JPS62248962A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62248962A
JPS62248962A JP9159886A JP9159886A JPS62248962A JP S62248962 A JPS62248962 A JP S62248962A JP 9159886 A JP9159886 A JP 9159886A JP 9159886 A JP9159886 A JP 9159886A JP S62248962 A JPS62248962 A JP S62248962A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pipe
pressure reducer
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9159886A
Other languages
Japanese (ja)
Other versions
JPH0697123B2 (en
Inventor
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9159886A priority Critical patent/JPH0697123B2/en
Priority to GB8621651A priority patent/GB2180921B/en
Priority to DE19863631795 priority patent/DE3631795A1/en
Priority to DE3645168A priority patent/DE3645168C2/de
Priority to FR8613264A priority patent/FR2587792B1/en
Priority to US06/910,881 priority patent/US4788829A/en
Priority to CN86106599.9A priority patent/CN1023833C/en
Publication of JPS62248962A publication Critical patent/JPS62248962A/en
Priority to FR9310292A priority patent/FR2693541B1/en
Publication of JPH0697123B2 publication Critical patent/JPH0697123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野′ 本発明は圧縮機を用いた冷凍装置、特に複数種の非共沸
混合冷媒を用いて極低温を得るための冷凍装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of industrial application' The present invention relates to a refrigeration system using a compressor, and particularly to a refrigeration system for obtaining extremely low temperatures using a non-azeotropic mixture of multiple types of refrigerants. be.

(口〉従来の技術 従来より理化学実験室等に於いて生体細胞の保存等に使
用される冷凍庫に用いる機械式冷凍装置は一80℃程度
の低温を得るのが限界であった。
(Example) Conventional technology Conventionally, mechanical refrigeration equipment used in freezers used in physical and chemical laboratories and the like to preserve biological cells has had a limit of obtaining a low temperature of about -80°C.

斯かる低温によれば細胞の凍結保存は達成されるものの
、時間の経過に従い、凍結した細胞内の氷結晶の核が再
結合して氷結晶の大きさが拡大し、細胞破壊現象が発生
する。これは氷の再結晶化と称されるものであるが、こ
の氷の再結晶は再結晶化点である一130℃より低い環
境では発生しないことが知られている。即ち一130℃
より低い超低温下であれば細胞の永久保存が達成でき、
斯かる超低温を得る冷凍装置が期待されていた。
Although cryopreservation of cells is achieved at such low temperatures, as time passes, the nuclei of ice crystals within the frozen cells recombine and the size of the ice crystals expands, causing cell destruction. . This is called recrystallization of ice, but it is known that this recrystallization of ice does not occur in an environment lower than -130° C., which is the recrystallization point. That is -130℃
Permanent preservation of cells can be achieved at lower ultra-low temperatures.
There have been high expectations for a refrigeration system that can obtain such ultra-low temperatures.

ここで此種冷凍装置、特に圧縮機を用いたものでは、圧
縮機から吐出きれた高温ガス状冷媒を凝縮器に流入せし
めて空気若しくは水と熱交換することによって液化せし
め、減圧装置によって圧力調整した後、蒸発器に流入せ
しめて蒸発せしめる。この時気化熱を周囲より吸収する
ことによって冷却作用を達成するものであるが、単一の
冷媒を用いた冷凍装置では、通常の圧縮機の場合、−4
0℃程度の最低到達温度を達成するのが限度である。
In this type of refrigeration system, especially one using a compressor, the high temperature gaseous refrigerant discharged from the compressor flows into the condenser and is liquefied by exchanging heat with air or water, and the pressure is adjusted by a pressure reducing device. After that, it flows into an evaporator and is evaporated. At this time, the cooling effect is achieved by absorbing the heat of vaporization from the surroundings, but in a refrigeration system using a single refrigerant, in the case of a normal compressor, -4
The limit is to achieve a minimum temperature of about 0°C.

又、二つの独立した冷媒閉回路を用い、両者をカスケー
ド接続すると共に、低温を達成する側の冷媒閉回路によ
り低沸点の冷媒を封入することによって低温度を達成す
る所謂二元冷凍方式もあるが、これとて通常の圧縮機を
用いたものでは一80℃程度が限度である。
There is also a so-called dual refrigeration system that uses two independent refrigerant closed circuits, connects them in cascade, and seals a low boiling point refrigerant in the refrigerant closed circuit on the side that achieves the low temperature, thereby achieving a low temperature. However, when using a normal compressor, the temperature is limited to about -80°C.

これらの問題を解決するものとして1973年10月3
日付米国特許第3.768.273号の如く、沸点の異
なる複数種の混合冷媒を用い、中間熱交換器でのより高
い沸点の冷媒の蒸発によって、より低い沸点の冷媒を次
々に凝縮して行くことにより、最終段の蒸発器で最も低
い沸点の冷媒を蒸発せしめ、単一の圧縮機によって低温
度を得る所謂混合冷媒冷凍方式もある。
October 3, 1973 as a solution to these problems.
As in U.S. Pat. No. 3,768,273, a mixed refrigerant of multiple types with different boiling points is used, and the refrigerant with a lower boiling point is successively condensed by evaporating the refrigerant with a higher boiling point in an intermediate heat exchanger. There is also a so-called mixed refrigerant refrigeration system in which the refrigerant with the lowest boiling point is evaporated in the final stage evaporator and a low temperature is obtained using a single compressor.

更に、1973年5月22日付米国特許第3゜733.
845号の如く独立した二つの冷媒閉回路をカスケード
接続し、低温側の冷媒閉回路を前述の混合冷媒冷凍方式
として極めて低い温度を達成するものもある。これによ
れば通常用いられる圧縮機(例えば1.5HP程度)に
よって−130℃より低い極めて低温を達成することが
可能である。
Further, U.S. Pat. No. 3,733, dated May 22, 1973.
There is also a system, such as No. 845, in which two independent refrigerant closed circuits are connected in cascade, and the refrigerant closed circuit on the low temperature side uses the above-mentioned mixed refrigerant refrigeration system to achieve an extremely low temperature. According to this, it is possible to achieve extremely low temperatures lower than -130°C using a commonly used compressor (for example, about 1.5 HP).

(ハ)発明が解決しようとする問題点 斯かる混合冷媒冷凍方式の冷媒閉回路を用いたものでは
、最終到達温度が前述の如<−130℃下の極めて低い
温度となるため、冷却装置外部からの熱の侵入によって
最終段の減圧器内では容易に冷媒が蒸発気化してしまう
為、充分な量の液冷媒が蒸発器に供給できなくなって冷
却不足が発生する。
(c) Problems to be Solved by the Invention In such a mixed refrigerant refrigeration system using a refrigerant closed circuit, the final temperature reached is extremely low, below -130°C, as described above, and therefore the external temperature of the cooling device is Because the refrigerant easily evaporates in the final stage pressure reducer due to the intrusion of heat from the evaporator, a sufficient amount of liquid refrigerant cannot be supplied to the evaporator, resulting in insufficient cooling.

この様な事態を藺止する為に冷却装置の蒸発器近傍は特
に厳重に断熱されるものであるが、それにも限界がある
と共に、斯かる冷却不足は充填される冷媒量のアンバラ
ンスによっても生起する。
In order to prevent this kind of situation, the area near the evaporator of the cooling system is particularly tightly insulated, but there are limits to this, and such insufficient cooling can also be caused by an imbalance in the amount of refrigerant charged. occur.

即ち充填される冷媒量が過多であると、蒸発器で冷媒が
蒸発し切れずに液状のまま最終段の中間熱交換器に戻る
様になり、この中間熱交換器が蒸発器と同温度近くまで
冷却されてしまう。この様な事態になるとそこを通過し
て熱交換する冷媒が過冷却され、外部から侵入する熱に
よって最終段の減圧器内で蒸発し始める。これによって
減圧器内の冷媒の流通が阻害され、蒸発器に冷媒が供給
されなくなり、冷却不足が生ずる。
In other words, if the amount of refrigerant charged is too large, the refrigerant will not be completely evaporated in the evaporator and will return to the intermediate heat exchanger in the final stage as a liquid, causing the intermediate heat exchanger to be at a temperature close to that of the evaporator. It will be cooled down to. When this happens, the refrigerant that passes through and exchanges heat becomes supercooled and begins to evaporate in the final stage pressure reducer due to heat entering from the outside. This obstructs the flow of refrigerant within the pressure reducer, and no refrigerant is supplied to the evaporator, resulting in insufficient cooling.

又、逆に充填される冷媒量が過少であっても蒸発器での
十分なる冷媒蒸発が行なわれなくなるので、やはり冷却
不足が生じる。
On the other hand, even if the amount of refrigerant charged is too small, sufficient evaporation of refrigerant in the evaporator will not occur, resulting in insufficient cooling.

本発明は斯かる問題点を解決するために成されたもので
ある。
The present invention has been made to solve these problems.

(ニ)問題点を解決するための手段 実施例に沿って本発明の詳細な説明する。低温側冷媒回
路(3)は電動圧縮機(10)、カスケードコンデンサ
(25A>(25B)、蒸発パイプ(47)、第1、第
2及び第3の中間熱交換器(32)(42)(44)を
具備している。各中間熱交換器には蒸発パイプ(47)
か6・の帰還冷媒が(44)(42)(32)の順で流
通する様直列に接続する。冷媒回路(3)には複数種の
沸点の異なる(即ち蒸発温度が異なる)冷媒を混合して
封入し、カスケードコンデンサ(25A)(25B>や
中間熱交換器(32)(42) (44)で凝縮した沸
点の高い冷媒を複数の減圧器(36)(40)(46)
にて減圧して中間熱交換器(32)(42)に次々に流
入せしめて未凝縮の冷媒を凝縮して行き、沸点の最も低
いR50冷媒を最終段の減圧器(46)を介して蒸発パ
イプ(47〉に流入せしめて蒸発許せ、−150℃の極
低温を得る。
(d) Means for solving the problems The present invention will be explained in detail with reference to embodiments. The low-temperature side refrigerant circuit (3) includes an electric compressor (10), a cascade condenser (25A>(25B), an evaporation pipe (47), and first, second, and third intermediate heat exchangers (32), (42), 44).Each intermediate heat exchanger is equipped with an evaporation pipe (47).
They are connected in series so that the return refrigerants of (44), (42), and (32) flow in the order of (44), (42), and (32). The refrigerant circuit (3) is filled with a mixture of multiple types of refrigerants with different boiling points (that is, different evaporation temperatures), and is connected to cascade condensers (25A) (25B>) and intermediate heat exchangers (32) (42) (44). The refrigerant with a high boiling point condensed in multiple pressure reducers (36) (40) (46)
The pressure is reduced at the intermediate heat exchanger (32) and (42) to condense the uncondensed refrigerant, and the R50 refrigerant with the lowest boiling point is evaporated via the final stage pressure reducer (46). It flows into the pipe (47) and is allowed to evaporate, obtaining an extremely low temperature of -150°C.

この時減圧器(46)に流入する冷媒の温度即ち減圧器
(46)入口部(P、)の温度と減圧器(46)を出た
後の冷媒の温度即ち蒸発パイプ(47)入口部(P、)
の温度との差が10”Cより大きく、且つ、カスケード
コンデンサ(25A)(25B)の温度(−50℃)と
蒸発パイプ(47)の温度(−150″C)の差100
℃を減圧器(36)(40)(46)の数で除した値3
3℃より小さくなる様に冷媒を封入するものである。
At this time, the temperature of the refrigerant flowing into the pressure reducer (46), that is, the temperature of the pressure reducer (46) inlet part (P,), and the temperature of the refrigerant after leaving the pressure reducer (46), that is, the temperature of the evaporation pipe (47) inlet part ( P,)
is larger than 10"C, and the difference between the temperature of the cascade condenser (25A) (25B) (-50°C) and the temperature of the evaporation pipe (47) (-150"C) is 100"C.
The value obtained by dividing ℃ by the number of pressure reducers (36) (40) (46) 3
The refrigerant is sealed so that the temperature is lower than 3°C.

(ホ)作用 (Pl)点と(P2)点の温度が近い時は冷媒封入量が
過多で液冷媒が第3の中間熱交換器(44)に多量に流
入している状態であり、又、温度差が大きい時は冷媒封
入量が過少で蒸発バイブ(47)入10付近でのみ蒸発
している状態であるので、10℃と33℃の間に設定す
る事によって適正量を封入でき、それによって蒸発バイ
ブ(47)温度の脈動や、冷却不足を防止でき、安定し
た冷却性能を発揮できると共に冷凍装置(R)に高い信
頼性と寿命を与えるものである。
(e) When the temperatures of the action point (Pl) and point (P2) are close, the amount of refrigerant charged is too large and a large amount of liquid refrigerant is flowing into the third intermediate heat exchanger (44); When the temperature difference is large, the amount of refrigerant charged is too small and evaporates only in the vicinity of the evaporator vibrator (47) containing 10. Therefore, by setting the temperature between 10℃ and 33℃, the appropriate amount can be sealed. As a result, pulsations in the temperature of the evaporating vibrator (47) and insufficient cooling can be prevented, stable cooling performance can be exhibited, and the refrigeration system (R) can have high reliability and a long life.

(へ)実施例 次に図面に於いて本発明の詳細な説明する。(f) Example The invention will now be described in detail with reference to the drawings.

第1図は本発明の冷凍装置(R)の冷媒回路(1)を示
している。冷媒回路(1)はそれぞれ独立した第1の冷
媒閉回路としての高温側冷媒回路(2〉と第2の冷媒閉
回路としての低温側冷媒回路(3)とから構成されてい
る。(4)は高温側冷媒回路(2)を構成する一相若し
くは三相交流電源を用いる電動圧縮機であり、電動圧縮
機(4)の吐出側配管(4D)は補助凝縮器(5)に接
続され、補助凝縮器(5)は更に後に詳述する冷凍庫の
貯蔵室開口縁を加熱する鞘付防止バイブ(6)に接続さ
れ、次に電動圧縮機(4)のオイルクーラー(7)に接
続された後、凝縮器(8)に接続される。(9)は凝縮
器(8)冷却用の送風機である。凝縮器(8)を出た冷
媒配管は乾燥器(12)を経た後、減圧器(13)を介
して蒸発器を構成する蒸発器部分としての第1蒸発器(
14A)と第2蒸発器(14B)を経てアキュムレータ
(15)に接続された後、低温側冷媒回路(3)を構成
する電動圧縮機(1o)のオイルクーラー(11)を経
て電動圧縮機(4)の吸入側配管(4S)に接続される
。第1蒸発器(14A)と第2蒸発器(14B)は直列
に接続され、全体として高温側冷媒回路(2)の蒸発器
を構成している。
FIG. 1 shows a refrigerant circuit (1) of a refrigeration system (R) of the present invention. The refrigerant circuit (1) is composed of a high temperature side refrigerant circuit (2) as a first closed refrigerant circuit and a low temperature side refrigerant circuit (3) as a second closed refrigerant circuit. (4) is an electric compressor using a one-phase or three-phase AC power source that constitutes a high-temperature side refrigerant circuit (2), and a discharge side pipe (4D) of the electric compressor (4) is connected to an auxiliary condenser (5), The auxiliary condenser (5) was further connected to a sheath prevention vibe (6) that heated the opening edge of the freezer storage chamber, which will be described in detail later, and then to an oil cooler (7) of the electric compressor (4). After that, it is connected to the condenser (8). (9) is a blower for cooling the condenser (8). The refrigerant pipe that exits the condenser (8) passes through the dryer (12), and then is connected to the pressure reducer. (13) The first evaporator (
14A) and the second evaporator (14B) to the accumulator (15), the electric compressor (1o) is connected to the electric compressor ( 4) is connected to the suction side piping (4S). The first evaporator (14A) and the second evaporator (14B) are connected in series, and together constitute the evaporator of the high temperature side refrigerant circuit (2).

高温側冷媒回路(2)には沸点の異なる冷媒R502と
R12(ジクロロジフルオロメタン)が充填され、その
組成は例えばR502が88.0重量%、R12が12
.0重量%である。電動圧縮機(4)から吐出された高
温ガス状冷媒は、補助凝縮器(5)、鞘付防止パイプ(
6)、オイルクーラー(7)及び凝縮器(8)で凝縮さ
れて放熱液化した後、乾燥器(12)で含有する水分を
除去され、減圧器(13)にて減圧きれて第1及び第2
蒸発器(14A)(14B>に次々に流入して冷媒R5
02が蒸発し、気化熱を周囲から吸収して各蒸発器(1
4A)(14B>を冷却し、冷媒液溜めとしてのアキュ
ムレータ(15)から低温側冷媒回路(3)の電動圧縮
機(1o)のオイルクーラー(11)を経て電動圧縮機
(4)に帰還する動作をする。
The high temperature side refrigerant circuit (2) is filled with refrigerants R502 and R12 (dichlorodifluoromethane) having different boiling points, and their composition is, for example, 88.0% by weight of R502 and 12% by weight of R12.
.. It is 0% by weight. The high temperature gaseous refrigerant discharged from the electric compressor (4) is passed through the auxiliary condenser (5) and the sheathed prevention pipe (
6) After condensing and liquefying heat in the oil cooler (7) and condenser (8), the moisture contained in the dryer (12) is removed, and the pressure is reduced in the pressure reducer (13) and the first and second 2
The refrigerant R5 flows into the evaporator (14A) (14B>) one after another.
02 is evaporated, the heat of vaporization is absorbed from the surroundings, and each evaporator (1
4A) (14B> is cooled and returned to the electric compressor (4) via the oil cooler (11) of the electric compressor (1o) of the low temperature side refrigerant circuit (3) from the accumulator (15) as a refrigerant liquid reservoir. take action.

この時、電動圧縮機(4)の能力は例えば1.5HPで
あり、運転中の各蒸発器(14A)(14B>の最終到
達温度は一50℃になる。斯かる低温下では冷媒中のR
12は各蒸発器(14A)(14B>では蒸発せず液状
態のままであり、従って冷却には殆ど寄与しないが、電
動圧縮機(4)の潤滑油や乾燥器(12)で吸収し切れ
なかった混入水分をその内に溶は込ませた状態で電動圧
縮機(4)に帰還せしめる機能を奏する。即ち、R12
冷媒はアキュムレータ(15)から出る配管(アキュム
レータ(15)内に上方より挿入されて下端部で折曲さ
れて開口端は冷媒液位より上方に臨んでいる。)の下端
に通常形成されている油戻し用の孔からアキュムレータ
(15)より出て、前述の潤滑油等を含んだ液体の状態
で低温側冷媒回路(3)のオイルクーラー(11)に流
入する事になる。ここで電動圧縮機(10)の温度が高
い事によりR12は蒸発し、これによって電動圧縮機(
10)の焼付きや潤滑油の劣化を防止する。即ち冷媒R
12は高温側冷媒回路(2)中の潤滑油を電動圧縮機(
4)に戻す機能と、低温側冷媒回路(3)の電動圧縮機
(10)を冷却する機能を奏する。
At this time, the capacity of the electric compressor (4) is, for example, 1.5 HP, and the final temperature reached by each evaporator (14A) (14B>) during operation is -50°C. R
12 does not evaporate in each evaporator (14A) (14B>) and remains in a liquid state, so it hardly contributes to cooling, but it is completely absorbed by the lubricating oil of the electric compressor (4) and the dryer (12). It functions to return the mixed water that was not present to the electric compressor (4) in a state in which it is dissolved. That is, R12
The refrigerant is normally formed at the lower end of the pipe that exits the accumulator (15) (inserted into the accumulator (15) from above, bent at the lower end, and the open end facing above the refrigerant liquid level). The oil comes out from the accumulator (15) through the oil return hole and flows into the oil cooler (11) of the low-temperature side refrigerant circuit (3) in a liquid state containing the aforementioned lubricating oil and the like. Here, R12 evaporates due to the high temperature of the electric compressor (10), which causes the electric compressor (10) to evaporate.
10) Prevents seizure and deterioration of lubricating oil. That is, refrigerant R
12 is an electric compressor (
4) and the function of cooling the electric compressor (10) of the low temperature side refrigerant circuit (3).

低温側冷媒回路(3)を構成する電動圧縮機(10)の
吐出側配管(IOD)は補助凝縮器(17)に接続され
た後油分離器(18)に接続きれる。油分離器(18)
からは電動圧縮機(10)に戻る油戻し管(19)と乾
燥器(20)に接続される配管に分かれ、乾燥器(2o
)は分岐用三方管(21)に接続される。三方管(21
)から出た一方の配管は低温側冷媒回路(3)の第2の
吸入側熱交換器(22)周囲を熱交換的に巻回した後第
1蒸発器(14A)内に挿入された高圧側配管としての
第1凝縮パイプ(23A)に接続きれる。三方管(21
)から出た他方の配管は同様に低温側冷媒回路(3)の
第1の吸入側熱交換器(24)周囲を熱交換的に巻回し
た後第2蒸発器(14B)内に挿入された高圧側配管と
しての第2凝縮パイプ(23B>に接続される。第1蒸
発器(14A)と第1凝縮バイブ(23A)及び第2蒸
発器(14B)と第2凝縮パイプ(23B)はそれぞれ
カスケードコンデンサ(25A)及び(25B>を構成
している。第1及び第2凝縮パイプ(23A)(23B
)は集合三方管(27)にて結合された後、乾燥器(2
8)を経て第1の気液分離器(29)に接続される。気
液分離器(29)から出た気相配管(30)は第1の中
間熱交換器(32)内を通過して第2の気液分離器(3
3)に接続される。気液分離器(29)から出た液相配
管(34)は乾燥器(35)を経た後減圧器(36)を
経て第1の中間熱交換器(32)と第2の中間熱交換器
(42)の間に接続きれる。気液分離器(33)から出
た液相配管(38)は第3の中間熱交換器(44)に熱
交換的に配設した乾燥器(39)を経た後減圧器(40
)を経て第2の中間熱交換器(42)と第3の中間熱交
換器(44)の間に接続される。気液分離器(33)か
ら出た気相配管(43)は第2の中間熱交換器(42)
内を通過した後、第3の中間熱交換器(44)内を通過
し、同様に第3の中間熱交換器(44)に熱交換的に配
設した乾燥器(45)を経て減圧器(46)に接続され
る。減圧器(46)は蒸発器としての蒸発パイプ(47
)に接続され、更に蒸発バイブ(47)は第3の中間熱
交換器(44)に接続される。第3の中間熱交換器(4
4)は第2 (42)及び第1の中間熱交換器(32)
に次々に接続された後、アキュムレータ(49)に接続
され、アキュムレータ(49)は更に第1の吸入側熱交
換器(24)に接続きれ、更に第2の吸入側熱交換器(
22)を経て電動圧縮機(10)の吸入側配管(105
)に接続される。吸入側配管(105)には更に電動圧
縮機(10)停止時に冷媒を貯留する膨張タンク(51
)が減圧器(52)を介して接続される。
The discharge side piping (IOD) of the electric compressor (10) constituting the low temperature side refrigerant circuit (3) is connected to the auxiliary condenser (17) and then to the oil separator (18). Oil separator (18)
The oil return pipe (19) returns to the electric compressor (10) and the pipe connects to the dryer (20).
) is connected to the branching three-way pipe (21). Three-way tube (21
) One of the pipes coming out of the low-temperature side refrigerant circuit (3) is wound around the second suction side heat exchanger (22) for heat exchange and then inserted into the first evaporator (14A). It can be connected to the first condensing pipe (23A) as a side pipe. Three-way tube (21
) is similarly wound around the first suction side heat exchanger (24) of the low temperature side refrigerant circuit (3) for heat exchange, and then inserted into the second evaporator (14B). The first evaporator (14A) and the first condensing vibe (23A) and the second evaporator (14B) and the second condensing pipe (23B) are The first and second condensing pipes (23A) and (23B) constitute a cascade condenser (25A) and (25B), respectively.
) are connected by the collecting three-way pipe (27), and then the dryer (2
8) and is connected to the first gas-liquid separator (29). The gas phase pipe (30) coming out of the gas-liquid separator (29) passes through the first intermediate heat exchanger (32) and is connected to the second gas-liquid separator (3).
3). The liquid phase pipe (34) coming out of the gas-liquid separator (29) passes through a dryer (35) and then a pressure reducer (36), and is then connected to a first intermediate heat exchanger (32) and a second intermediate heat exchanger. The connection is completed during (42). The liquid phase pipe (38) coming out of the gas-liquid separator (33) passes through a dryer (39) arranged for heat exchange in the third intermediate heat exchanger (44), and then is transferred to a pressure reducer (40).
) between the second intermediate heat exchanger (42) and the third intermediate heat exchanger (44). The gas phase pipe (43) coming out of the gas-liquid separator (33) is connected to the second intermediate heat exchanger (42)
After passing through the inside, it passes through the third intermediate heat exchanger (44), and passes through the dryer (45), which is also arranged in the third intermediate heat exchanger (44) for heat exchange, and then the pressure reducer. (46). The pressure reducer (46) is an evaporator pipe (47) as an evaporator.
), and the evaporating vibe (47) is further connected to a third intermediate heat exchanger (44). Third intermediate heat exchanger (4
4) is the second (42) and first intermediate heat exchanger (32)
The accumulator (49) is then connected to the first suction side heat exchanger (24), and then the second suction side heat exchanger (24).
22) to the suction side pipe (105) of the electric compressor (10).
). The suction side pipe (105) is further provided with an expansion tank (51) that stores refrigerant when the electric compressor (10) is stopped.
) is connected via a pressure reducer (52).

低温側冷媒回路(3)には沸点の異なる四種類の混合冷
媒が封入される。即ち、R12(ジクロロジフルオロメ
タン)、R13B1(プロモトリフルオロメタン)、R
14(テトラフルオロメタン)及びR50(メタン)か
ら成る混合冷媒が予め混合きれた状態で封入される。各
冷媒の組成は例えばR50が4.0重量%、R14が2
2.0との結合にて爆発を生じるが上記割合の各フロン
冷媒と混合することによって爆発の危険性は無くなる。
Four types of mixed refrigerants having different boiling points are sealed in the low temperature side refrigerant circuit (3). That is, R12 (dichlorodifluoromethane), R13B1 (promotrifluoromethane), R
A mixed refrigerant consisting of 14 (tetrafluoromethane) and R50 (methane) is sealed in a premixed state. The composition of each refrigerant is, for example, 4.0% by weight of R50 and 2% by weight of R14.
When combined with 2.0, an explosion occurs, but by mixing with each fluorocarbon refrigerant in the above proportions, the danger of explosion is eliminated.

従って混合冷媒の漏洩事故が発生したとしても爆発事故
は発生しない。
Therefore, even if a mixed refrigerant leakage accident occurs, an explosion accident will not occur.

ここで実施例では高温側冷媒回路〈2)の蒸発器を二つ
の蒸発器部分即ち第1第2蒸発器(14A)(14B)
に分割し、低温側冷媒回路(3)の高圧側配管を第1第
2凝縮パイプ(23A)(23B)に分割したことによ
り、二つのカスケードコンデンサ(25A)(25B)
を構成したが、それに限られず、本発明の趣旨を逸脱し
ない範囲で更に多くのカスケードコンデンサに分割して
も何等差支えない。
Here, in the embodiment, the evaporator of the high temperature side refrigerant circuit (2) is divided into two evaporator parts, namely, a first and second evaporator (14A) (14B).
By dividing the high pressure side piping of the low temperature side refrigerant circuit (3) into the first and second condensing pipes (23A) (23B), two cascade condensers (25A) (25B) are created.
However, the present invention is not limited thereto, and there is no problem in dividing the capacitor into more cascade capacitors without departing from the spirit of the present invention.

次に冷媒の循環を説明すると、電動圧縮機(10)から
吐出された高温高圧のガス状混合冷媒は補助凝縮器(1
7)にて予冷された後、油分離器(18)にて冷媒と混
在している電動圧縮機(10)の潤滑油の大部分を油戻
し管(19)にて電動圧縮機(10)に戻し、冷媒自体
は乾燥器(20)を経た後、三方管(21)にて二分き
れる。三方管(21)にて二分された冷媒はそれぞれ別
々に吸入側熱交換器(22)若しくは(24)にて予冷
された後、それぞれカスケードコンデンサ(25A)若
しくは(25B)にて第1 (14A)若しくは第2の
蒸発器(14B)より冷却されて混合冷媒中の沸点の高
い一部の冷媒を凝縮液化した後、三方管(27)に於い
て合流する。この時混合冷媒は二分されてそれぞれ量の
少ない状態で別々にカスケードコンデンサ(25A)若
しくは(25B>に於いて冷却されるため、十分なる熱
交換が行なわれ、凝縮作用は良好に達成詐れる。
Next, to explain the circulation of the refrigerant, the high temperature and high pressure gaseous mixed refrigerant discharged from the electric compressor (10) is transferred to the auxiliary condenser (10).
7), most of the lubricating oil mixed with the refrigerant in the electric compressor (10) is removed from the oil separator (18) through the oil return pipe (19) to the electric compressor (10). After passing through the dryer (20), the refrigerant itself is divided into two parts by a three-way pipe (21). The refrigerant divided into two by the three-way pipe (21) is precooled separately in the suction side heat exchanger (22) or (24), and then transferred to the first (14A) in the cascade condenser (25A) or (25B), respectively. ) or the second evaporator (14B) to condense and liquefy part of the refrigerant with a high boiling point in the mixed refrigerant, and then merge in the three-way pipe (27). At this time, the mixed refrigerant is divided into two parts and cooled in small amounts separately in the cascade condenser (25A) or (25B>), so that sufficient heat exchange is carried out and the condensation effect is well achieved.

三方管(27)を出た混合冷媒は乾燥器(28)を経て
気液分離器(29)4m流入する。この時点では混合冷
媒中のR14とR50は沸点が極めて低い為に未だ凝縮
されておらずガス状態であり、R12とR13B1のみ
が凝縮液化されている為、R14とR50は気相配管(
30)に、R12とR13B1は液相配管(34)へと
分離される。気相配管(30)に流入した冷媒混合物は
第1の中間熱交換器〈32)と熱交換して凝縮きれた後
、気液分離器(33)に至る。
The mixed refrigerant that has exited the three-way pipe (27) passes through the dryer (28) and flows into the gas-liquid separator (29) by 4 m. At this point, R14 and R50 in the mixed refrigerant have extremely low boiling points, so they are not condensed yet and are in a gaseous state, and only R12 and R13B1 have been condensed and liquefied, so R14 and R50 are connected to the gas phase piping (
At 30), R12 and R13B1 are separated into liquid phase piping (34). The refrigerant mixture that has flowed into the gas phase pipe (30) exchanges heat with the first intermediate heat exchanger (32) and is completely condensed, before reaching the gas-liquid separator (33).

ここで第1の中間熱交換器(32)には蒸発バイブ(4
7)より帰還して来る低温の冷媒が流入し、更に液相配
管(34)に流入したR13B1が乾燥器(35)を経
て減圧器(36)で減圧された後、第1の中間熱交換器
(32)に流入してそこで蒸発することにより冷却に寄
与する為、第1の中間熱交換器(32)の温度は−so
”c程となっている。従って気相配管(30)を通過し
た混合冷媒中のR14の大部分は凝縮液化され、R50
は更に沸点が低い為に未だガス状態である。よってR1
4は気液分離器(33)から液相配管(38)へ又、R
50は気相配管(43)へと分離され、R14は乾燥器
(39)を経て減圧器(40)にて減圧きれ第2の中間
熱交換器(42)と第3の中間熱交換器(44)の間に
流入して第2の中間熱交換器(42)内で蒸発する。第
2の中間熱交換器(42)には蒸発パイプ(47)から
の帰還低温冷媒が流入すると共にR14の蒸発が更に冷
却に寄与するため、第2の中間熱交換器(42〉の温度
は一100℃程となっている。更に第3の中間熱交換器
(44)には蒸発バイブ(47)からの帰還低温冷媒が
直ぐに流入しているために、その温度は一120’C程
の極めて低い温度となっているので、第2及び第3の中
間熱交換器(42)(44)と熱交換した気相配管(4
3)を通過する最も沸点の低い冷媒R50は凝縮液化さ
れ、乾燥機(45)を経て減圧器(46)にて減圧され
た後、蒸発バイブ(47)に流入してそこで蒸発する。
Here, the first intermediate heat exchanger (32) has an evaporating vibrator (4
7) The low-temperature refrigerant that returns from the pipe flows in, and the R13B1 that flows into the liquid phase pipe (34) passes through the dryer (35) and is depressurized in the pressure reducer (36), and then is transferred to the first intermediate heat exchanger. The temperature of the first intermediate heat exchanger (32) is -so because it contributes to cooling by flowing into the heat exchanger (32) and evaporating there.
Therefore, most of the R14 in the mixed refrigerant that passed through the gas phase pipe (30) is condensed and liquefied, and becomes R50.
has a lower boiling point, so it is still in a gaseous state. Therefore, R1
4 is from the gas-liquid separator (33) to the liquid phase pipe (38), and R
50 is separated into a gas phase pipe (43), and R14 passes through a dryer (39) and is decompressed in a pressure reducer (40), and is then separated into a second intermediate heat exchanger (42) and a third intermediate heat exchanger ( 44) and evaporates in the second intermediate heat exchanger (42). The return low-temperature refrigerant from the evaporation pipe (47) flows into the second intermediate heat exchanger (42), and the evaporation of R14 further contributes to cooling, so the temperature of the second intermediate heat exchanger (42> Furthermore, since the return low-temperature refrigerant from the evaporator vibrator (47) immediately flows into the third intermediate heat exchanger (44), its temperature is about -120'C. Since the temperature is extremely low, the gas phase piping (4) that exchanged heat with the second and third intermediate heat exchangers (42) (44)
The refrigerant R50 having the lowest boiling point passing through 3) is condensed and liquefied, passed through a dryer (45) and reduced in pressure by a pressure reducer (46), and then flows into an evaporation vibrator (47) where it is evaporated.

コノ時の蒸発パイプ(47)の温度は一150’Cに到
達している。これが本発明の冷凍装置(R)の最終到達
温度であり、この蒸発バイブ(47)を後述する冷凍庫
の貯蔵室に熱交換的に配設することにより貯蔵室内を一
140℃の超低温の環境とすることが可能となる。蒸発
パイプ(47)から流出した冷媒(大部分がR50)は
前述の如く第3、第2、第1の中間熱交換器(44)(
42)(32)に次々に流入、流出し、各冷媒R14、
R13B1、R12と合流しながらアキュムレータ(4
9)にて未蒸発の冷媒を分離した後吸入側熱交換器(2
4)(22)に次々に流入して冷却した後、電動圧縮機
(10)に吸入される。
At this time, the temperature of the evaporation pipe (47) reached -150'C. This is the final temperature reached by the refrigeration system (R) of the present invention, and by arranging this evaporating vibrator (47) in a storage compartment of a freezer described later in a heat exchange manner, the interior of the storage compartment is made into an ultra-low temperature environment of -140°C. It becomes possible to do so. The refrigerant (mostly R50) flowing out from the evaporation pipe (47) is transferred to the third, second, and first intermediate heat exchangers (44) (
42) Each refrigerant R14 flows into and out of (32) one after another,
While merging with R13B1 and R12, the accumulator (4
After separating the unevaporated refrigerant in step 9), the suction side heat exchanger (2
4) After flowing into (22) one after another and being cooled, it is sucked into the electric compressor (10).

ここで第1の気液分離器(29)にて液相配管(34)
に流入したR12は第1の中間熱交換器(32)に流ス
するものの、既に極めて低い温度となっているため蒸発
せず液状態のままであり、従って冷却には何等寄与しな
いが、油分離器(18)で分離し切れなかった残留潤滑
油や各乾燥器で吸収し切れなかった混入水分をその内に
溶は込ませた状態で電動圧縮機(10)に帰還せしめる
機能を奏する。電動圧縮機(10)の潤滑油が低温側冷
媒回路(13)内を循環すると超低温であることにより
、各部に残留する現象が発生し、目詰りの原因となる。
Here, the liquid phase piping (34) is connected to the first gas-liquid separator (29).
The R12 that has flowed into the first intermediate heat exchanger (32) flows into the first intermediate heat exchanger (32), but since the temperature is already extremely low, it does not evaporate and remains in a liquid state, so it does not contribute to cooling in any way, but the oil It functions to return residual lubricating oil that could not be separated by the separator (18) and mixed water that could not be absorbed by each dryer to the electric compressor (10) in a dissolved state. When the lubricating oil of the electric compressor (10) circulates in the low-temperature side refrigerant circuit (13), the extremely low temperature causes the lubricating oil to remain in various parts, causing clogging.

その為にR12で略完全なる潤滑油の帰還を達成してい
る。
Therefore, R12 achieves almost complete return of lubricating oil.

以上を繰り返えすことにより冷媒回路(1)は定常状態
で蒸発パイプ(47)に−150″Cの超低温を発生す
る種動作するが、電動圧縮機(4)(to)は1.5H
P程度の能力で済み、格別大なる能力を必要としない。
By repeating the above, the refrigerant circuit (1) operates in a steady state to generate an extremely low temperature of -150"C in the evaporator pipe (47), but the electric compressor (4) (to) operates at 1.5H.
It only requires a P level ability, and does not require any particularly great ability.

これはカスケードコンデンサ(25A)(25B)部分
の熱交換が良好に行なわれている事と混合冷媒の選択が
大きく寄与している。これによって電動圧縮機による騒
音の削減と低消費電力が達成される。又、−150℃の
達成によって後述する冷凍庫内の生体資料を氷の再結晶
化点より低い温度に冷却する事が可能となり、永久保存
が達成されることになる。更に高温側冷媒回路(2)の
冷媒は第1蒸発器(14A)から第2蒸発器(14B>
へと流れ、分流するものでは無いので両蒸発器(14A
>(14B)の温度バランスが何等かの原因で崩れても
、冷媒流量の偏りは発生し得す、従って低温側冷媒回路
(3)の第1凝縮パイプ(23A)と第2凝縮パイプ(
23B>の相方の安定した冷却が達成され、良好なる凝
縮作用が達成される。
This is largely due to the good heat exchange between the cascade condensers (25A) and (25B) and the selection of the mixed refrigerant. This achieves noise reduction and power consumption by the electric compressor. Also, by achieving -150°C, it becomes possible to cool biological materials in the freezer to a temperature lower than the recrystallization point of ice, which will be described later, and permanent preservation will be achieved. Furthermore, the refrigerant in the high temperature side refrigerant circuit (2) is transferred from the first evaporator (14A) to the second evaporator (14B>
Since the flow is not divided, both evaporators (14A
> (14B) is disrupted for some reason, a deviation in the refrigerant flow rate may occur.
23B> is achieved, and a good condensation effect is achieved.

次に第2図は本発明の冷凍装置(R)の制御用電気回路
の概略を示す。(4M)は高温側冷媒回路(2)の電動
圧縮機(4)駆動用のモーターであり、−相若しくは三
相の交流電源(AC)(AC)間に接続される。即ちモ
ーター(4M)は電源(AC)(AC)が投入きれてい
る間は連続運転とされる。(IOM>は低温側冷媒回路
(3)の電動圧縮機(10)駆動用のモーターであり、
11L磁リレー(60)の接点(60A)と直列に電源
(AC)(AC)に接続される。接点(60A)は電磁
リレー(60)のコイル(60C)に通電されて閉じ、
モーター(IOM)を運転せしめる。(61)は後述す
る冷凍庫貯蔵室の温度調節器であり、電源(AC)(A
C)間に接続され、貯蔵室内の温度を実質的に検出し、
設定温度の上下に適当なディファレンシャルを設定し、
上限温度で出力端子(61A)(61B)間に電圧を発
生し、下限温度で発生を停止する。この設定温度は=1
45℃乃至一150℃である。出力端子(61A)(6
1B)間には温調リレー(62)のコイル(62C)と
タイマー(63)の接点(63A)が直列接続される。
Next, FIG. 2 schematically shows a control electric circuit for the refrigeration system (R) of the present invention. (4M) is a motor for driving the electric compressor (4) of the high temperature side refrigerant circuit (2), and is connected between the -phase or three-phase alternating current power source (AC). That is, the motor (4M) is operated continuously as long as the power (AC) is turned on. (IOM> is a motor for driving the electric compressor (10) of the low temperature side refrigerant circuit (3),
It is connected to the power supply (AC) in series with the contact (60A) of the 11L magnetic relay (60). The contact (60A) is energized by the coil (60C) of the electromagnetic relay (60) and closed.
Operate the motor (IOM). (61) is a temperature controller for the freezer storage room, which will be described later, and is a power source (AC) (A
C) is connected between and substantially detects the temperature within the storage chamber;
Set an appropriate differential above and below the set temperature,
A voltage is generated between the output terminals (61A) and (61B) at the upper limit temperature, and is stopped at the lower limit temperature. This set temperature is = 1
The temperature ranges from 45°C to 1150°C. Output terminal (61A) (6
1B), the coil (62C) of the temperature control relay (62) and the contact (63A) of the timer (63) are connected in series.

温調リレー(62)はコイル(62C)に通電されて接
点(62A)を閉じる。(65〉は第1図の低温側冷媒
回路(3)の電動圧縮機(10)吐出側配管(IOC)
に、補助凝縮器(17)の前段側に於いて設けられる高
圧スイッチである。高圧スイッチ(65)は電源(AC
) (AC)に対してタイマー(63)と直列に接続き
れ、電動圧縮機(10)吐出側の圧力が上昇して圧縮機
(10)に過大な負荷をかけるようになる、例えば26
kg/cm”に上層すると接点を開き、圧力が十分に安
全な状態例2ば8kg/cm”に低下すると接点を閉じ
る。タイマー(63)は高圧スイッチ(63)の接点が
閉じた後、3乃至5分経過後に接点(63A)を閉じ、
高圧スイッチ(65)が開いて接点(63A)を開く。
In the temperature control relay (62), the coil (62C) is energized and the contact (62A) is closed. (65> is the electric compressor (10) discharge side piping (IOC) of the low temperature side refrigerant circuit (3) in Figure 1
This is a high-pressure switch provided upstream of the auxiliary condenser (17). The high voltage switch (65) is the power source (AC
) (AC) is not connected in series with the timer (63), the pressure on the discharge side of the electric compressor (10) increases and an excessive load is applied to the compressor (10), for example, 26
kg/cm'', the contacts open, and when the pressure drops to a sufficiently safe condition, for example 8 kg/cm'', the contacts close. The timer (63) closes the contact (63A) after 3 to 5 minutes have passed after the contact of the high pressure switch (63) has closed.
The high voltage switch (65) opens and contacts (63A) open.

(66)は低温始動サーモスタットであり、高温冷媒回
路(2)のアキュムレータ(15)の温度を感知する様
に取り付けられている。アキュムレータ〈15〉には各
蒸発器(14A)(14B)で蒸発した冷媒及び未蒸発
の冷媒が流入するため、蒸発器(14A)(14B)と
略同様の低温となるものであるが、低温始動サーモスタ
ット(66)はアキュムレータ(15)の温度が例えば
−35℃に低下して接点を閉じ、−10℃に上昇して接
点を開く動作をする。低温始動サーモスタット(66)
は両側に温調リレー(62)の接点(62A)及びタイ
マー(68)とで直列回路を構成して電源(AC>(A
C)に接続される。タイマー(68)と低温始動サーモ
スタット(66)間にはタイマー(68)の切換えスイ
ッチ(69)のコモン端子が接続され、切換えスイッチ
(69)の端子(69A)と電源(AC)間には電磁リ
レー(60)のコイル(60C)が接続され、端子(6
9B>と電源(AC)間には第1図の減圧器(46)の
前後に交熱的に設けられるヒーター(70)(71)が
並列に接続される。ター19= イマー(68)は常には切換えスイッチ(69)を端子
(69A)に閉じており、通電されて積算し、この積算
が例えば12時間になるとスイッチ(69)を端子(6
9B)に例えば15分間閉じて再び端子(69A)に閉
じる動作をする。
(66) is a low temperature start thermostat, which is installed to sense the temperature of the accumulator (15) of the high temperature refrigerant circuit (2). The refrigerant evaporated in each evaporator (14A) (14B) and the unevaporated refrigerant flow into the accumulator <15>, so the temperature is almost the same as that of the evaporators (14A) (14B), but the temperature is lower. The starting thermostat (66) closes the contacts when the temperature of the accumulator (15) drops to, for example, -35°C, and opens the contacts when the temperature rises to -10°C. Low temperature start thermostat (66)
consists of a series circuit with the contact (62A) of the temperature control relay (62) and the timer (68) on both sides, and the power supply (AC>(A)
C). The common terminal of the changeover switch (69) of the timer (68) is connected between the timer (68) and the low temperature start thermostat (66), and the electromagnetic terminal is connected between the changeover switch (69) terminal (69A) and the power supply (AC). The coil (60C) of the relay (60) is connected and the terminal (6
9B> and the power source (AC), heaters (70) and (71) provided for heat exchange before and after the pressure reducer (46) in FIG. 1 are connected in parallel. Timer 19 = timer (68) always closes changeover switch (69) to terminal (69A), is energized and integrates, and when this integration reaches, for example, 12 hours, switch (69) is closed to terminal (69A).
9B) for 15 minutes, and then close the terminal (69A) again.

次に第3図のタイミングチャートを参照して動作を説明
する。冷凍装置(R)が据え付けられて時刻(to)で
電源(AC)(AC)を投入するとモーター(4M)が
起動し、電動圧縮機(4)が動作して高温側冷媒回路(
2)内を冷媒が循環し始める。この時アキュムレータ(
15)は常温に近い状態であるから低温始動サーモスタ
ット(66)は開放状態であり、従って温度調節器(6
1)の如何に係わらず、電磁リレー(60)のコイル(
60C)には通電されず、従って接点(60A>は開い
ているため、モーター(IOM)は起動せず、低温側冷
媒回路(3)の電動圧縮機(10)は動作しない。この
様な高温側冷媒回路(2)のみの冷却運転が継続され、
第1及び第2蒸発器(14A)(14B)に液状冷媒が
たまることによって温度が低下して行き、それに伴って
アキュムレータ(15)の温度が低下して時刻(1,)
に−35℃になると低温始動サーモスタット(66)が
接点を閉じる。この閉動作の寸前の時点では電動圧縮機
(10)は停止しているから当然高圧スイッチ(65)
は閉じており、又、電源投入から3乃至5分は当然経過
しているからタイマー(63)も接点(63A)を閉じ
ている。更に貯蔵室内の温度も当然設定温度より高いか
ら、温度調節器(61)も出力を発生しているので温調
リレー(62)の接点(62A)は閉じている。従って
低温始動サーモスタット(66)が閉じた時点で電磁リ
レー(60)のフィル(60C)に通電されて接点(6
0A)が閉じ、モーター(IOM)が起動して電動圧縮
機(10)より混合冷媒が吐出され回路(3)内を循環
され始める。
Next, the operation will be explained with reference to the timing chart of FIG. When the refrigeration system (R) is installed and the power (AC) is turned on at time (to), the motor (4M) starts, the electric compressor (4) operates, and the high temperature side refrigerant circuit (
2) Refrigerant begins to circulate inside. At this time, the accumulator (
15) is close to room temperature, the low temperature start thermostat (66) is open, and therefore the temperature regulator (66) is in an open state.
Regardless of 1), the coil (
60C) is not energized and therefore the contact (60A> is open), the motor (IOM) does not start and the electric compressor (10) of the low temperature side refrigerant circuit (3) does not operate. Cooling operation of only the side refrigerant circuit (2) continues,
As the liquid refrigerant accumulates in the first and second evaporators (14A) (14B), the temperature decreases, and the temperature of the accumulator (15) decreases at the time (1,).
When the temperature reaches -35°C, the cold start thermostat (66) closes the contacts. Since the electric compressor (10) is stopped just before this closing operation, it is natural that the high pressure switch (65)
is closed, and since 3 to 5 minutes have naturally passed since the power was turned on, the timer (63) has also closed its contact (63A). Furthermore, since the temperature in the storage chamber is naturally higher than the set temperature, the temperature regulator (61) is also generating an output, so the contact (62A) of the temperature control relay (62) is closed. Therefore, when the cold start thermostat (66) closes, the fill (60C) of the electromagnetic relay (60) is energized and the contact (60C) is energized.
0A) is closed, the motor (IOM) is started, and the mixed refrigerant is discharged from the electric compressor (10) and begins to be circulated within the circuit (3).

この時低温側冷媒回路〈3〉各部の温度は依然高く、従
って内部の冷媒は殆どがガス状となっているために回路
内の圧力は高い。その上電動圧縮機(10)から冷媒が
押し出されるために吐出側配管(10D)の圧力が急激
に上昇する。これを放置すると高圧力によって電動圧縮
機(10)構成部品が損傷を受けるが、この圧力上昇の
ピーク値が時刻(1,)で許容限界である26kgハか
に達すると高圧スイッチ(65)がそれを感知して接点
を開くので接点(63A)が開き、それによって温調リ
レー(62)の接点(62A)が強制的に開放せられ、
コイル(60C)が非通電となって接点(60A)が開
きモーター(IOM)は停止する。これによって電動圧
縮機(10)吐出側の圧力上昇は阻止され、損傷は防止
される。
At this time, the temperature of each part of the low temperature side refrigerant circuit <3> is still high, and therefore, most of the internal refrigerant is in a gaseous state, so the pressure within the circuit is high. Moreover, since the refrigerant is pushed out from the electric compressor (10), the pressure in the discharge side pipe (10D) increases rapidly. If this is left unchecked, the components of the electric compressor (10) will be damaged by the high pressure, but when the peak value of this pressure rise reaches the permissible limit of 26 kg at time (1,), the high pressure switch (65) will be activated. It senses this and opens the contact, so the contact (63A) opens, which forces the contact (62A) of the temperature control relay (62) to open.
The coil (60C) is de-energized, the contact (60A) opens, and the motor (IOM) stops. This prevents pressure from rising on the discharge side of the electric compressor (10) and prevents damage.

電動圧縮機(10)の停止によって吐出側配管(10D
)の圧力は低下して8kg/cm”!で下がるがチャタ
リング防止用のタイマー(63)の存在によって高圧ス
イッチ(65)の閉動作から3乃至5分間は接点は閉じ
ず、従ってモーター(IOM)は起動しない。
By stopping the electric compressor (10), the discharge side piping (10D
) decreases to 8 kg/cm"!, but due to the presence of a timer (63) to prevent chattering, the contact does not close for 3 to 5 minutes after the high pressure switch (65) closes, and therefore the motor (IOM) does not start.

この間に低温側冷媒回路(3)内の圧力は第1若しくは
第2蒸発器(14A)(14B>から第1若しくは第2
凝縮器(23A)(23B>に於いて冷却された冷媒が
多少なりとも循環されて蒸発する為に、前回の起動時よ
り温度が低下し、圧力も低下している。タイマー(63
)による遅延時間が時刻(t、)に経過すると再び接点
(63A)が閉ざされて前述同様にモーター(10M)
が起動きれるが、吐出側配管(IOC)の圧力が26k
g/cm”に達した時点で再び高圧スイッチ(65)が
開放してモーター(10)は停止する。この様なモータ
ー(IOM>の起動と停止を繰り返えし、沸点の高い冷
媒が蒸発して徐々に冷却作用を発揮して行くことによっ
て第1の中間熱交換器(32)から徐々に温度が低下し
て行き、モーター(IOM)起動時の吐出側配管(IO
D)の圧力上昇のピーク値が26kg/ cm ’に達
しなくなるとモーター(IOM)は連続運転に入る。
During this time, the pressure in the low temperature side refrigerant circuit (3) changes from the first or second evaporator (14A) (14B> to the first or second evaporator).
Since the refrigerant cooled in the condensers (23A) (23B> is circulated to some extent and evaporated, the temperature and pressure have decreased since the last startup.The timer (63)
) When the delay time due to ) has elapsed at time (t, ), the contact (63A) is closed again and the motor (10M)
can be started, but the pressure in the discharge side piping (IOC) is 26k
g/cm", the high pressure switch (65) opens again and the motor (10) stops. By repeating the starting and stopping of the motor (IOM) like this, the refrigerant with a high boiling point evaporates. By gradually exerting a cooling effect, the temperature gradually decreases from the first intermediate heat exchanger (32), and when the motor (IOM) is started, the temperature of the discharge side piping (IO
When the peak value of pressure increase in D) no longer reaches 26 kg/cm', the motor (IOM) enters continuous operation.

電動圧縮機(10)が連続運転されることによって沸点
の低い冷媒も凝縮されて徐々に冷却作用を発揮し始め、
各中間熱交換器(32)(42) (44)と蒸発パイ
プ(47)の温度が徐々に低下して行って前述の最終到
達温度を得る。その後貯蔵室の温度が温度調節器(61
)で設定する下限温度に達すると出力端子(61A)(
61B)間の出力の発生を停止するので接点(62A)
が開き、更に接点(60A>も開く為、モーター(10
M)が停止し、冷却運転は停止する。その後貯蔵室内の
温度が徐々に上昇して、温度調節器(61)で設定する
上限温度に達すると再び接点(62A)が閉じ、更に接
点(60A)が閉じてモーター(IOM)が起動され再
び冷却運転が開始詐れる。以上を繰り返して貯蔵室は平
均して設定温度例えば−140℃に維持されることにな
る。
By continuously operating the electric compressor (10), the refrigerant with a low boiling point is also condensed and gradually begins to exert a cooling effect.
The temperature of each intermediate heat exchanger (32), (42), (44) and evaporation pipe (47) is gradually lowered to reach the aforementioned final temperature. After that, the temperature in the storage room is adjusted using the temperature controller (61).
) When the lower limit temperature set in ) is reached, the output terminal (61A) (
Contact (62A) to stop the generation of output between
opens, and the contact (60A> also opens, so the motor (10A)
M) is stopped, and the cooling operation is stopped. After that, the temperature in the storage room gradually rises and when it reaches the upper limit temperature set by the temperature controller (61), the contact (62A) closes again, and then the contact (60A) closes and the motor (IOM) is started again. Cooling operation fails to start. By repeating the above steps, the storage chamber is maintained at an average set temperature of, for example, -140°C.

ここでタイマー(68)は接点(62A)及び低温始動
サーモスタット(66)が閉じている間、即ちモーター
(IOM)が運転されている時間を積算しており、この
積算が12時間に達すると切換えスイッチ(69)を端
子(69B)に閉じるのでモーター(IOM)の運転は
禁止され、ヒーター(70)(71)に通電されて発熱
する。ここで第3の中間熱交換器(44)を出て減圧器
(46)に流入するR50は一120℃以下の極めて低
い温度に達している。従ってこの冷媒中に極めて微量の
水分(これは冷媒の補充作業中等に侵入するものである
。)が混入していれば配管内に氷結が発生する。ところ
で減圧器は通常細い径の配管にて構成されるため、この
減圧器(46)部分で氷結が成長すると目詰りが発生し
、冷媒が流れなくなってしまうが、本発明ではヒーター
(70)(71)によって定期的に減圧器(46)を加
熱する為、この氷結晶は融解されて成長せず、従って斯
かる事故は防止される。このヒーター(70)(71)
の発熱は15分で終了し、再び端子(69A)にスイッ
チ(69)が閉じてモーター(IOM)が起動され前述
同様低温側冷媒回路(3)の冷却運転が開始されること
になる。
Here, the timer (68) integrates the time that the contact (62A) and the low temperature start thermostat (66) are closed, that is, the time that the motor (IOM) is operating, and when this integration reaches 12 hours, the switch is switched. Since the switch (69) is closed to the terminal (69B), operation of the motor (IOM) is prohibited, and the heaters (70) and (71) are energized and generate heat. Here, R50 exiting the third intermediate heat exchanger (44) and flowing into the pressure reducer (46) has reached an extremely low temperature of -120°C or less. Therefore, if an extremely small amount of moisture (this is what gets into the refrigerant during replenishment work, etc.) is mixed into the refrigerant, freezing will occur inside the pipes. By the way, since a pressure reducer is usually constructed of pipes with a small diameter, if ice grows in the pressure reducer (46), clogging will occur and the refrigerant will no longer flow; however, in the present invention, the heater (70) ( Since the pressure reducer (46) is periodically heated by the pressure reducer (46) by the pressure reducer (46), the ice crystals are melted and do not grow, thus preventing such an accident. This heater (70) (71)
The heat generation ends in 15 minutes, and the switch (69) is closed again to the terminal (69A), the motor (IOM) is activated, and the cooling operation of the low temperature side refrigerant circuit (3) is started as described above.

次に第4図は本発明を適用せる冷凍庫(75)の前方斜
視図を示し、第5図はその要部断面図を示す。更に第6
図は冷凍装置(R)の冷媒回路(1)の具体的構成を説
明する図である。冷凍庫(75)は理化学実験室等に設
置されるものであり、(74)は上方開口の貯蔵室(7
6)を内部に形成する本体であり、その上方開口は後辺
を回動自在に枢支された断熱扉(77)によって開閉自
在に閉室されている。本体(74)側部には温度調節器
(61)や電動圧縮機<4)(10)等を収容設置する
機械室(78)が形成されており、その前面には貯蔵室
(76)内の温度を感知して記録紙にその時間推移を記
録する自記温度記録針(79)や貯蔵室(76)の異常
高温で警報を発する衆知の警報器(80)及び温度調節
器(61)の設定変更用摘み(81)が設けられる。又
、(82)は通気用スリットである。
Next, FIG. 4 shows a front perspective view of a freezer (75) to which the present invention is applied, and FIG. 5 shows a sectional view of a main part thereof. Furthermore, the sixth
The figure is a diagram illustrating a specific configuration of a refrigerant circuit (1) of a refrigeration system (R). The freezer (75) is installed in physical and chemical laboratories, etc., and (74) is the storage room (74) with an upward opening.
6), the upper opening of which is openably closed by a heat insulating door (77) rotatably supported on the rear side. A machine room (78) is formed on the side of the main body (74) to house and install a temperature controller (61), an electric compressor (10), etc., and a machine room (78) is formed in the front of the machine room (78) to house and install a temperature controller (61), an electric compressor (10), etc. A self-recording temperature recording needle (79) that senses the temperature of the room and records its time course on recording paper, a common knowledge alarm (80) that issues an alarm in case of abnormally high temperature in the storage room (76), and a temperature controller (61). A setting change knob (81) is provided. Further, (82) is a ventilation slit.

第5図は本体(74)部分の側断面図を示している。(
83)は上方開口の鋼板製外箱、(84)は同様に上方
開口のアルミニウム製内箱であり、内箱(84)は外箱
(83)内に組み込まれ、両箱(83)(84)間にそ
れぞれ独立した上方に開口した箱状の外断熱材(85)
及び内断熱材(86)から成る二重の断熱層が形成され
て両箱(83)(84)の開口縁はブレーカ(87)で
接続されている。内箱(84)の外面には蒸発パイプ(
47)が熱伝導的に配設され、内断熱材(86)内に埋
設されており、又、外箱(76)開口縁内面には鞘付防
止パイプ(6)が熱伝導的に配設されている。内断熱材
(86)は外断熱材(85)内に載置されているのみで
完全に分離しているため、蒸発パイプ(47)の冷却作
用によって内断熱材(86)が収縮しても外断熱材(8
5)には同等影響を与えず、従って断熱材の割れが発生
せず、又、十分なる断熱性能も維持するものである。外
箱(83)背面には開口(88)が形成きれ、又、外断
熱材(85)にもそれに対応して切欠(89〉が形成さ
れており、この切欠(89)内に開口(88)より後述
する如き断熱材(9o)によってモールドきれたカスケ
ードコンデンサ(25A)(25B)等が収納配設きれ
覆板(91)にて覆われている。(92)は発泡スチロ
ール製の内蓋、(93)は断熱扉(77)内周面のガス
ケット、(94)は運搬用キャスターである。
FIG. 5 shows a side sectional view of the main body (74) portion. (
83) is a steel plate outer box with an upward opening, (84) is an aluminum inner box with an upward opening, and the inner box (84) is incorporated into the outer box (83), and both boxes (83) ) Box-shaped external insulation material (85) with independent upward openings between each
A double heat insulating layer consisting of the box and the inner heat insulating material (86) is formed, and the opening edges of both boxes (83) and (84) are connected by a breaker (87). An evaporation pipe (
47) is disposed in a thermally conductive manner and buried in the inner insulation material (86), and a sheath prevention pipe (6) is disposed in a thermally conductive manner on the inner surface of the opening edge of the outer box (76). has been done. The inner insulation material (86) is placed inside the outer insulation material (85) and is completely separated, so even if the inner insulation material (86) contracts due to the cooling action of the evaporation pipe (47), External insulation material (8
5) is not affected to the same extent, therefore, cracking of the heat insulating material does not occur, and sufficient heat insulating performance is maintained. An opening (88) is formed on the back surface of the outer box (83), and a corresponding notch (89>) is formed in the outer heat insulating material (85), and the opening (88) is formed in the notch (89). ), cascade capacitors (25A), (25B), etc. molded with heat insulating material (9o) as described later are covered with a housing cover plate (91). (92) is an inner cover made of styrofoam; (93) is a gasket on the inner peripheral surface of the heat insulating door (77), and (94) is a transport caster.

次に第6図は冷凍装置(R)の冷媒回路(1)の具体的
構成を示すもので、図中第1図と同一符号は同一のもの
である。低温側冷媒回路(3)の補助凝縮器(17)は
空気吸引型の送風機(9)に対して高温側冷媒回路(2
)の凝縮器(8)の風上側に配置せられ同時に冷却され
る様にしている。第1及び第2蒸発器(14A)(14
B)は内部中空のタンク状を成しており、この内部に上
方より螺旋状に巻回成形された第1及び第2凝縮パイプ
(23A )(23B)がそれぞれ挿入されている。(
66A)はアキュムレータ(15)に溶接固定された低
温始動サーモスタット(66)固定用の筒体である。(
96)は後述する各中間熱交換器(32)(42)(4
4)等から成りそれを断熱材(97)によってモールド
して箱状と成した中間熱交換器部を示している。蒸発パ
イプ(47)は内箱(84)外面に予めアルミニウムテ
ープ或いは接着剤等によって蛇行状に固定されるもので
あるが、貯蔵室(76)内容部の温度分布を出来る実費
なくするために、冷媒の流れる順序が、内箱(84)の
上部周囲から下部周囲へ回り、最後に底辺を回る様に配
設されている。
Next, FIG. 6 shows a specific configuration of the refrigerant circuit (1) of the refrigeration system (R), in which the same reference numerals as in FIG. 1 are the same. The auxiliary condenser (17) of the low temperature side refrigerant circuit (3) is connected to the high temperature side refrigerant circuit (2) with respect to the air suction type blower (9).
) is placed on the windward side of the condenser (8) so that it is cooled at the same time. First and second evaporators (14A) (14
B) has the shape of a hollow tank, into which first and second condensation pipes (23A) and (23B) wound in a spiral manner are respectively inserted from above. (
66A) is a cylindrical body for fixing a low temperature starting thermostat (66) that is welded and fixed to the accumulator (15). (
96) is each intermediate heat exchanger (32) (42) (4) described later.
4), etc., and is molded with a heat insulating material (97) to form a box-like intermediate heat exchanger section. The evaporation pipe (47) is fixed in advance to the outer surface of the inner box (84) in a meandering manner with aluminum tape or adhesive, but in order to reduce the temperature distribution in the storage chamber (76) at no actual cost. The order in which the refrigerant flows is from around the top of the inner box (84) to around the bottom, and finally around the bottom.

第7図に中間熱交換器部(96)の構造を示す。点線で
囲む部分が第1、第2及び第3の中間熱交換器(32)
(42)(44)、第2の気液分離器(33)、乾燥器
(39)(45)、減圧器(40)及びアキュムレータ
(49)を内包する中間熱交換器部(96)である。各
中間熱交換器(32)(42)(44)は比較的大径の
外側配′管(98)(99)(100)を螺旋状に複数
段巻回して偏平としたものを相互に重合し、その内側を
間隔を存して各気相配管(3Q)(43)が内側配管と
なって通過する螺旋二重管構造で構成きれており、図中
(A>部分が第1の中間熱交換器(32)を、(B)部
分が第2の中間熱交換器(42)を、又、(C)部分が
第3の中間熱交換器(44)となる。この螺旋の内側に
第2の気液分離器(33)、乾燥器(39)(45)、
減圧器(4o)及びアキュムレータ(49)が収納され
てデッドスペースを少なくシ、寸法の小型化を図ってい
る。
FIG. 7 shows the structure of the intermediate heat exchanger section (96). The parts surrounded by dotted lines are the first, second and third intermediate heat exchangers (32)
(42), (44), a second gas-liquid separator (33), a dryer (39), (45), a pressure reducer (40), and an intermediate heat exchanger section (96) that includes an accumulator (49). . Each intermediate heat exchanger (32) (42) (44) consists of relatively large diameter outer pipes (98), (99), and (100) wound spirally in multiple stages to form a flat structure, which are mutually superposed. It has a spiral double pipe structure in which the gas phase pipes (3Q) and (43) pass through as inner pipes at intervals, and in the figure (A> part is the first intermediate The heat exchanger (32), the part (B) becomes the second intermediate heat exchanger (42), and the part (C) becomes the third intermediate heat exchanger (44). second gas-liquid separator (33), dryer (39) (45),
A pressure reducer (4o) and an accumulator (49) are housed to reduce dead space and reduce size.

次に構成を説明する。(101)は乾燥器(28)と第
1の気液分離器(29)とを結ぶ配管である。第1の気
液分離器(29)から上方に出る気相配管(3o)は封
止した入口(INs)より外側配管(98)内に入り、
内部を螺旋状に周回して通過した後、出口(QUIT>
より出て第2の気液分離器(33)に入る。気相配管(
30)内を流下するガス状冷媒はこの通過の際に気相配
管(30)と外側配管(98)の間隔を上昇する低温冷
媒によって凝縮される。第2の気液分離器(33)から
出た気相配管(43)は入目(IN! )より外側配管
(99)内に入る。第1の気液分離器(29)にて分離
された液冷媒は減圧器(36)により減圧きれた後、外
側配管(98)の出口(QUIT)と(99)の入目(
INx )を結ぶ連通管(102)途中に流入せられて
外側配管(98)内で蒸発し、蒸発パイプ(47)より
帰還して来る冷媒と共に気相配管(30)内のガス状冷
媒の凝縮に寄与する。外側配管(99)内に入った気相
配管(43)は出口(ouTs)より出て再び入口(I
N、)より外側配管(100)内に入り、螺旋状に周回
して出口(OUTs)より出る。以上の各出口と入口部
の外側配管は封止されている。第2の気液分離器(33
)で分離れされた液冷媒は外側配管(100)と熱交換
的に設けた乾燥器(39)を経て減圧器(40)により
減圧された後、外側配管(99)の出口(OUTa)と
(100)の入口(INs)を結ぶ連通管(103)途
中に流入せられて外側配管(99)内で蒸発し、蒸発パ
イプ(47)より帰還して来る冷媒と共に気相配管(4
3)内のガス状冷媒の凝縮に寄与する。気相配管(43
)内を流下して来る冷媒R50は外側配管(100)内
を逆Tする際に更に凝縮きれて殆ど液化し外側配管(i
oo)と熱交換的に設けた乾燥器(45)を経て減圧器
(46)に至る。(105)は蒸発パイプ(47)の出
口側に接続きれる配管で外側配管(100>の出口(O
UTa)に接続されて気相配管(43)外側の間隔と連
通される。又、(106)は外側配管(98)の入口(
INK)に於いて気相配管(30)外側の間隔とアキュ
ムレータ(49)とを連通ずる配管である。即ち蒸発パ
イプ(47)からの帰還冷媒は配管(105)より外側
配管(100)と気相配管(43)との間隔内に流入し
てそこを上昇し、気相配管(43)内を流下して来る冷
媒を凝縮し、連通管(103)にて減圧器(40)から
の冷媒と合流して外側配管(99)と気相配管(43)
の間隔内に流入してそこを上昇し、気相配管(43)内
の冷媒を凝縮し、更に連通管(102)にて減圧器(3
6)からの冷媒と合流して外側配管(98)と気相配管
(30)の間隔内に流入してそこを上昇し、気相配管(
30)内の冷媒を凝縮した後、配管(106)を通過し
てアキュムレータ(49)に至り、配管(108)にて
吸入側熱交換器(24)に流入する。以上の如く気相配
管(30〉或いは(43)内を流下する冷媒の流れと、
蒸発パイプ(47)より気相配管(30)或いは(43
)と外側配管(100)(99)(9B)間を上昇して
来る冷媒の流れとは相互に対向流となっている。
Next, the configuration will be explained. (101) is a pipe connecting the dryer (28) and the first gas-liquid separator (29). The gas phase pipe (3o) exiting upward from the first gas-liquid separator (29) enters the outer pipe (98) through the sealed inlet (INs),
After passing through the interior in a spiral, exit (QUIT>
and enters the second gas-liquid separator (33). Gas phase piping (
During this passage, the gaseous refrigerant flowing down within 30) is condensed by the low temperature refrigerant rising up the gap between the gas phase pipe (30) and the outer pipe (98). The gas phase pipe (43) coming out of the second gas-liquid separator (33) enters the outer pipe (99) through the entrance (IN!). After the liquid refrigerant separated in the first gas-liquid separator (29) is depressurized by the pressure reducer (36), the liquid refrigerant is connected to the outlet (QUIT) of the outer pipe (98) and the inlet (99).
The gaseous refrigerant in the gas phase pipe (30) is condensed together with the refrigerant that flows into the communication pipe (102) connecting the INx), evaporates in the outer pipe (98), and returns from the evaporation pipe (47). Contribute to The gas phase pipe (43) that entered the outer pipe (99) exits from the outlet (outS) and returns to the inlet (I).
It enters the outer pipe (100) from N, ), circulates in a spiral shape, and exits from the outlet (OUTs). The outer piping of each outlet and inlet section is sealed. Second gas-liquid separator (33
) The liquid refrigerant separated by the outer pipe (100) passes through a dryer (39) provided for heat exchange, is depressurized by a pressure reducer (40), and then is transferred to the outlet (OUTa) of the outer pipe (99). The refrigerant flows into the communication pipe (103) connecting the inlets (INs) of (100), evaporates in the outer pipe (99), and returns from the evaporation pipe (47) together with the gas phase pipe (4).
3) Contributes to the condensation of the gaseous refrigerant within. Gas phase piping (43
) The refrigerant R50 flowing down inside the outside pipe (100) is further condensed and almost liquefied when passing through the outside pipe (100).
oo) and a dryer (45) provided for heat exchange, and then a pressure reducer (46). (105) is a pipe that can be connected to the outlet side of the evaporation pipe (47), and is the outlet (O
UTa) and communicates with the outer space of the gas phase pipe (43). In addition, (106) is the inlet (
This is a pipe that communicates between the outer space of the gas phase pipe (30) and the accumulator (49) in the INK). That is, the return refrigerant from the evaporation pipe (47) flows from the pipe (105) into the space between the outer pipe (100) and the gas phase pipe (43), rises there, and flows down inside the gas phase pipe (43). The incoming refrigerant is condensed and merged with the refrigerant from the pressure reducer (40) in the communication pipe (103), and is transferred to the outer pipe (99) and the gas phase pipe (43).
The refrigerant flows into the gap between the two and rises there, condenses the refrigerant in the gas phase pipe (43), and then passes through the communication pipe (102) to the pressure reducer (3).
6), flows into the space between the outer pipe (98) and the gas phase pipe (30), rises there, and flows into the gas phase pipe (30).
After the refrigerant in 30) is condensed, it passes through piping (106) to reach the accumulator (49), and flows into the suction side heat exchanger (24) through piping (108). As described above, the flow of refrigerant flowing down inside the gas phase pipe (30> or (43)),
From the evaporation pipe (47) to the gas phase pipe (30) or (43)
) and the flow of refrigerant rising between the outer pipes (100), (99), and (9B) are mutually opposing flows.

次に第8図に冷凍庫(75)の背方斜視図を示し、冷凍
装置(R)の組み込む手順を説明する。外箱(83)背
面には開口(88)と並列して開口(110)が形成き
れ、それに対応して外断熱材(85)にも切欠(111
)が形成きれている。断熱材(90)内にはカスケード
コンデンサ(25A)(25B)と共に吸入側熱交換器
(23l− 2)(24)、アキュムレータ(15)及び乾燥器(2
8)をモールドする。断熱材(90)と(97)の成形
方法は被モールド部品を樹脂袋内に収容し、その状態で
箱状の発泡型内に設置し、袋の中にウレタン断熱材を発
泡充填して成形するものである。断熱材(97)からは
減圧器(46)と配管(105)を延出しておき、切欠
(111)奥部の導出部(112)(112)より導出
される蒸発パイプ(47)と溶接により接続する。断熱
材(90)から延在せしめた減圧器(13)等の配管は
切欠(89)の機械室(78)側の壁面より導出される
配管と溶接接続する。第1の気液分離器(29)と乾燥
器(35)は断熱材(90)外側に位置せしめ、断熱材
(90)と(97)も相互に配管接続した状態で切欠(
89)(111)内に組み込み、隙間にはグラスウール
等を装填した後、覆板(91)で切欠(89)と(11
1)を覆う事により組み込みを完了する。又、電動圧縮
機(4)(10)、凝縮器(8)、送風機(9)及び膨
張タンク(51)等は機械室(78)内に予め設置して
おき、これによって冷凍庫(75)は完成する。
Next, FIG. 8 shows a rear perspective view of the freezer (75), and the procedure for assembling the refrigeration apparatus (R) will be explained. An opening (110) is formed on the back side of the outer box (83) in parallel with the opening (88), and correspondingly, a notch (111) is also formed in the outer insulation material (85).
) is completely formed. Inside the heat insulator (90) are the cascade condensers (25A) (25B), the suction side heat exchanger (23l-2) (24), the accumulator (15) and the dryer (2).
8) Mold. The molding method for the insulation materials (90) and (97) is to house the parts to be molded in a resin bag, place them in a box-shaped foam mold in that state, and fill the bag with foam and mold the urethane insulation material. It is something to do. A pressure reducer (46) and piping (105) are extended from the heat insulating material (97), and welded to the evaporation pipe (47) led out from the lead-out part (112) at the back of the notch (111). Connecting. Pipes such as the pressure reducer (13) extending from the heat insulating material (90) are welded and connected to piping led out from the wall surface of the notch (89) on the machine room (78) side. The first gas-liquid separator (29) and the dryer (35) are located outside the heat insulating material (90), and the insulating materials (90) and (97) are also connected to each other through the notches (
89) (111), fill the gap with glass wool, etc., and then fill the notch (89) and (11) with the cover plate (91).
Complete the installation by covering 1). In addition, electric compressors (4) (10), condenser (8), blower (9), expansion tank (51), etc. are installed in advance in the machine room (78), so that the freezer (75) Complete.

以上は本発明の冷凍装置(R)の理想的な運転状況につ
いて説明したが、最終段即ち第3の中間熱交換器(44
)から蒸発パイプ(47)までの領域は前述(71J1
<−120℃から−150”C等の極めて低い温度に冷
却されるため、前述の構成の如く厳重に断熱を行っても
周囲からの熱侵入によって第3の中間熱交換器(44)
を通過した液冷媒が減圧器(46)内で蒸発しようとす
る。ここで第2の気液分離器(33)からの未凝縮冷媒
には若干のR14冷媒が含まれているが殆どはR50冷
媒である。又、第9図にR50冷媒の圧力と蒸発温度と
の関係を示す。前述の如く減圧器(46)内でR50冷
媒の蒸発が生ずると、減圧器(46)の管内径は非常に
小きいので(通常1ml以下)、減圧器(46)内はす
ぐにガス冷媒で満たされてしまい、通過抵抗が過大とな
って液冷媒が流通できなくなり、蒸発パイプ(47)の
温度が上昇して貯蔵室(76)が十分に冷却きれなくな
ってしまう。
Although the ideal operating conditions of the refrigeration system (R) of the present invention have been described above, the final stage, that is, the third intermediate heat exchanger (44
) to the evaporation pipe (47) is as described above (71J1
Since it is cooled to an extremely low temperature such as <-120°C to -150"C, even with strict insulation as in the above-mentioned configuration, heat intrusion from the surroundings will cause damage to the third intermediate heat exchanger (44).
The liquid refrigerant that has passed through tries to evaporate within the pressure reducer (46). Here, the uncondensed refrigerant from the second gas-liquid separator (33) contains some R14 refrigerant, but is mostly R50 refrigerant. Further, FIG. 9 shows the relationship between the pressure and evaporation temperature of R50 refrigerant. As mentioned above, when the R50 refrigerant evaporates inside the pressure reducer (46), the inside diameter of the pressure reducer (46) is very small (usually 1 ml or less), so the inside of the pressure reducer (46) is immediately filled with gas refrigerant. If the storage chamber (76) becomes full, the passage resistance becomes excessive and the liquid refrigerant cannot flow, and the temperature of the evaporation pipe (47) rises, making it impossible to cool the storage chamber (76) sufficiently.

しかし、減圧器(46)内の液冷媒の流通の阻害は、又
、減圧器(46)に入る前の部分の圧力」1昇を引き起
こすため、第9図の如<R50冷媒の蒸発温度も高くな
り、それによって減圧器(46)内での蒸発は行なわれ
なくなり、再び液冷媒が蒸発バイブ(47)に供給され
て、正常な冷却が行なわれる様になる。しかし乍ら、こ
れによって温度が低下すれば再び前述の如く減圧器(4
6〉内での蒸発が始まり、これを繰り返す事になる。こ
の様な状況になると貯蔵室(76)内の冷却不足が生ず
るばかりでなく、電動圧縮機(10)に加わる負荷が激
しく変動して電動圧縮機(10)の寿命を損うばかりで
なく騒音も大きくなる。そのために本願では乾燥器(4
5)を第3の中間熱交換器(44)に熱交換的に配設し
、第3の中間熱交換器(44)を通過したR50冷媒を
再び冷却し、周囲からの熱侵入による温度上昇を抑制し
ている。これによって減圧器(46)内での冷媒の蒸発
を防止し、前述の冷却不足を解消している。
However, the obstruction of the flow of the liquid refrigerant in the pressure reducer (46) also causes the pressure before entering the pressure reducer (46) to increase by 1, so that the evaporation temperature of the R50 refrigerant increases as shown in FIG. As a result, evaporation in the pressure reducer (46) is no longer performed, and liquid refrigerant is again supplied to the evaporation vibe (47) to perform normal cooling. However, if the temperature drops due to this, the pressure reducer (4
Evaporation begins within 6〉, and this process is repeated. In such a situation, not only will there be insufficient cooling in the storage room (76), but the load applied to the electric compressor (10) will fluctuate drastically, which will not only impair the life of the electric compressor (10) but also cause noise. also becomes larger. Therefore, in this application, the dryer (4
5) is disposed in a third intermediate heat exchanger (44) for heat exchange, and the R50 refrigerant that has passed through the third intermediate heat exchanger (44) is cooled again to reduce the temperature rise due to heat intrusion from the surroundings. is suppressed. This prevents the refrigerant from evaporating within the pressure reducer (46) and eliminates the aforementioned insufficient cooling.

又、この様な異常な状況は低温側冷媒回路(3)内に充
填きれる冷媒の量が適正でない場合にも発生する。即ち
第9図に冷凍装置(R)に電源が投入された後の貯蔵室
(76)内の温度の時間推移を示し、(Ll)は適正な
冷媒充填量である場合を、(L2)は冷媒充填量が過多
である場合を、又、(L、)は冷媒充填量が過少である
場合を示す。又、第10図には到達温度付近での冷媒充
填量が過多の場合の貯蔵室(76)内温度である(L2
)と過少の場合の温度である(L、)を示し、図中(L
4)は冷媒充填量が過多の場合の減圧器(46)に流入
する冷媒の温度即ち第1図中減圧器(46)入口部(P
I)の温度を、(L6〉は同様に過多の場合の減圧器(
46)を出た後の冷媒の温度即ち第1図中蒸発バイブ(
47)入口部(P2)の温度を、(L6)は冷媒充填量
が過少な場合の減圧器(46)入口部(PI)の温度を
、又、(L、)は同過少な場合の蒸発バイブ(47)入
口部(P、)の温度を示す。
Further, such an abnormal situation also occurs when the amount of refrigerant that can be filled into the low temperature side refrigerant circuit (3) is not appropriate. That is, Fig. 9 shows the time course of the temperature in the storage room (76) after the power is turned on to the refrigeration system (R), where (Ll) represents the case where the refrigerant charge is appropriate, and (L2) represents the case where the refrigerant filling amount is appropriate. (L,) indicates a case where the amount of refrigerant charged is too large, and (L,) indicates a case where the amount of refrigerant charged is too small. Moreover, FIG. 10 shows the temperature inside the storage chamber (76) when the amount of refrigerant charged is excessive near the final temperature (L2
) and (L, ), which is the temperature when the temperature is too low, are shown.
4) is the temperature of the refrigerant flowing into the pressure reducer (46) when the amount of refrigerant charged is excessive, that is, the temperature of the refrigerant flowing into the pressure reducer (46) inlet part (P
I) temperature, (L6〉 is similarly the pressure reducer in case of excess (
46), that is, the temperature of the refrigerant after leaving the evaporator vibrator (
47) The temperature of the inlet (P2), (L6) is the temperature of the pressure reducer (46) inlet (PI) when the refrigerant charge is too low, and (L,) is the evaporation temperature when the refrigerant charge is too low. The temperature of the inlet part (P, ) of the vibrator (47) is shown.

冷媒充填量が過多である場合は、冷却運転の開始から貯
蔵室(76)の温度が低下して行く速度は、充填量が正
常な場合よりも速い。しかし乍ら、蒸発バイブ(47)
に供給きれる液冷媒の量が多過ぎるので、貯蔵室(76
)内の温度が到達温度まで低下すると、蒸発バイブ(4
7)内で蒸発し切れない多量の液冷媒が第3の中間熱交
換器(44)に流入してそこで蒸発する様になり、第3
の中間熱交換器(44)の温度は蒸発バイブ(47)と
同等な値まで冷却詐れて行く。これによって減圧器(4
6)入口部(P、)の温度も低下して行くが、周囲との
温度差が大きくなるため、周囲からの熱侵入量が増加し
、液冷媒の蒸発を促す様になる。これにより減圧器(4
6)内では液冷媒の蒸発が始まり、減圧器(46)内の
圧力上昇によって液冷媒の流通が阻害され、蒸発バイブ
(47)への液冷媒の供給が減少するので入口部(P、
)の温度も上昇して来る。それによって貯蔵室(76)
内の温度も上昇する。減圧器(46)内で液冷媒の流通
が阻害されると液冷媒の圧力が前述の如く上昇するため
蒸発温度が上昇して液冷媒は蒸発しなくなり、再び減圧
器(46)を通過して正常な冷却が行なわれる様になる
が、その後の冷却によって液冷媒が蒸発バイブ(47)
内余れば再び同様な状況が繰り八 返えされる。即ち第11図中(Lx )(L4 )(t
6)の如く各温度は脈動して不安定となる。ここで貯蔵
室(76)内の温度は多少遅れた形となる。この様な上
況になると第9図の如く貯蔵室(76〉内の温度は周期
的に正常状態(1,)を上回り冷却不足となると共に、
電動圧縮機(10)の振動騒音の増大、異常摩耗等を引
き起こす。
When the amount of refrigerant charged is excessive, the temperature of the storage chamber (76) decreases at a faster rate from the start of the cooling operation than when the amount of refrigerant charged is normal. However, evaporation vibrator (47)
Since the amount of liquid refrigerant that can be supplied to the storage room (76
) when the temperature inside the evaporator vibrator (4) drops to the reached temperature.
7) A large amount of liquid refrigerant that cannot be completely evaporated in the third intermediate heat exchanger (44) flows into the third intermediate heat exchanger (44) and evaporates there.
The temperature of the intermediate heat exchanger (44) continues to cool down to a value equivalent to that of the evaporator vibrator (47). This allows the pressure reducer (4
6) The temperature at the inlet (P,) also decreases, but since the temperature difference with the surroundings increases, the amount of heat intrusion from the surroundings increases, promoting evaporation of the liquid refrigerant. This allows the pressure reducer (4
The liquid refrigerant starts to evaporate inside the pressure reducer (46), and the flow of the liquid refrigerant is obstructed by the increase in pressure inside the pressure reducer (46), and the supply of liquid refrigerant to the evaporation vibe (47) decreases.
) temperature also rises. Thereby storage room (76)
The temperature inside also rises. When the flow of the liquid refrigerant is obstructed within the pressure reducer (46), the pressure of the liquid refrigerant increases as described above, the evaporation temperature rises, the liquid refrigerant no longer evaporates, and the liquid refrigerant passes through the pressure reducer (46) again. Normal cooling begins to occur, but as a result of subsequent cooling, the liquid refrigerant evaporates into the vibrator (47).
If there is anything left, the same situation will repeat itself over and over again. That is, (Lx)(L4)(t
As shown in 6), each temperature pulsates and becomes unstable. Here, the temperature in the storage chamber (76) is somewhat delayed. When such an upward trend occurs, the temperature inside the storage room (76) periodically exceeds the normal state (1,) as shown in Figure 9, resulting in insufficient cooling.
This causes an increase in vibration noise and abnormal wear of the electric compressor (10).

この様な状況では減圧器(46)に流入する冷媒の温度
がそこを出た後の冷媒の温度に近づく、即し減圧器(4
6)入口部(P、)の温度が低下して蒸発バイブ(47
)入口部(Pハの温度に近づき過ぎ、到達温度付近に於
いて10″C以下となっている事が実験的に確められて
いる。そこで本発明では点(Pl)と(P、)との温度
差が10℃より大きくなる様に冷媒を充填する様にした
。これによって冷媒の過充填は助士きれ、以上の如き脈
動を防止し、安定した冷却運転が行なわれる様になる。
In such a situation, the temperature of the refrigerant entering the pressure reducer (46) approaches the temperature of the refrigerant after leaving it,
6) The temperature of the inlet part (P,) decreases and the evaporation vibrator (47
) It has been experimentally confirmed that the temperature of the inlet part (P) is too close to the temperature of The refrigerant is charged in such a way that the temperature difference between the two and

又、これと共に乾燥器(45)を第3の中間熱交換器(
44)に熱交換的に設けて、熱侵入による影響を少なく
しているので、更に温度は安定することになる。
Also, together with this, the dryer (45) is connected to the third intermediate heat exchanger (
44) for heat exchange to reduce the influence of heat intrusion, which further stabilizes the temperature.

次に冷媒充填量が過少な場合は当然のことながら第9図
中(L、)の如く冷却速度も遅くなる。又、少量ではあ
るが冷媒は低温側冷媒回路(3)内を循環しているので
減圧器(46)からは少量の液冷媒が蒸発パイプ(47
〉に流入して直ぐに蒸発し、それによって第10図(L
7〉の如く蒸発パイプ(47)入口部(P、)の温度は
降下するが、液冷媒の量が少ないため、蒸発は直ぐに終
了してしまい、その後はガス状の冷媒が蒸発パイプ(4
7)から第3の中間熱交換器(44)へと流れるのみと
なる。これによって貯蔵室(76)内は冷却不足となっ
て温度は上昇し、(L8)の如く高い値で安定する様に
なると共に、第3の中間熱交換器(44)の温度も」−
昇すめため、それと熱交換した後の冷媒が通る減圧器(
46)入口部(P、)の温度も(L6)の如く上昇し、
(p+>点と(P2)点の温度差は非常に大きくなる。
Next, if the amount of refrigerant charged is too small, the cooling rate will naturally become slow as shown in (L,) in FIG. In addition, since a small amount of refrigerant is circulating in the low temperature side refrigerant circuit (3), a small amount of liquid refrigerant flows from the pressure reducer (46) to the evaporation pipe (47).
) and immediately evaporate, thereby causing the flow in Figure 10 (L
As shown in 7>, the temperature at the inlet part (P,) of the evaporator pipe (47) decreases, but since the amount of liquid refrigerant is small, the evaporation ends immediately, and after that, the gaseous refrigerant flows into the evaporator pipe (47).
7) to the third intermediate heat exchanger (44). As a result, the inside of the storage room (76) becomes insufficiently cooled and the temperature rises, becoming stable at a high value as shown in (L8), and the temperature of the third intermediate heat exchanger (44) also increases.
In order to raise the temperature, a pressure reducer (
46) The temperature at the inlet (P,) also rises as shown in (L6),
The temperature difference between the (p+> point and the (P2) point becomes very large.

ここで本発明の冷凍装置(R)ではカスケードコンデン
サ(25A)(25B)の温度(−50℃)と蒸発パイ
プ(47)の温度(−15o’c)との差100℃を減
圧器(36)(40)(46)の前後でそれぞれ温度差
を作り出す事によって段階的に作り出している。即ち各
減圧器(36)(40)(46)の前後に於いて受は持
つ温度差は、等分したとしても(通常は負荷を少しでも
減らすために低温になるに従って温度差は小さく設定す
る。)33℃であり、この温度差よりも減圧器(46〉
入口部(PI)と蒸発パイプ(47)入口部(P、)と
の温度差が到達温度付近で大きくなっている時は異常で
あり、その原因は前述の如き冷媒充填量の過少にあると
言う事ができる。従って本発明では点(PI)と(P、
)との温度差か33℃より小さくなる様に冷媒を充填す
る事により、冷媒の充填不足による冷却不足を解消する
様にしている。
Here, in the refrigeration system (R) of the present invention, the difference of 100°C between the temperature (-50°C) of the cascade condensers (25A) (25B) and the temperature (-15°C) of the evaporation pipe (47) is ) (40) and (46) are created in stages by creating a temperature difference before and after each. In other words, the temperature difference between the receivers before and after each pressure reducer (36), (40), and (46) is evenly divided (normally, the temperature difference is set smaller as the temperature decreases to reduce the load as much as possible). .) 33℃, and this temperature difference makes the pressure reducer (46〉
When the temperature difference between the inlet part (PI) and the inlet part (P,) of the evaporation pipe (47) becomes large near the reached temperature, it is abnormal, and the cause is the insufficient amount of refrigerant charged as mentioned above. I can say it. Therefore, in the present invention, the points (PI) and (P,
) By filling the refrigerant so that the temperature difference between the two and

以上総合すると、減圧器(46)入口部(Pl)の温度
と蒸発パイプ(47)入口部(ft)の温度により減圧
器(46)に流入する冷媒の温度とそこを出た後の冷媒
の温度の差を測定し、到達温度付近に於いて、その差が
10℃より大きく、且つカスケードコンデンサ(25A
)(25B)と蒸発パイプ(47)の温度差を減圧器(
36) (40)(46)の数で除した値即ち33℃よ
り小きい範囲に入る様に冷媒を充填する事により、適正
な冷媒量を充填する事ができる。
In summary, the temperature of the refrigerant flowing into the pressure reducer (46) and the temperature of the refrigerant after leaving the pressure reducer (46) depend on the temperature of the pressure reducer (46) inlet (Pl) and the temperature of the evaporation pipe (47) inlet (ft). Measure the temperature difference, and if the difference is greater than 10℃ near the final temperature, and if the cascade capacitor (25A
) (25B) and the evaporation pipe (47) using a pressure reducer (
36) By filling the refrigerant in a range smaller than the value divided by the number of (40) and (46), that is, 33°C, an appropriate amount of refrigerant can be charged.

ここで冷凍装置(R)は、その設置された周囲の温度に
よっても影響を受ける。即ち周囲温度が高い状況を想定
して十分なる冷却能力を発揮する様に冷媒を充填したと
すると、周囲の温度が低くなった時にはカスケードコン
デンサ(25A)(25B)及び各中間熱交換器(32
)(42)(44)の温度も低下するため、それぞれの
中間熱交換器で凝縮されるべき冷媒の他に、後段の中間
熱交換器で凝縮されるべき冷媒も一部凝縮してしまい、
電動圧縮機(10)に帰還してしまうために、最終的に
蒸発パイプ(47)に流入するR50冷媒の量が減少す
るため冷却不足が生じる。これを解消するために冷媒充
填量を増加して行くと、今度は周囲の温度が高い状態で
前述の如き脈動が発生する。
Here, the refrigeration device (R) is also affected by the temperature of the surroundings in which it is installed. In other words, assuming a situation where the ambient temperature is high and the refrigerant is filled to exhibit sufficient cooling capacity, when the ambient temperature becomes low, the cascade condensers (25A) (25B) and each intermediate heat exchanger (32
) (42) and (44), so in addition to the refrigerant that should be condensed in each intermediate heat exchanger, a portion of the refrigerant that should be condensed in the subsequent intermediate heat exchanger also condenses.
Since the R50 refrigerant returns to the electric compressor (10), the amount of R50 refrigerant that finally flows into the evaporation pipe (47) decreases, resulting in insufficient cooling. If the amount of refrigerant charged is increased to solve this problem, the above-mentioned pulsation will occur when the ambient temperature is high.

これに対して本発明の如く点(P、)と(P2)との温
度差を10℃より大きく33℃より小きくする様に冷媒
を充填する事により、周囲温度が高い時から低い時に渡
って安定した冷却能力を発揮できる様になる。
In contrast, according to the present invention, by filling the refrigerant in such a way that the temperature difference between points (P, ) and (P2) is greater than 10°C and smaller than 33°C, the ambient temperature can be changed from high to low. This makes it possible to demonstrate stable cooling capacity.

ここで前記自記温度記録計(79)は貯蔵室(76)内
の温度を記録するもので、此種冷凍庫に於いては重要な
構成部品の一つである。ところで記録計(79)は一般
に第11図に示す如き衆知のアルキメゾス螺旋形状のブ
ルドン管(120)と時間推移に伴って自動的に移動さ
れる図示しない記録紙等から構成される。第11図に於
いて(121)は貯蔵室(76)内の温度を感知する様
に配設される感温部であり、ブルドン管(120)と感
温部(121)は細管(122)にて連通接続されてい
る。ブルドン管(120)の例えば螺旋の中心(0)に
は駆動軸(123)が立設固定され、この駆動軸(12
3)先端に記録用の指針(124)が取付けられている
。ブルドン管(120)は内部中空であり、内部には例
えばエチルアルコールやノルマルプロピルアルコール等
の感温物質が液状で封入されている。ブルドン管(12
0)は感温部(121)周囲の温度変化による内部圧力
の変化によって変形し、駆動軸(123)を軸方向を中
心として回転せしめるものであるが、この回転角度(θ
)はブルドン管(120)内の圧力変化に比例すること
が知られており、これによって貯蔵室(76)内の温度
を指針(124)の位置に変換し記録するものである。
The self-recording temperature recorder (79) records the temperature inside the storage room (76), and is one of the important components in this type of freezer. By the way, the recorder (79) is generally composed of a well-known Bourdon tube (120) having an Archimesian spiral shape as shown in FIG. 11, and a recording paper (not shown) that is automatically moved as time passes. In FIG. 11, (121) is a temperature sensing part arranged to sense the temperature inside the storage chamber (76), and the Bourdon tube (120) and the temperature sensing part (121) are the thin tubes (122). They are connected in communication. For example, a drive shaft (123) is erected and fixed at the center (0) of the spiral of the Bourdon tube (120).
3) A recording pointer (124) is attached to the tip. The Bourdon tube (120) has a hollow interior, and a temperature-sensitive substance such as ethyl alcohol or n-propyl alcohol is sealed therein in liquid form. Bourdon tube (12
0) is deformed by a change in internal pressure due to a change in temperature around the temperature sensing part (121), causing the drive shaft (123) to rotate around the axial direction.
) is known to be proportional to the pressure change in the Bourdon tube (120), and thereby converts and records the temperature in the storage chamber (76) to the position of the pointer (124).

ところで前記エチルアルコールやノルマルプロピルアル
コール等の一般的感温物質は例えば−80℃付近で使用
されるものであり、本発明の対象である−150”C等
の超低温では凍結してしまい、温度記録計として使用に
供することができない。そこで鋭意研究の結果、本発明
では感温物質として2−メチルペンタン(イソヘキサン
)を封入することによって一150@C等の超低温にお
ける温度を記録する事を達成した。第12図に2−メチ
ルペンタンをブルドン管(120)中に封入した場合の
感温部(121)周囲の温度(I>とブルドン管(12
0)内の圧力(P)の関係を示す。図より明らかな如く
圧力(P)は−150”Cから+50℃の温度範囲で温
度(T)に略比例する。ここで指針(124)の回転角
度(θ)は前述の如く圧力(P)に比例するから温度(
T)にも略比例し、これによって−150”Cから+5
0℃の範囲で貯蔵室(76)内の温度を記録することが
できる。
By the way, general temperature-sensitive substances such as ethyl alcohol and n-propyl alcohol are used at temperatures around -80°C, and they freeze at ultra-low temperatures such as -150"C, which is the subject of the present invention, making it impossible to record temperature. Therefore, as a result of intensive research, in the present invention, we have achieved the ability to record temperatures at extremely low temperatures such as -150@C by enclosing 2-methylpentane (isohexane) as a temperature-sensitive substance. Figure 12 shows the relationship between the temperature (I> around the temperature sensing part (121) and the Bourdon tube (120) when 2-methylpentane is sealed in the Bourdon tube (120).
The relationship between pressure (P) within 0) is shown. As is clear from the figure, the pressure (P) is approximately proportional to the temperature (T) in the temperature range from -150"C to +50"C.Here, the rotation angle (θ) of the pointer (124) is the pressure (P) as described above. Since it is proportional to the temperature (
T), and thereby -150"C to +5
The temperature in the storage chamber (76) can be recorded in the range of 0°C.

尚、実施例では独立した二つの冷媒回路をカスケード接
続し、低温側の冷媒回路を混合冷媒冷凍方式としたもの
に適用したがそれに限られず、単一の冷媒回路による混
合冷媒冷凍方式のものにも本願は有効である。
In the embodiment, two independent refrigerant circuits are connected in cascade, and the refrigerant circuit on the low temperature side is a mixed refrigerant refrigeration system. The application is also valid.

(ト)発明の効果 本発明によれば非共沸混合冷媒を用いた冷媒回路から成
る冷凍装置に於いて、最終段の減圧器に流入する冷媒の
温度とそこを出た後の冷媒の温度の差を適正範囲即ち凝
縮器と蒸発器との温度差を減圧器の数で除した値より小
さく10℃より大きい範囲に入れる様にする事により、
適正な量の冷媒を充填する事ができるので、充填量が過
多である場合に生じる被冷却空間温度の脈動や、充填量
が過少である場合に生じる冷却不足を解消し、更に周囲
温度の影響を受けない安定した能力を発揮する冷却装置
を構成する事ができるものである。
(G) Effects of the Invention According to the present invention, in a refrigeration system consisting of a refrigerant circuit using a non-azeotropic mixed refrigerant, the temperature of the refrigerant flowing into the final stage pressure reducer and the temperature of the refrigerant after leaving the pressure reducer are By keeping the difference in the appropriate range, which is smaller than the value obtained by dividing the temperature difference between the condenser and evaporator by the number of pressure reducers, and larger than 10℃,
Since the appropriate amount of refrigerant can be charged, it eliminates the pulsation in the temperature of the space to be cooled that occurs when the amount of refrigerant is too high, and the insufficient cooling that occurs when the amount of refrigerant is too low, and also reduces the effects of ambient temperature. Therefore, it is possible to construct a cooling device that exhibits stable performance without being subjected to any damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第9図は本発明の実施例を示し、第1図は冷
凍装置の冷媒回路図、第2図は同制御用電気回路図、第
3図は冷凍装置の動作を説明するタイミングチャート、
第4図は冷凍庫の斜視図、第5図は冷凍庫本体の側断面
図、第6図は冷凍装置の冷媒回路の具体的構成を示す図
、第7図は中間熱交換器部の斜視図、第8図は冷凍庫の
後方斜視図、第9図は貯蔵室内の電源投入からの時間推
移を示す図であり、第10図は低温側冷媒回路の冷媒充
填量が過多若しくは過少な場合の到達温度付近に於ける
貯蔵室温度を示す図、第11図及び第12図は自記温度
記録計の実施例を示し、第11図は自記温度記録計を構
成するブルドン管の斜視図、第12図は2−メチルペン
タンを封入したブルドン管の内部圧力と感温部温度の関
係を示す図である。 (R)・・・冷凍装置、 (2)・・・高温側冷媒回路
、(3)・・・低温側冷媒回路、 (4)(10>・・
・電動圧縮機、(25A)(25B>・・・カスケード
コンデンサ、 (32)(42)(44)・・・中間熱
交換器、 (36)(40)(46)・・・減圧器、(
47)・・・蒸発パイプ。 出願人 三洋軍機株式会社外1名 代理人 弁理士 西野卓嗣 外1名 第4図 第5図
Figures 1 to 9 show embodiments of the present invention, Figure 1 is a refrigerant circuit diagram of the refrigeration system, Figure 2 is a control electric circuit diagram, and Figure 3 is a timing diagram for explaining the operation of the refrigeration system. chart,
FIG. 4 is a perspective view of the freezer, FIG. 5 is a side sectional view of the freezer body, FIG. 6 is a diagram showing the specific configuration of the refrigerant circuit of the refrigeration system, and FIG. 7 is a perspective view of the intermediate heat exchanger section. Fig. 8 is a rear perspective view of the freezer, Fig. 9 is a diagram showing the time transition from power on inside the storage room, and Fig. 10 is the temperature reached when the refrigerant charge amount in the low-temperature side refrigerant circuit is too much or too little. Figures 11 and 12 are diagrams showing storage room temperatures in the vicinity. Figures 11 and 12 show an example of a self-recording temperature recorder. Figure 11 is a perspective view of a Bourdon tube that constitutes the self-recording temperature recorder. FIG. 3 is a diagram showing the relationship between the internal pressure of a Bourdon tube filled with 2-methylpentane and the temperature of the temperature sensing part. (R)... Refrigeration device, (2)... High temperature side refrigerant circuit, (3)... Low temperature side refrigerant circuit, (4) (10>...
・Electric compressor, (25A) (25B>... Cascade condenser, (32) (42) (44)... Intermediate heat exchanger, (36) (40) (46)... Pressure reducer, (
47)...Evaporation pipe. Applicant Sanyo Gunki Co., Ltd. and one other agent Patent attorney Takuji Nishino and one other person Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機、凝縮器、蒸発器、該蒸発器からの帰還冷媒
を流通する様直列に接続された複数の中間熱交換器、複
数の減圧器を具備し、複数種の非共沸混合冷媒を充填し
て成り、前記凝縮器を経た冷媒中の凝縮冷媒を前記減圧
器を介して前記中間熱交換器に合流せしめ、そこで前記
冷媒中の未凝縮冷媒を冷却する事により、順次より低い
沸点の冷媒を凝縮せしめ、最終段の減圧器を介して最低
沸点の冷媒を前記蒸発器に流入せしめる事により極低温
を得る冷凍装置において、前記最終段の減圧器に流入す
る冷媒とそれを出た後の冷媒の温度との差を、前記凝縮
器と蒸発器との温度差を前記減圧器の数で除した値より
小さく10℃より大きい範囲に設定した事を特徴とする
冷凍装置。
1. Equipped with a compressor, a condenser, an evaporator, a plurality of intermediate heat exchangers connected in series so as to circulate the return refrigerant from the evaporator, and a plurality of pressure reducers, and a non-azeotropic mixed refrigerant of multiple types. The condensed refrigerant in the refrigerant that has passed through the condenser is made to flow into the intermediate heat exchanger via the pressure reducer, and there, the uncondensed refrigerant in the refrigerant is cooled to gradually lower the boiling point. In a refrigeration system that obtains an extremely low temperature by condensing a refrigerant and causing a refrigerant with the lowest boiling point to flow into the evaporator via a final stage pressure reducer, the refrigerant flowing into the last stage pressure reducer and the refrigerant exiting the last stage pressure reducer are A refrigeration system characterized in that a difference in temperature between the subsequent refrigerant is set in a range smaller than a value obtained by dividing the temperature difference between the condenser and the evaporator by the number of pressure reducers and larger than 10°C.
JP9159886A 1985-09-25 1986-04-21 Refrigeration equipment Expired - Lifetime JPH0697123B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP9159886A JPH0697123B2 (en) 1986-04-21 1986-04-21 Refrigeration equipment
GB8621651A GB2180921B (en) 1985-09-25 1986-09-09 Refrigeration system
DE19863631795 DE3631795A1 (en) 1985-09-25 1986-09-18 COOLING SYSTEM
DE3645168A DE3645168C2 (en) 1985-09-25 1986-09-18
FR8613264A FR2587792B1 (en) 1985-09-25 1986-09-23 REFRIGERATION SYSTEM
US06/910,881 US4788829A (en) 1985-09-25 1986-09-24 Low-temperature refrigeration system
CN86106599.9A CN1023833C (en) 1985-09-25 1986-09-25 Refrigeration system
FR9310292A FR2693541B1 (en) 1985-09-25 1993-08-27 Refrigeration system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9159886A JPH0697123B2 (en) 1986-04-21 1986-04-21 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS62248962A true JPS62248962A (en) 1987-10-29
JPH0697123B2 JPH0697123B2 (en) 1994-11-30

Family

ID=14030993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9159886A Expired - Lifetime JPH0697123B2 (en) 1985-09-25 1986-04-21 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0697123B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112351A (en) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd Refrigerating device
CN104848599A (en) * 2015-05-26 2015-08-19 珠海格力电器股份有限公司 Air conditioning system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112351A (en) * 2009-11-30 2011-06-09 Sanyo Electric Co Ltd Refrigerating device
CN104848599A (en) * 2015-05-26 2015-08-19 珠海格力电器股份有限公司 Air conditioning system and control method thereof

Also Published As

Publication number Publication date
JPH0697123B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US4788829A (en) Low-temperature refrigeration system
US9989271B1 (en) Air conditioning with thermal storage
US4756164A (en) Cold plate refrigeration method and apparatus
US5372011A (en) Air conditioning and heat pump system utilizing thermal storage
JP3965717B2 (en) Refrigeration equipment and refrigerator
US7065979B2 (en) Refrigeration system
KR19990067577A (en) Heat energy storage air conditioner
WO2001079772A1 (en) Refrigerator with thermal storage
US4712387A (en) Cold plate refrigeration method and apparatus
US20180180344A1 (en) Ultra-low temperature freezer
US6349558B1 (en) Ammonia refrigerator
US6915646B2 (en) HVAC system with cooled dehydrator
JPS6273046A (en) Refrigerator
US6634182B2 (en) Ammonia refrigerator
JPS62248962A (en) Refrigerator
JPS62248968A (en) Refrigerator
JP2000130866A (en) Air conditioner
JPH01244251A (en) Refrigerating plant
JPH0745985B2 (en) Refrigeration equipment
US11867446B2 (en) Dual-mode ultralow and/or cryogenic temperature storage device
JPS62294855A (en) Refrigerator
JP4286106B2 (en) Freezer refrigerator
JP2855954B2 (en) Thermal storage type air conditioner
JPH0914768A (en) Refrigerating unit
JPH09159210A (en) Cooling system