4の温度
が所定の温度に低下した後に低温側冷媒回路52が運転
されるものとする。高温側冷媒回路51の圧縮機32が
起動し、高温高圧のガス冷媒が配管33に吐出される
と、冷媒は配管33から凝縮器34に流入し、そこで送
風機Fbにより空冷され、凝縮液化して受液器35に流
入する。
Next, the operation will be described. High temperature side refrigerant circuit 51
For example, it is assumed that the R22 refrigerant is enclosed in a predetermined amount and the low temperature side refrigerant circuit 52 is enclosed with the R23 refrigerant in a prescribed amount. When the multi-source refrigeration system 1 is operated by the control device (not shown), for example, the high temperature side refrigerant circuit 51 is first operated, and then the low temperature side refrigerant circuit 52 is operated after the temperature of the cascade condenser 4 is lowered to a predetermined temperature. I shall. When the compressor 32 of the high temperature side refrigerant circuit 51 is activated and the high temperature and high pressure gas refrigerant is discharged to the pipe 33, the refrigerant flows from the pipe 33 into the condenser 34, where it is air-cooled by the blower Fb and condensed and liquefied. It flows into the liquid receiver 35.

【0025】そして、受液器35で気液分離され、液冷
媒は膨張弁37にて減圧されて蒸発器41に流入し、蒸
発しながら先ずサブクーラ5にて冷却作用を発揮する。
サブクーラ5を出た冷媒はカスケードコンデンサ4内に
流入し、そこで蒸発して冷却作用を発揮した後、アキュ
ムレータ38を経て配管39より圧縮機32に吸い込ま
れる。
The liquid refrigerant is separated into gas and liquid in the liquid receiver 35, the liquid refrigerant is decompressed by the expansion valve 37, flows into the evaporator 41, and first performs a cooling action in the subcooler 5 while evaporating.
The refrigerant discharged from the subcooler 5 flows into the cascade condenser 4, evaporates there to exert a cooling effect, and then is sucked into the compressor 32 through the pipe 39 through the accumulator 38.

【0026】この高温側冷媒回路51の運転によって、
例えばカスケードコンデンサ4の温度が所定の温度に低
下すると、制御装置は低温側冷媒回路52の運転を開始
する。そして、圧縮機2より吐出された高温高圧のガス
冷媒は配管3を経て凝縮器21が構成するカスケードコ
ンデンサ4内に流入する。カスケードコンデンサ4内は
前述の如く高温側冷媒回路51の蒸発器41により冷却
されているため、流入した高温のガス冷媒はそこで冷却
されて凝縮液化する。そして、冷媒は配管14を経てサ
ブクーラ5に流入する。サブクーラ5内も高温側冷媒回
路51の蒸発器41により前述の如く冷却作用を受けて
いるため冷媒は更に冷却されて凝縮液化し配管6に流出
する。
By the operation of the high temperature side refrigerant circuit 51,
For example, when the temperature of the cascade condenser 4 drops to a predetermined temperature, the control device starts the operation of the low temperature side refrigerant circuit 52. Then, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the cascade condenser 4 formed by the condenser 21 through the pipe 3. Since the inside of the cascade condenser 4 is cooled by the evaporator 41 of the high temperature side refrigerant circuit 51 as described above, the inflowing high temperature gas refrigerant is cooled there and condensed and liquefied. Then, the refrigerant flows into the subcooler 5 via the pipe 14. Since the inside of the subcooler 5 is also cooled by the evaporator 41 of the high temperature side refrigerant circuit 51 as described above, the refrigerant is further cooled, condensed and liquefied, and flows out to the pipe 6.

【0027】そして、冷媒は配管6より膨張弁7に至り
そこで減圧された後、蒸発器8に流入し、そこで蒸発し
て冷却作用を発揮する。この蒸発器8と熱交換した冷気
は送風機Faにより庫内に循環され、それによって庫内
は所定の極低温に冷却維持される。前記蒸発器8を出た
冷媒は配管15からアキュムレータ9に入り、そこに一
旦貯留されて前述の如く未蒸発液冷媒とガス冷媒とが分
離され、ガス冷媒が配管10より圧縮機2に吸い込まれ
る。
The refrigerant reaches the expansion valve 7 through the pipe 6 and is depressurized there, then flows into the evaporator 8 where it is evaporated and exhibits a cooling effect. The cool air that has exchanged heat with the evaporator 8 is circulated in the refrigerator by the blower Fa, so that the inside of the refrigerator is cooled and maintained at a predetermined extremely low temperature. The refrigerant exiting the evaporator 8 enters the accumulator 9 through the pipe 15, is temporarily stored therein, and the non-evaporated liquid refrigerant and the gas refrigerant are separated as described above, and the gas refrigerant is sucked into the compressor 2 through the pipe 10. .

【0028】ここで、低温側冷媒回路52の圧縮機2か
ら吐出された高温高圧のガス冷媒は、配管3内を通過す
る過程でアキュムレータ9内を通る。このアキュムレー
タ9内には低温のガス冷媒及び未蒸発の液冷媒が貯留さ
れているため、圧縮機2から吐出された冷媒は冷却作用
を受け、例えば吐出直後の温度が+100℃とすると、
凝縮器21に流入する時点では例えば+76℃程に低下
する。従って、カスケードコンデンサ4に入る低温側冷
媒回路52の冷媒は、より凝縮し易くなり、低温側冷媒
回路52の高圧圧力が低く抑えられ、高圧圧力スイッチ
12による停止も防止若しくは低減されるため、プルダ
ウン時間が短縮される。
The high-temperature high-pressure gas refrigerant discharged from the compressor 2 of the low-temperature side refrigerant circuit 52 passes through the accumulator 9 while passing through the pipe 3. Since a low-temperature gas refrigerant and a non-evaporated liquid refrigerant are stored in the accumulator 9, the refrigerant discharged from the compressor 2 receives a cooling action, and if the temperature immediately after discharge is + 100 ° C., for example,
At the time of flowing into the condenser 21, the temperature drops to about + 76 ° C., for example. Therefore, the refrigerant of the low temperature side refrigerant circuit 52 entering the cascade condenser 4 is more easily condensed, the high pressure of the low temperature side refrigerant circuit 52 is suppressed to a low level, and the stop by the high pressure switch 12 is also prevented or reduced. Time is reduced.

【0029】即ち、実施例の多元冷凍装置1を運転した
場合、高温側冷媒回路51の蒸発器41の温度は、カス
ケードコンデンサ4の入口側で−25.0℃、カスケー
ドコンデンサ4の出口側の配管36で−24.4℃であ
り、低温側冷媒回路52の配管3の温度は、アキュムレ
ータ9による冷却により、カスケードコンデンサ4の入
口側で既に+76.3℃程まで低下して凝縮器し易い状
態となっており、カスケードコンデンサ4の出口側の配
管14では−23.0℃まで低下した。そして、低温側
冷媒回路52の蒸発器8の温度は−70℃に到達し、庫
内温度は−60℃が得られた。
That is, when the multi-source refrigeration system 1 of the embodiment is operated, the temperature of the evaporator 41 of the high temperature side refrigerant circuit 51 is −25.0 ° C. at the inlet side of the cascade condenser 4 and at the outlet side of the cascade condenser 4. The pipe 36 has a temperature of −24.4 ° C., and the temperature of the pipe 3 of the low-temperature side refrigerant circuit 52 has already dropped to about + 76.3 ° C. at the inlet side of the cascade condenser 4 due to the cooling by the accumulator 9 to facilitate the condenser. The pipe 14 on the outlet side of the cascade condenser 4 has dropped to −23.0 ° C. And the temperature of the evaporator 8 of the low temperature side refrigerant circuit 52 reached -70 degreeC, and the internal temperature of -60 degreeC was acquired.

【0030】このように本発明の多元冷凍装置1は、低
温側冷媒回路52の圧縮機2より吐出された高温高圧の
ガス冷媒がアキュムレータ9内の配管3を通過する過程
で冷却されるように構成されているので、カスケードコ
ンデンサ4では容易に凝縮液化することができるように
なる。これによって、カスケードコンデンサ4の容量を
小さくすることができるようになると共に、高温側冷媒
回路51の冷凍能力も小さいものとすることができる。
また、アキュムレータ9内に高温高圧のガス冷媒を通過
させることから、圧縮機2への吸入ガスが十分に加熱さ
れるため、液バックの危惧もなくなる。特に、プルダウ
ン時の低温側冷媒回路52の高圧圧力が低く抑えられる
ので、所定の庫内温度に達するまでのプルダウン時間を
短くすることができ急速冷凍も可能となる。
As described above, in the multi-source refrigeration system 1 of the present invention, the high temperature and high pressure gas refrigerant discharged from the compressor 2 of the low temperature side refrigerant circuit 52 is cooled in the process of passing through the pipe 3 in the accumulator 9. Since it is configured, the cascade condenser 4 can be easily condensed and liquefied. As a result, the capacity of the cascade condenser 4 can be reduced, and the refrigerating capacity of the high temperature side refrigerant circuit 51 can be reduced.
Further, since the high-temperature and high-pressure gas refrigerant is passed through the accumulator 9, the suction gas to the compressor 2 is sufficiently heated, so that the risk of liquid back is eliminated. In particular, since the high pressure of the low temperature side refrigerant circuit 52 at the time of pulling down is suppressed to a low level, the pulling down time until reaching a predetermined internal temperature can be shortened, and quick freezing can be performed.

【0031】[0031]

【発明の効果】以上詳述した如く本発明によれば、低温
側冷媒回路の高圧側と低圧側(アキュムレータ)とを交
熱的に結合させたので、低温側冷媒回路の圧縮機から吐
出された高温高圧のガス冷媒を冷却し、カスケードコン
デンサにて容易に凝縮液化させることができるようにな
る。従って、プルダウン時の低温側冷媒回路の高圧圧力
を低く抑えられるため、所定の庫内温度に達するまでの
プルダウン時間を極めて短縮させることができ、急速冷
凍が容易となる。
As described above in detail, according to the present invention, since the high pressure side and the low pressure side (accumulator) of the low temperature side refrigerant circuit are heat exchange coupled, the refrigerant is discharged from the compressor of the low temperature side refrigerant circuit. Further, the high-temperature and high-pressure gas refrigerant can be cooled and easily condensed and liquefied by the cascade condenser. Therefore, the high pressure of the low temperature side refrigerant circuit at the time of pulling down can be suppressed to be low, so that the pulling down time until the temperature reaches the predetermined internal cold storage temperature can be extremely shortened, and quick freezing becomes easy.

【0032】また、カスケードコンデンサを小さくする
ことができると共に、高温側冷媒回路の冷凍能力を小さ
くすることが可能となる。特に、低温側冷媒回路の圧縮
機から吐出された冷媒を最初にアキュムレータに流し、
その後カスケードコンデンサ、高温側冷媒回路の低圧側
(サブクーラ)の順で通過させるので、吐出温度が最も
高いときにアキュムレータ内の冷媒のガス化を促進させ
ることができ、圧縮機の液圧縮を優先して防止できる。
同時に吐出冷媒の温度が下がるため、カスケードコンデ
ンサから出る冷媒温度をより低下させることができるよ
うになるものである。
Further, the cascade condenser can be made small and the refrigerating capacity of the high temperature side refrigerant circuit can be made small. In particular, the refrigerant discharged from the compressor of the low temperature side refrigerant circuit is first passed through the accumulator,
After that, the cascade condenser and the low-pressure side (subcooler) of the high-temperature side refrigerant circuit are passed in this order, so the gasification of the refrigerant in the accumulator can be promoted at the highest discharge temperature, and liquid compression of the compressor is prioritized. Can be prevented.
At the same time, since the temperature of the discharged refrigerant is lowered, the temperature of the refrigerant discharged from the cascade condenser can be further lowered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多元冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a multi-source refrigeration system of the present invention.

【図2】本発明のアキュムレータの側面図である。FIG. 2 is a side view of the accumulator of the present invention.

【図3】本発明のアキュムレータの平面図である。FIG. 3 is a plan view of the accumulator of the present invention.

【図4】従来の多元冷凍装置の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram of a conventional multi-source refrigeration system.

【符号の説明】[Explanation of symbols]

1 多元冷凍装置 2 圧縮機 3 配管 4 カスケードコンデンサ 5 サブクーラ 7 膨張弁 8 蒸発器 9 アキュムレータ 9a 容器 21 凝縮器 32 圧縮機 34 凝縮器 37 膨張弁 41 蒸発器 51 高温側冷媒回路 52 低温側冷媒回路 1 Multi-Refrigerator 2 Compressor 3 Piping 4 Cascade condenser 5 Subcooler 7 Expansion valve 8 Evaporator 9 Accumulator 9a Container 21 Condenser 32 Compressor 34 Condenser 37 Expansion valve 41 Evaporator 51 High temperature side refrigerant circuit 52 Low temperature side refrigerant circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器等を
順次環状に冷媒配管で接続して成る高温側冷媒回路と、
圧縮機、凝縮器、減圧装置、蒸発器等を順次環状に冷媒
配管で接続して成る低温側冷媒回路とを備え、高温側冷
媒回路には沸点温度の高い冷媒を封入し、低温側冷媒回
路には沸点の低い冷媒を封入すると共に、高温側冷媒回
路の蒸発器と低温側冷媒回路の凝縮器とを交熱的に結合
させるカスケードコンデンサを備えた多元冷凍装置にお
いて、低温側冷媒回路の高圧側の一部をこの低温側冷媒
回路の低圧側に交熱的に結合させる構成を備えたことを
特徴とする多元冷凍装置。
1. A high temperature side refrigerant circuit comprising a compressor, a condenser, a pressure reducing device, an evaporator and the like which are sequentially connected in an annular shape by a refrigerant pipe,
A low-temperature side refrigerant circuit, in which a compressor, a condenser, a decompression device, an evaporator, etc. are sequentially connected in an annular shape by refrigerant pipes, and a high-temperature side refrigerant circuit is filled with a high boiling point refrigerant, and a low-temperature side refrigerant circuit In the multi-source refrigeration system, in which a refrigerant having a low boiling point is sealed in, and a cascade condenser that thermally couples the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit in a heat exchange manner, A multi-source refrigeration system having a configuration in which a part of the side is coupled to the low pressure side of the low temperature side refrigerant circuit in a heat exchange manner.
【請求項2】 圧縮機、凝縮器、減圧装置、蒸発器等を
順次環状に冷媒配管で接続して成る高温側冷媒回路と、
圧縮機、凝縮器、減圧装置、蒸発器、アキュムレータ等
を順次環状に冷媒配管で接続して成る低温側冷媒回路と
を備え、高温側冷媒回路には沸点温度の高い冷媒を封入
し、低温側冷媒回路には沸点の低い冷媒を封入すると共
に、高温側冷媒回路の蒸発器と低温側冷媒回路の凝縮器
とを交熱的に結合させるカスケードコンデンサを備えた
多元冷凍装置において、低温側冷媒回路の高圧側の一部
を前記アキュムレータ内で予備冷却する構成を備えたこ
とを特徴とする多元冷凍装置。
2. A high temperature side refrigerant circuit comprising a compressor, a condenser, a pressure reducing device, an evaporator, etc., which are sequentially connected in an annular shape by a refrigerant pipe,
It is equipped with a low temperature side refrigerant circuit consisting of a compressor, a condenser, a decompressor, an evaporator, an accumulator, etc., which are sequentially connected by a refrigerant pipe, and a high temperature side refrigerant circuit is filled with a refrigerant having a high boiling point temperature, and a low temperature side. In a multi-source refrigeration system that includes a refrigerant having a low boiling point in the refrigerant circuit, and a cascade condenser that couples the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit in a heat exchange manner, the low temperature side refrigerant circuit A multi-source refrigeration system comprising a structure for pre-cooling a part of the high pressure side of the inside of the accumulator.
【請求項3】 圧縮機、凝縮器、減圧装置、蒸発器等を
順次環状に冷媒配管で接続して成る高温側冷媒回路と、
圧縮機、凝縮器、減圧装置、蒸発器、アキュムレータ等
を順次環状に冷媒配管で接続して成る低温側冷媒回路と
を備え、高温側冷媒回路には沸点温度の高い冷媒を封入
し、低温側冷媒回路には沸点の低い冷媒を封入すると共
に、高温側冷媒回路の蒸発器と低温側冷媒回路の凝縮器
とを交熱的に結合させるカスケードコンデンサを備えた
多元冷凍装置において、低温側冷媒回路の圧縮機から吐
出された冷媒を前記アキュムレータ内で冷却した後カス
ケードコンデンサへ供給する構成と、カスケードコンデ
ンサで冷却された後の冷媒を高温側冷媒回路の低圧側の
冷媒と交熱的に結合させて冷却する構成とを備えたこと
を特徴とする多元冷凍装置。
3. A high temperature side refrigerant circuit comprising a compressor, a condenser, a pressure reducing device, an evaporator and the like which are sequentially connected in an annular shape by a refrigerant pipe,
It is equipped with a low temperature side refrigerant circuit consisting of a compressor, a condenser, a decompressor, an evaporator, an accumulator, etc., which are sequentially connected by a refrigerant pipe, and a high temperature side refrigerant circuit is filled with a refrigerant having a high boiling point temperature, and a low temperature side. In a multi-source refrigeration system that includes a refrigerant having a low boiling point in the refrigerant circuit, and a cascade condenser that couples the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit in a heat exchange manner, the low temperature side refrigerant circuit The refrigerant discharged from the compressor is cooled in the accumulator and then supplied to the cascade condenser, and the refrigerant after being cooled by the cascade condenser is heat exchanged with the refrigerant on the low pressure side of the high temperature side refrigerant circuit. A multi-source refrigeration system, which is characterized in that it has a structure for cooling by means of cooling.
【請求項4】 圧縮機、凝縮器、減圧装置、蒸発器等を
順次環状に冷媒配管で接続して成る高温側冷媒回路と、
圧縮機、凝縮器、減圧装置、蒸発器等を順次環状に冷媒
配管で接続して成る低温側冷媒回路とを備え、高温側冷
媒回路には沸点温度の高い冷媒を封入し、低温側冷媒回
路には沸点の低い冷媒を封入すると共に、高温側冷媒回
路の蒸発器と低温側冷媒回路の凝縮器とを交熱的に結合
させるカスケードコンデンサを備えた多元冷凍装置にお
いて、低温側冷媒回路の高圧側の冷媒をこの低温側冷媒
回路の低圧側に交熱的に結合させてこの高圧側の冷媒を
冷却することを特徴とする多元冷凍装置。
4. A high temperature side refrigerant circuit comprising a compressor, a condenser, a pressure reducing device, an evaporator, etc., which are sequentially connected in an annular shape by a refrigerant pipe,
A low-temperature side refrigerant circuit, in which a compressor, a condenser, a decompression device, an evaporator, etc. are sequentially connected in an annular shape by refrigerant pipes, and a high-temperature side refrigerant circuit is filled with a high boiling point refrigerant, and a low-temperature side refrigerant circuit In the multi-source refrigeration system, in which a refrigerant having a low boiling point is sealed in, and a cascade condenser that thermally couples the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit in a heat exchange manner, A multi-refrigerating device characterized in that the high-pressure side refrigerant is cooled by heat-exchangeably coupling the low-temperature side refrigerant circuit to the low-pressure side refrigerant circuit.
JP4777394A 1994-02-22 1994-02-22 Cascade refrigerator Pending JPH07234027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4777394A JPH07234027A (en) 1994-02-22 1994-02-22 Cascade refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4777394A JPH07234027A (en) 1994-02-22 1994-02-22 Cascade refrigerator

Publications (1)

Publication Number Publication Date
JPH07234027A true JPH07234027A (en) 1995-09-05

Family

ID=12784709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4777394A Pending JPH07234027A (en) 1994-02-22 1994-02-22 Cascade refrigerator

Country Status (1)

Country Link
JP (1) JPH07234027A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370874B (en) * 2000-08-31 2004-11-24 Nbs Cryo Res Ltd Refrigeration systems
JP2006343087A (en) * 2005-06-09 2006-12-21 Lg Electronics Inc Air conditioner
JP2006343088A (en) * 2005-06-09 2006-12-21 Lg Electronics Inc Air conditioner
JP2008082680A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
KR100943972B1 (en) * 2008-12-11 2010-02-26 에스에이비(주) Environmental adaptive heat pump system for cooling and heating capable of protecting compressor from overload
KR101538451B1 (en) * 2010-02-02 2015-07-23 에스에이비(주) Environmental adaptive heat pump system for cooling and heating capable of protecting compressor from overload
JP2020201008A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system
WO2020250986A1 (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system
JP2020201007A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370874B (en) * 2000-08-31 2004-11-24 Nbs Cryo Res Ltd Refrigeration systems
JP2006343087A (en) * 2005-06-09 2006-12-21 Lg Electronics Inc Air conditioner
JP2006343088A (en) * 2005-06-09 2006-12-21 Lg Electronics Inc Air conditioner
JP2008082680A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
KR100943972B1 (en) * 2008-12-11 2010-02-26 에스에이비(주) Environmental adaptive heat pump system for cooling and heating capable of protecting compressor from overload
KR101538451B1 (en) * 2010-02-02 2015-07-23 에스에이비(주) Environmental adaptive heat pump system for cooling and heating capable of protecting compressor from overload
JP2020201008A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system
WO2020250986A1 (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system
JP2020201007A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 Refrigerant cycle system

Similar Documents

Publication Publication Date Title
CN101526279B (en) Cold recovery double-mode overlapping low-temperature refrigerator
WO1990007683A1 (en) Trans-critical vapour compression cycle device
CN105180489A (en) Mixing working medium throttling refrigerating machine adapting to variable working condition operation and refrigerating method of mixing working medium throttling refrigerating machine
JPH07234027A (en) Cascade refrigerator
US6539735B1 (en) Refrigerant expansion tank
JP3573384B2 (en) Cryogenic refrigeration equipment
CN206593361U (en) A kind of vehicle-mounted energy-saving refrigerator
JPH079000Y2 (en) Cryogenic refrigerator
JP3638557B2 (en) Cryogenic cooling method and apparatus
JP2009186074A (en) Refrigerating device
JPH04263746A (en) Refrigerator
JPH1073333A (en) Cryogenic cooling apparatus
JP3281973B2 (en) Frozen car
JP2617172B2 (en) Cryogenic cooling device
JP3279782B2 (en) Operation control device for refrigerator
JP3596825B2 (en) Low pressure control device for cryogenic refrigerator
JPH07234041A (en) Cascade refrigerating equipment
JP3589434B2 (en) Cryogenic refrigeration equipment
JPH02225953A (en) Freezing system with double vaporizer for domestic refrigerator
JP2003247760A (en) Dual refrigerator
KR19990018454U (en) Refrigeration cycle device for refrigerator
CN117553455A (en) Double-module heat supply and ice making integrated device
JPH11108476A (en) Cryostatic cooling device
JPH10206010A (en) Method of separating air and device
JP3765945B2 (en) Operation control device for refrigerator