JPS62294855A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62294855A
JPS62294855A JP10546086A JP10546086A JPS62294855A JP S62294855 A JPS62294855 A JP S62294855A JP 10546086 A JP10546086 A JP 10546086A JP 10546086 A JP10546086 A JP 10546086A JP S62294855 A JPS62294855 A JP S62294855A
Authority
JP
Japan
Prior art keywords
temperature
low
temperature side
refrigerant circuit
side refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10546086A
Other languages
Japanese (ja)
Inventor
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10546086A priority Critical patent/JPS62294855A/en
Publication of JPS62294855A publication Critical patent/JPS62294855A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (イ)産業上の利用分野 本発明は複数の冷媒閉回路を用い、高温側冷媒回路の蒸
発器によって低温側冷媒回路の凝縮器を冷却し、低温側
冷媒回路の蒸発器にて沸点の低い冷媒を蒸発せしめて極
低温を得るための冷凍装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (a) Industrial Application Field The present invention uses a plurality of refrigerant closed circuits, and cools the condenser of the low temperature side refrigerant circuit by the evaporator of the high temperature side refrigerant circuit. The present invention also relates to a refrigeration system for obtaining an extremely low temperature by evaporating a refrigerant with a low boiling point in an evaporator of a low-temperature side refrigerant circuit.

(ロ)従来の技術 従来此種冷凍装置は例えば実公昭56−53236号公
報で述べられている如く二元冷凍装置と呼ばれており、
二系統の独立した冷媒閉回路を準備し、高温側冷媒回路
の蒸発器と低温側冷媒回路の凝縮器によって熱交換器即
ちカスケードコンデンサを構成する。一方低温側冷媒回
路には比較的沸点の低い冷媒を充填し、上記カスケード
コンデンサにてこの冷媒を凝縮させ、低温側冷媒回路の
蒸発器に℃この冷媒を蒸発させる事により、低温側冷媒
回路の蒸発器にて極低温を得る構成である。前記公報の
如き構成では最終的に一85℃程度を得るのが限度であ
るが、更に低い温度(例えば−150℃等)を得るもの
として例えば米国特許第3.733.845号明細書の
如く低温側冷媒回路を所謂混合冷媒方式として、より沸
点の高い冷媒によって、より沸点の低い冷媒を次々に凝
縮する事によって最終段の蒸発器で極めて低い温度を得
るものである。
(b) Prior Art Conventionally, this type of refrigeration system is called a binary refrigeration system, as described in, for example, Japanese Utility Model Publication No. 56-53236.
Two independent refrigerant closed circuits are prepared, and a heat exchanger, ie, a cascade condenser, is configured by the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit. On the other hand, the low-temperature side refrigerant circuit is filled with a refrigerant with a relatively low boiling point, this refrigerant is condensed in the cascade condenser, and the refrigerant is evaporated in the evaporator of the low-temperature side refrigerant circuit. The structure is such that an extremely low temperature is obtained in the evaporator. Although the configuration as described in the above publication is limited to a final temperature of approximately -185°C, there is a method for obtaining an even lower temperature (for example, -150°C, etc.) as described in US Pat. No. 3,733,845. The low-temperature side refrigerant circuit is a so-called mixed refrigerant system, and by successively condensing a refrigerant with a lower boiling point with a refrigerant with a higher boiling point, an extremely low temperature is obtained in the final stage evaporator.

(ハ)発明が解決しようとする問題点 前記公報或いは明細書の如く低温側冷媒回路には通常極
めて低い沸点の冷媒が封入されるため電動圧縮機に加わ
る負荷も大きくなる。又、低温側冷媒回路の蒸発器によ
って冷却すべき空間が大きくなればその分冷却能力の増
加が必要となるため、高温側及び低温側共に大容量大出
力の電動圧縮機が必要となる。しかし乍ら斯かる電動圧
縮機では起動時等に非常に大なる電力を消費するため、
格別なる電源設備を必要とする許りでなく消費電力量も
大きくなり又、運転時の震動及び騒音も大きくなる。
(c) Problems to be Solved by the Invention As mentioned in the above-mentioned publications and specifications, since the low-temperature side refrigerant circuit is usually filled with refrigerant having an extremely low boiling point, the load applied to the electric compressor is also large. Furthermore, if the space to be cooled by the evaporator of the low-temperature side refrigerant circuit becomes larger, the cooling capacity will need to be increased accordingly, so electric compressors with large capacity and high output will be required on both the high-temperature side and the low-temperature side. However, such electric compressors consume a large amount of power when starting up, etc.
This does not require special power supply equipment, and the amount of power consumed increases, as well as vibrations and noise during operation.

又、斯かる二元冷凍方式では低温側冷媒回路の蒸発器に
於いて前述の如き極めて低い温度を得るものであり、そ
のためには沸点の極めて低い例えばR50(メタン)等
の冷媒を低温側冷媒回路に於いて用いなければならず、
そのために低温側冷媒回路の圧縮機には多大な負荷が加
わる事になり、異常な温度上昇を来たして焼付きを生ず
る問題もあった。
In addition, in such a binary refrigeration system, an extremely low temperature as described above is obtained in the evaporator of the low-temperature side refrigerant circuit, and for this purpose, a refrigerant with an extremely low boiling point, such as R50 (methane), is used as the low-temperature side refrigerant. must be used in the circuit,
As a result, a large load is applied to the compressor of the low-temperature side refrigerant circuit, causing an abnormal temperature rise and causing seizure.

(ニ)問題点を解決するための手段 本発明は斯かる問題点を解決するために成きれたもので
、以下実施例に沿って本発明の詳細な説明する。
(d) Means for Solving the Problems The present invention has been achieved in order to solve these problems, and the present invention will be described in detail below with reference to Examples.

冷凍装置(RA)はそれぞれ独立した冷媒閉回路である
高温側冷媒回路(10)、第1の低温側冷媒回路(11
)及び第2の低温側冷媒回路(12〉にて構成する。高
温側冷媒回路(10)の蒸発器は第1の蒸発器部分(1
8A)と第2の蒸発器部分(18B)にて構成し、それ
ぞれ第1の低温側冷媒回路(11)の凝縮器(27)及
び第2の低温側冷媒回路(12)の凝縮器(29)とそ
れぞれ第1のカスケードコンデンサ(28)及び第2の
カスケードコンデンサ(30)を構成する。第1の蒸発
器部分(18A)から出た冷媒は第1の低温側冷媒回路
(11)の電動圧縮機(22)のオイルクーラ(23)
に流入せしめ、電動圧縮機(22)の冷却を行う様にし
、又、第2の蒸発器部分(18B)を出た冷媒は第2の
低温側冷媒回路(12)の電動圧縮機(25)のオイル
クーラ(26)に流入せしめる事によって電動圧縮機(
25)の冷却を行う様にしたものである。
The refrigeration system (RA) has a high temperature side refrigerant circuit (10) and a first low temperature side refrigerant circuit (11), which are independent refrigerant closed circuits.
) and a second low-temperature side refrigerant circuit (12).The evaporator of the high-temperature side refrigerant circuit (10) is composed of a first evaporator section (1
8A) and a second evaporator part (18B), the condenser (27) of the first low-temperature side refrigerant circuit (11) and the condenser (29) of the second low-temperature side refrigerant circuit (12), respectively. ) constitute a first cascade capacitor (28) and a second cascade capacitor (30), respectively. The refrigerant coming out of the first evaporator part (18A) is sent to the oil cooler (23) of the electric compressor (22) of the first low temperature side refrigerant circuit (11).
The refrigerant flows into the electric compressor (22) to cool the electric compressor (22), and the refrigerant exiting the second evaporator section (18B) is supplied to the electric compressor (25) of the second low-temperature side refrigerant circuit (12). The electric compressor (
25).

(ネ)作用 本発明によれば二系統の低温側冷媒回路を使用するので
一個の冷媒回路が分担すべき被冷却空間を小きくでき、
負荷の減少となり、低温側冷媒回路の電動圧縮機の容量
を小さくできる。又、高温側冷媒回路の蒸発器部分を通
過した低温冷媒によって低温側冷媒回路の電動圧縮機を
冷却するので高温となり易い低温側冷媒回路の電動圧縮
機を良好に冷却できると共に、それぞれの蒸発器部分に
対応する低温側冷媒回路の電動圧縮機を冷却するので一
方が冷却不足になる事もない。
(f) Function According to the present invention, since two low-temperature side refrigerant circuits are used, the space to be cooled that should be shared by one refrigerant circuit can be reduced.
The load is reduced, and the capacity of the electric compressor in the low-temperature side refrigerant circuit can be reduced. In addition, since the electric compressor of the low-temperature side refrigerant circuit is cooled by the low-temperature refrigerant that has passed through the evaporator section of the high-temperature side refrigerant circuit, the electric compressor of the low-temperature side refrigerant circuit, which tends to reach high temperatures, can be well cooled, and the evaporator of each Since the electric compressor of the low-temperature side refrigerant circuit corresponding to that part is cooled, there is no possibility that one side will be insufficiently cooled.

(へ)実施例 次に図面に於いて実施例を説明する。第1図は本発明を
適用せる冷凍庫り1)の斜視図を示している。冷凍庫(
1)は例えば理化学実験室等に設置されるものであり、
断熱箱体にて構成する本体(2)内部に形成した上方開
口の貯蔵室を断熱区画壁(3)にて左右に区画して第1
の貯蔵室(4)と第2の貯蔵室(5)を構成している。
(f) Embodiments Next, embodiments will be explained with reference to the drawings. FIG. 1 shows a perspective view of a freezer 1) to which the present invention is applied. freezer(
1) is installed in, for example, a physical and chemical laboratory,
A storage chamber with an upward opening formed inside the main body (2) constituted by a heat insulating box is divided into left and right sides by a heat insulating partition wall (3).
The first storage room (4) and the second storage room (5) are configured.

(6A)(6B)は両貯蔵室(4)(5)の上方開口を
それぞれ開閉自在に閉じる断熱扉、又、(7)は後に詳
述する冷凍装置(RA)の構成部品を収容する機械室で
側方に形成されている。
(6A) and (6B) are insulating doors that open and close the upper openings of both storage chambers (4) and (5), respectively, and (7) is a machine that houses the components of the refrigeration system (RA), which will be detailed later. It is formed laterally in a chamber.

第2図は本発明の冷凍装置(RA)の冷媒回路を示す。FIG. 2 shows the refrigerant circuit of the refrigeration system (RA) of the present invention.

冷凍装置(RA)はそれぞれ独立した冷媒閉回路を構成
する高温側冷媒回路(10)と、第1の低温側冷媒回路
(11)及び第2の低温側冷媒回路(12)とから構成
されている。(13)は高温側冷媒回路(10)を構成
する電動圧縮機であり、その吐出側配管(13D)は凝
縮器(14)に接続される。(15)は凝縮器(14)
冷却用の送風機である。凝縮器(14)を出た冷媒配管
は受液器(16)を経た後、分岐点(P、)より二方向
に分れ、一方は電磁弁(19A)と温度式膨張弁(17
)を経て第1の蒸発器部分(18A>に接続され、又、
他方は電磁弁(19B>と温度式膨張弁(20)を経て
第2の蒸発器部分(18B)に接続される。この第1及
び第2の蒸発器部分(18A)(18B)が高温側冷媒
回路(10)の蒸発器である。第1の蒸発器部分(18
A)を経た冷媒配管は冷媒液溜めとしてのアキュムレー
タ(21)を経て、その後第1の低温側冷媒回路(11
〉の電動圧縮@(22)のオイルクーラ(23)に接続
きれる。又、第2の蒸発器部分(18B>を経た冷媒配
管は同様のアキュムレータ(24)を経て第2の低温側
冷媒回路(12)の電動圧縮a(25)のオイルクーラ
(26)に接続される。両オイルクーラ(23)(,2
6)を経た冷媒配管は合流点(P、)で合流した後電動
圧縮機(13)の吸込側配管(135)に接続される。
The refrigeration system (RA) is composed of a high-temperature side refrigerant circuit (10), a first low-temperature side refrigerant circuit (11), and a second low-temperature side refrigerant circuit (12), each of which constitutes an independent refrigerant closed circuit. There is. (13) is an electric compressor constituting the high temperature side refrigerant circuit (10), and its discharge side pipe (13D) is connected to the condenser (14). (15) is the condenser (14)
This is a blower for cooling. The refrigerant pipe exiting the condenser (14) passes through the liquid receiver (16) and then splits into two directions at a branch point (P,), one of which is a solenoid valve (19A) and a thermostatic expansion valve (17).
) to the first evaporator section (18A>), and
The other side is connected to the second evaporator section (18B) via a solenoid valve (19B> and a thermostatic expansion valve (20).The first and second evaporator sections (18A) (18B) are connected to the high temperature side. It is an evaporator of the refrigerant circuit (10).The first evaporator part (18
The refrigerant pipe passing through A) passes through an accumulator (21) as a refrigerant reservoir, and then connects to the first low temperature side refrigerant circuit (11).
> can be connected to the oil cooler (23) of the electric compression @ (22). Furthermore, the refrigerant pipe that has passed through the second evaporator section (18B>) is connected to the oil cooler (26) of the electric compression a (25) of the second low-temperature side refrigerant circuit (12) through a similar accumulator (24). Both oil coolers (23) (,2
The refrigerant pipes that have passed through 6) join together at a merging point (P,) and then are connected to the suction side pipe (135) of the electric compressor (13).

膨張弁(17)(20)の感温部(17A)<2OA)
はアキュムレータ(21)(24)にそれぞれ熱伝導的
に取付けられ、それぞれ蒸発器部分(18A)(18B
)に適正な量の冷媒を供給する様動作する。
Temperature sensing part (17A) of expansion valve (17) (20) <2OA)
are attached to the accumulators (21) (24) in a thermally conductive manner, respectively, and the evaporator parts (18A) (18B
) to supply the appropriate amount of refrigerant.

高温側冷媒回路(10)にはR502冷媒(88重量%
)とR12冷媒(12重量%)が封入されている。今、
電磁弁(19A)(19B)が共に開いているものとし
て冷媒循環を説明すると、電動圧縮機(13)から吐出
きれた高温高圧のガス状冷媒は凝縮器(14)にて放熱
液化した後、受液器(16)を経て分流し、膨張弁(1
7)<20)にてそれぞれ減圧されてそれぞれ各蒸発器
部分(18A)(18B)に流入して蒸発する。ここで
第1の蒸発器部分(18A)は第1の低温側冷媒回路(
11)の凝縮器(27)と第1のカスケードコンデンサ
(28)を構成し、又、第2の蒸発器部分(18B)は
第2の低温側冷媒回路(12)の凝縮器(29)と第2
のカスケードコンデンサ(30)を構成している。更に
各蒸発器部分(18A)(18B)ではR502冷媒が
蒸発する事によって定常状態では各カスケードコンデン
サ(28)(30)は−50℃程に冷却される事になる
ため、R12冷媒は各蒸発器部分(18A)(18B)
では殆んど蒸発できず(蒸発温度が一35°Cのため)
、そのためR12冷媒はカスケードコンデンサ(2g>
(30>の冷却には殆んど寄与しない。
R502 refrigerant (88% by weight) is used in the high temperature side refrigerant circuit (10).
) and R12 refrigerant (12% by weight) are sealed. now,
To explain the refrigerant circulation assuming that both the solenoid valves (19A) and (19B) are open, the high-temperature, high-pressure gaseous refrigerant discharged from the electric compressor (13) is liquefied with heat dissipation in the condenser (14), and then The liquid flows through the receiver (16) and is divided into the expansion valve (1
7)<20), the pressure is reduced, and the liquid flows into each evaporator section (18A) (18B) and evaporates. Here, the first evaporator part (18A) is connected to the first low temperature side refrigerant circuit (
11) constitutes the condenser (27) and the first cascade condenser (28), and the second evaporator part (18B) constitutes the condenser (29) of the second low temperature side refrigerant circuit (12). Second
This constitutes a cascade capacitor (30). Furthermore, in each evaporator section (18A) (18B), each cascade condenser (28) (30) is cooled to about -50°C by evaporation of R502 refrigerant in a steady state, so R12 refrigerant is Vessel part (18A) (18B)
(Because the evaporation temperature is 135°C)
, Therefore, R12 refrigerant is used in a cascade condenser (2g>
(It hardly contributes to the cooling of 30>.

即ちR12冷媒は冷媒回路内を流れる電動圧縮機(13
)の潤滑油をその中に溶は込ませた状態で電動圧縮機(
13)に帰還させる役割を奏する。又、各蒸発器部分(
18A)(18B>を経た低温の冷媒はアキュムレータ
(21)(24)を経てそれぞれオイルクーラ(23)
(26)に流入するので後述の如く沸点の低い冷媒を封
入きれる事によって高温となり勝ちな両低温側冷媒回路
(11)(12)の電動圧縮機(22)<25)を良好
に冷却できる。又、アキュムレータ(21)(24)か
らの出口管に通常形成される油戻し用の孔から液状のR
12冷媒がオイルクーラ(23)(26)に流入してそ
こで蒸発するので各電動圧縮機(22) (25)の冷
却は更に良好となると共に、これによって電動圧縮機(
13)への液戻りも解消され破損も防止きれる。
That is, R12 refrigerant flows through the electric compressor (13
) with the lubricating oil dissolved in it.
13). Also, each evaporator part (
The low-temperature refrigerant that has passed through 18A) (18B>) passes through accumulators (21) and (24), and then goes to oil coolers (23).
(26), and as described later, the electric compressors (22)<25) of both low-temperature side refrigerant circuits (11) and (12), which tend to reach high temperatures, can be effectively cooled by enclosing a refrigerant with a low boiling point. In addition, liquid R is discharged from the oil return holes normally formed in the outlet pipes from the accumulators (21) and (24).
Since the refrigerant flows into the oil cooler (23) (26) and evaporates there, the cooling of each electric compressor (22) (25) becomes even better.
13) is also eliminated and damage can be prevented.

又、各電動圧縮機(22)(25)はそれぞれの低温側
冷媒回路(11)(12)の凝縮器(27)(29)に
対応した蒸発器部分(18Aバ18B)を経た冷媒によ
って冷却するので、例えば合流点(P、)下流の配管で
オイルクーラ(23)(26)を直列に構成する場合に
生ずる下流側の冷却不足も生じず、又、例えば後述する
如く一方の低温側冷媒回路(11)又は(12)を運転
しない時には電磁弁(19A)又は(19B)が閉じる
事によってオイルクーラ(23)又は(26)には冷媒
が流れなくなり、停止中の電動圧縮機(22〉又は(2
5)を無駄に冷却する事も防止でき、過冷却による霜付
き等も防止できる事になる。
In addition, each electric compressor (22) (25) is cooled by the refrigerant that has passed through the evaporator section (18A bar 18B) corresponding to the condenser (27) (29) of the respective low temperature side refrigerant circuit (11) (12). Therefore, there is no shortage of cooling on the downstream side, which occurs when the oil coolers (23) and (26) are configured in series in the piping downstream of the confluence point (P,). When the circuit (11) or (12) is not operated, the solenoid valve (19A) or (19B) is closed, so that no refrigerant flows to the oil cooler (23) or (26), and the electric compressor (22) is stopped. Or (2
5) can be prevented from being cooled wastefully, and frost formation due to overcooling can also be prevented.

次に第1の低温側冷媒回路(11)を構成する電動圧縮
機(22)の吐出側配管(22D)は凝縮器(27)に
接続きれ、次に気液分離器(31)に接続される。気液
分離器(31)から出た気相配管(32)は中間熱交換
器(33)内を通過して次の気液分離器(34)に接読
され、液相配管(35)は乾燥器(36)を経た後減圧
器(37)を経て中間熱交換器(33)と(38)の間
に接続きれる。又、気液分離器(34)から出た液相配
管(39)は乾燥器(40)と減圧器(41)を経て中
間熱交換器(38)と(42)の間に接続される。気液
分離器(34)から出た気相配管(43)は中間熱交換
器、(3B)内を通過した後、中間熱交換器(42)内
を通過し乾燥器(44)を経て減圧器(45)を通過し
蒸発器(46)に接続きれる。
Next, the discharge side pipe (22D) of the electric compressor (22) constituting the first low temperature side refrigerant circuit (11) is connected to the condenser (27), and then connected to the gas-liquid separator (31). Ru. The gas phase piping (32) coming out of the gas-liquid separator (31) passes through an intermediate heat exchanger (33) and is read directly to the next gas-liquid separator (34), and the liquid phase piping (35) After passing through a dryer (36), it passes through a pressure reducer (37) and is connected between intermediate heat exchangers (33) and (38). Further, the liquid phase pipe (39) coming out of the gas-liquid separator (34) is connected between the intermediate heat exchangers (38) and (42) via a dryer (40) and a pressure reducer (41). The gas phase pipe (43) coming out of the gas-liquid separator (34) passes through the intermediate heat exchanger (3B), then the intermediate heat exchanger (42), and then the dryer (44) where it is depressurized. It passes through the vessel (45) and is connected to the evaporator (46).

この蒸発器(46)が第1の貯蔵室(4)の壁面外側に
取付けられる。蒸発器(46)を経た冷媒配管は中間熱
交換器に<42> (38)(33)の順で次々に接続
きれた後、アキュムレータ(47)を経て電動圧縮機(
22)の吸込側配管(225)に接続される。
This evaporator (46) is attached to the outside wall of the first storage chamber (4). After passing through the evaporator (46), the refrigerant pipe is connected to the intermediate heat exchanger in the order of <42> (38) and (33), and then passes through the accumulator (47) to the electric compressor (
22) is connected to the suction side piping (225).

第2の低温側冷媒回路(12)も第1の低温側冷媒回路
(11)と同様に電動圧縮機(25)の吐出側配管(2
5D)と吸込側配管(255)の間に凝縮器(29)、
気液分離器(50)(53)、各気相配管(51)(6
2)及び液相配管(54)(58)、乾燥器(55)(
59)(63)、減圧器(56)(60)(64)、中
間熱交換器(52) (57)(61)、蒸発器(65
)及びアキュムレータ(66)がそれぞれ接続され、同
様の冷媒閉回路を構成する。蒸発器(65)は第2の貯
蔵室(5)の壁面外側に取付けられる。
Similarly to the first low temperature side refrigerant circuit (11), the second low temperature side refrigerant circuit (12) also has a discharge side pipe (2) of the electric compressor (25).
5D) and a condenser (29) between the suction side pipe (255),
Gas-liquid separator (50) (53), each gas phase piping (51) (6
2) and liquid phase piping (54) (58), dryer (55) (
59) (63), pressure reducer (56) (60) (64), intermediate heat exchanger (52) (57) (61), evaporator (65)
) and an accumulator (66) are connected to each other to form a similar refrigerant closed circuit. The evaporator (65) is attached to the outside wall of the second storage chamber (5).

両低温側冷媒回路(11)(12)には沸点の異なる四
種類の混合冷媒が封入される。即ちR12(35重景%
)、R13B1(39重量%)、R14(22重量%)
及びR50(4重量%)が予め混合きれた状態で封入さ
れる。
Four types of mixed refrigerants having different boiling points are sealed in both low-temperature side refrigerant circuits (11) and (12). That is, R12 (35 heavy view%
), R13B1 (39% by weight), R14 (22% by weight)
and R50 (4% by weight) are sealed in a pre-mixed state.

次に定常状態における両低温側冷媒回路(11)(12
)の冷媒循環について説明する。電動圧縮機(22)(
25)から吐出きれた高温高圧のガス状混合冷媒は第1
若しくは第2のカスケードコンデンサ(28)(30)
にて冷却きれ混合冷媒中のR12、R13B1冷媒が凝
縮きれた状態で気液分離器(31)<50>に流入する
。この時点では混合冷媒中のR14とR50は沸点が極
めて低いために未だガス状態であるためR14とR50
は気相配管(32) (51)に、R12とR13B1
は液相配管(35)(54>へと分離される。気相配管
(32) (st )に流入した冷媒混合物はそれぞれ
中間熱交換器(33)(52>と熱交換して凝縮きれた
後、気液分離器(34)(53)に至る。ここで中間熱
交換器(33)(52)には蒸発器(46)(65)か
ら帰還して来る低温の冷媒がそれぞれ流入し、更に液相
配管(35)(54)にそれぞれ流入したR13B1冷
媒が乾燥器(36) (55)を経て減圧器(37)(
56)でそれぞれ減圧された後、中間熱交換器(33)
 (52)にそれぞれ流入してそこで蒸発することによ
り冷却に寄与する為、中間熱交換器(33)(52)は
−80″C程となっている。従って気相配管(32)(
51)をそれぞれ通過した混合冷媒中のR14は凝縮液
化され、R50は更に沸点が低い為に未だガス状態であ
る。よってR14は気液分離器(34)(53)から液
相配管(39)(58〉へ、又、R50は気相配管(4
3)(62)へとそれぞれ分離され、R14は乾燥器(
40)(59)を経て減圧器(41)(60)にて減圧
され中間熱交換器(42)(38)若しくは(61)(
57)それぞれの間に流入して中間熱交換器(38)(
57)内で蒸発する。中間熱交換器(38)(57)に
は蒸発器(46)(65)からの帰還低温冷媒がそれぞ
れ流入すると共にR14の蒸発が更に冷却に寄与するた
め、中間熱交換器(38)(57)の温度は一100″
C程となっている。更に中間熱交換器(42)(61)
には蒸発器(46)(65)からの帰還低温冷媒が直ぐ
に流入しているために、その温度は−120”C程の極
めて低い温度となっているので、中間熱交換器(38)
(42)若しくは(57)(61)とそれぞれ熱交換し
た気相配管(43)(62)を通過する最も沸点の低い
冷媒R50は凝縮液化きれ、乾燥器(44)(63)を
経て減圧器(45)(64)にて減圧された後、それぞ
れ蒸発器(46)(65)に流入してそこや蒸発する。
Next, both low temperature side refrigerant circuits (11) (12) in steady state
) refrigerant circulation will be explained. Electric compressor (22) (
The high-temperature, high-pressure gaseous mixed refrigerant discharged from the first
Or second cascade capacitor (28) (30)
The R12 and R13B1 refrigerants in the cooled mixed refrigerant flow into the gas-liquid separator (31) <50> in a fully condensed state. At this point, R14 and R50 in the mixed refrigerant are still in a gaseous state due to their extremely low boiling points.
is the gas phase pipe (32) (51), R12 and R13B1
is separated into liquid phase pipes (35) and (54>).The refrigerant mixture that has flowed into the gas phase pipes (32) (st) exchanges heat with intermediate heat exchangers (33) and (52>), respectively, and is completely condensed. After that, it reaches the gas-liquid separator (34) (53). Here, the low-temperature refrigerant returning from the evaporator (46) (65) flows into the intermediate heat exchanger (33) (52), respectively. Furthermore, the R13B1 refrigerant that has flowed into the liquid phase pipes (35) and (54) passes through the dryers (36) and (55) to the pressure reducer (37) (
56), and then the intermediate heat exchanger (33)
(52) and evaporates there, contributing to cooling, so the temperature of the intermediate heat exchangers (33) and (52) is approximately -80"C. Therefore, the gas phase piping (32) (
51) in the mixed refrigerant is condensed and liquefied, and R50 is still in a gas state because it has an even lower boiling point. Therefore, R14 connects the gas-liquid separator (34) (53) to the liquid phase piping (39) (58>), and R50 connects the gas phase piping (4).
3) (62), and R14 is separated into a dryer (62).
40) (59), the pressure is reduced in the pressure reducer (41) (60), and the intermediate heat exchanger (42) (38) or (61) (
57) Intermediate heat exchanger (38) (
57) evaporates within. The return low-temperature refrigerant from the evaporators (46) and (65) flows into the intermediate heat exchangers (38) and (57), respectively, and the evaporation of R14 further contributes to cooling. ) temperature is -100″
It is about C. Furthermore, intermediate heat exchangers (42) (61)
Since the return low-temperature refrigerant from the evaporators (46) and (65) immediately flows into the evaporators, its temperature is as low as -120"C, so the intermediate heat exchanger (38)
The refrigerant R50 with the lowest boiling point passing through the gas phase pipes (43) and (62) that exchanged heat with (42) or (57) and (61), respectively, is condensed and liquefied, and then passed through the dryer (44) and (63) to the pressure reducer. After being depressurized at (45) and (64), they flow into evaporators (46) and (65), respectively, and evaporate there.

この時の蒸発器(46>(65)の温度は一150℃に
到達している。これが冷凍装置(RA)の最終到達温度
であり、これによって第1、第2の貯蔵室(4)(5)
内を超低温の環境とすることが可能となる。蒸発器(4
6)から出た冷媒R50は中間熱交換器(42)(38
)(33)に、又、蒸発器(65)から出た冷媒R50
は中間熱交換器(61)(57)(52)にそれぞれ次
々に流入、流出し、各冷媒R14、R13B1、R12
と合流しながらアキュムレータ(47)(66)にてそ
れぞれ未蒸発の冷媒を分離した後、電動圧縮機(22)
 (25)にそれぞれ吸入きれる。又、この循環におい
てR12冷媒は冷却には殆んど寄与せず、電動圧縮機(
22)(25)の潤滑油を帰還きせる働きをする。
At this time, the temperature of the evaporator (46>(65) has reached -150°C. This is the final temperature reached by the refrigeration system (RA), and the temperature of the first and second storage chambers (4) ( 5)
It becomes possible to create an ultra-low temperature environment inside. Evaporator (4
The refrigerant R50 discharged from the intermediate heat exchanger (42) (38
) (33), and the refrigerant R50 coming out of the evaporator (65)
The refrigerants R14, R13B1, and R12 sequentially flow into and out of the intermediate heat exchangers (61), (57), and (52), respectively.
After separating the unevaporated refrigerant in the accumulators (47) and (66) while merging with the refrigerant, the electric compressor (22)
(25) can be inhaled respectively. Also, in this circulation, R12 refrigerant hardly contributes to cooling, and the electric compressor (
22) Functions to return the lubricating oil from (25).

次に第3図は冷凍庫り1)の冷凍装置(RA)の制御用
電気回路を示す。(AC)(AC)は交流電源であり、
(70)は電源スィッチであり、後段の全ての機器の電
源の入切を行うものである。(13M)は高温側冷媒回
路(10)の電動圧縮機(13)駆動用のモータであり
、リレーコイル(R8)の常閉接点(ss + )と直
列に接続きれ、接点(S、、)が閉じていれば電源スィ
ッチ(70)が閉じている間連続運転される。リレーコ
イル(R6)はリレーフィル(Ry)(Ra)の常開接
点(s7、)(S□)と直列に接続される。(71)は
整流回路等を含む第1の貯蔵室(4)の温度調節器であ
り、蒸発器(46)の温度を感知する温度検出器(72
)に基づき、例えば−150℃まで到達したら出力端子
(71A)(71B)間の出力電圧の発生を停止し、−
140°Cに上昇して出力電圧を発生する。出力端子(
71A)(71B)間にはリレーコイル(it>と高圧
スイッチ(73)が直列接続される。高圧スイッチ(7
3)は電動圧縮機(22)の吐出側圧力を感知し、例え
ば26kg/crIl!に上昇して接点を開き、8kg
/cm”に低下して接点を閉じる。(74)は低温始動
サーモスタットであり、アキュムレータ(21)の温度
を感知し、例えば−35℃に低下して接点を閉じ、−1
0℃に上昇して接点を開く動作をし、リレーコイル(R
1)の常開接点(S、)及びリレーコイル(R8)と直
列に電源(AC>(AC)に接続きれる。(22M)は
第1の低温側冷媒回路(11)の電動圧縮機(22)駆
動用のモータであり、リレーコイル(R2)の常閉接点
(57,)及びリレーコイル(R1>の常開接点(S2
)と直列に接読きれる。(19CA )は電磁弁(19
A)のコイルであり、リレーコイル(R2)の常閉接点
(Sys)と直列に接続される。又、(SW、)は保持
型の手動スイッチでリレーコイル(R7)と直列に接続
きれる。
Next, FIG. 3 shows an electric circuit for controlling the refrigeration apparatus (RA) of the freezer 1). (AC) (AC) is an alternating current power supply,
(70) is a power switch, which turns on and off the power to all devices at the subsequent stage. (13M) is a motor for driving the electric compressor (13) of the high temperature side refrigerant circuit (10), and is connected in series with the normally closed contact (ss + ) of the relay coil (R8), and the contact (S, , ) If it is closed, continuous operation is performed while the power switch (70) is closed. The relay coil (R6) is connected in series with the normally open contacts (s7, ) (S□) of the relay fills (Ry) (Ra). (71) is a temperature regulator for the first storage chamber (4) that includes a rectifier circuit, etc., and a temperature detector (72) that senses the temperature of the evaporator (46).
), for example, when the temperature reaches -150℃, the generation of output voltage between the output terminals (71A) and (71B) is stopped, and -
The temperature rises to 140°C to generate an output voltage. Output terminal (
A relay coil (it>) and a high voltage switch (73) are connected in series between 71A) and 71B.
3) senses the discharge side pressure of the electric compressor (22), for example, 26 kg/crIl! Rise to 8 kg and open the contact.
/cm" and closes the contacts. (74) is a cold start thermostat which senses the temperature of the accumulator (21) and closes the contacts when the temperature drops to -35°C, for example, -1
The temperature rises to 0℃, the contact opens, and the relay coil (R
1) can be connected in series with the normally open contact (S, ) and relay coil (R8) to the power supply (AC>(AC). (22M) is the electric compressor (22) of the first low temperature side refrigerant circuit (11). ) drive motor, which has a normally closed contact (57,) of the relay coil (R2) and a normally open contact (S2, ) of the relay coil (R1>).
) can be read serially. (19CA) is a solenoid valve (19CA)
A) is connected in series with the normally closed contact (Sys) of the relay coil (R2). Also, (SW,) is a holding type manual switch that can be connected in series with the relay coil (R7).

(75)は第2の貯蔵室(5)の温度調節器であり、蒸
発器(65)の温度を感知する温度検出器(76)に基
づき、同様に一150°Cまで到達したら出力端子(7
5A)(75B>間の出力電圧の発生を停止し、−14
0°Cに上昇して出力電圧を発生する。出力端子(75
A)(75B)間にはリレーコイル(R3)と高圧スイ
ッチ(77)が直列接続される。高圧スイッチ(77)
は電動圧縮I!(25)の吐出側圧力を感知し、高圧ス
イッチ(73)と同様の動作をする。(78)は低温始
動サーモスタットであり、アキュムレータ(24〉の温
度を感知し、低温始動サーモスタット(ハ)と同様の動
作をし、リレーコイル(R8)の常開接点(S、)及び
リレーコイル(R4)と直列に接続される。(25M)
は第2の低温側冷媒回路(12)の電動圧縮機(25)
駆動用のモータであり、リレーコイル(R,)の常閉接
点(S。
(75) is a temperature regulator for the second storage chamber (5), and based on the temperature detector (76) that senses the temperature of the evaporator (65), when the temperature reaches -150°C, the output terminal ( 7
5A) (stops generation of output voltage between 75B> and -14
The temperature rises to 0°C and an output voltage is generated. Output terminal (75
A) and (75B), a relay coil (R3) and a high voltage switch (77) are connected in series. High pressure switch (77)
is electric compression I! (25) senses the discharge side pressure and operates in the same way as the high pressure switch (73). (78) is a low-temperature start thermostat that senses the temperature of the accumulator (24), operates in the same way as the low-temperature start thermostat (c), and connects the normally open contact (S, ) of the relay coil (R8) to the relay coil ( Connected in series with R4) (25M)
is the electric compressor (25) of the second low temperature side refrigerant circuit (12)
It is a driving motor and has a normally closed contact (S) of a relay coil (R,).

よ)、リレーコイル(R1)の常開接点(S4)及びリ
レーコイル(R9)の常開接点(S、)と直列に接続き
れる。<SW*)は保持型の手動スイッチでリレーコイ
ル(R,)と直列に接読される。 (19CB)は電磁
弁(19)のフィルであり、電磁弁(19A)(19B
)はコイル(19CA)(19CB)に通電されて流路
を開くもので、コイル(19CB ’)はリレーコイル
(R6)の常開接点(sa + )、リレーコイル(R
,)の常閉接点(Sss)及びリレーフィル(R9)の
常開接点(、Sat)とリレーコイル(R2)の常開接
点(ss4)の並列回路と直列に接続きれる。〈80)
は例えば蒸発器(46)の温度を感知する温度検出器で
、蒸発器(46)の温度が例えば−150″Cまで低下
して接点を閉じるもので、リレーコイル(R,)の常開
接点(Sag)と並列回路を構成し、この並列回路はリ
レーコイル(R6〉及びリレーフィル(R6)の常閉接
点(Sat)と直列に接続される。(81)は第1のカ
スケードコンデンサ(28)の温度を検出する温度検出
器で、第1のカスケードコンデンサ(28)の温度が例
えば−40℃まで低下したら接点を閉じ、−20°Cま
で上昇したら接点を開く動作をする。尚、温度検出器(
81)はアキュムレータ(21)の温度を感知しても良
い。
), can be connected in series with the normally open contact (S4) of the relay coil (R1) and the normally open contact (S, ) of the relay coil (R9). <SW*) is a holding type manual switch and is read directly in series with the relay coil (R, ). (19CB) is the fill of the solenoid valve (19), and the solenoid valve (19A) (19B
) is used to open the flow path by energizing the coils (19CA) (19CB), and the coil (19CB') connects the normally open contact (sa + ) of the relay coil (R6), the relay coil (R
It can be connected in series with the parallel circuit of the normally closed contact (Sss) of the relay fill (R9), the normally open contact (Sat) of the relay fill (R9), and the normally open contact (ss4) of the relay coil (R2). <80)
is a temperature detector that senses the temperature of the evaporator (46), for example, and closes the contact when the temperature of the evaporator (46) drops to, for example, -150"C, and the normally open contact of the relay coil (R,) (Sag) and this parallel circuit is connected in series with the normally closed contact (Sat) of the relay coil (R6> and relay fill (R6). (81) is connected to the first cascade capacitor (28 ), which closes the contact when the temperature of the first cascade capacitor (28) drops to -40°C, for example, and opens the contact when it rises to -20°C. Detector(
81) may sense the temperature of the accumulator (21).

次に冷凍装置(RA)の動作を説明する。今、電源(A
C) (AC)が接続された状態で、スイッチ(SW、
)(S背、)は開かれており、従ってリレーコイル(R
t)fls>には通電きれず、接点(sy 、 )(s
t a )(s、 、 )は開き、接点(sy、)(s
、5)(s、)(s、、)は閉じているものとする。又
、リレーコイル(R8)には通電きれず接点(Sat)
(Sst)も閉じているものとする。冷凍庫(1)が据
え付けられて電源スィッチ(70)が閉じられるとモー
タ(13M)が起動し、電動圧縮機(13)が動作して
高温側冷媒回路(10)内を冷媒が循環し始める。
Next, the operation of the refrigeration system (RA) will be explained. Now, power supply (A
C) With (AC) connected, switch (SW,
) (S back, ) is open, so the relay coil (R
t)fls> cannot be energized, and the contacts (sy, )(s
t a )(s, , ) are open and the contacts (sy,)(s
, 5) (s,) (s, ,) is assumed to be closed. Also, the relay coil (R8) cannot be energized and the contact (Sat)
(Sst) is also assumed to be closed. When the freezer (1) is installed and the power switch (70) is closed, the motor (13M) starts, the electric compressor (13) operates, and refrigerant begins to circulate in the high temperature side refrigerant circuit (10).

この時電磁弁(19A)は開き、又、蒸発器(46)、
アキュムレータ(21)及び(24)又は第1のカスケ
ードコンデンサ(28)は常温に近い状態であるから温
度検出器(80)(81)、低温始動サーモスタット(
74)及び(78)は開放しており、従ってリレーコイ
ル(R6)(R9)は通電されず、接点(Ss、>(S
at)は開いていて′Ft、愚弁(19B)は閉じてお
り、又、温度調節器(71)   ’(75)の如何に
係わらず、リレーコイル(Rt)(lには通電されず、
接点(5,)(S、)は開いており、又、接点(S、□
)も開いているためモータ(22M)(25M)は起動
しない。従って冷凍袋fl(RA)では高温側冷媒回路
(10)のみの冷却運転がR1続きれ、又、電磁弁(1
9A)が開き、(19B、)が閉じている事により、第
1の蒸発器部分(18A)のみに冷媒が流れて蒸発する
。これによって第1のカスケードコンデンサ(28)が
冷却きれていって一40℃まで低下すると温度検出器(
81)が接点を閉じるのでリレーコイル(R9)に通電
きれ、接点(ss、>(s−ox)を閉じる。又、第1
の蒸発器部分(18A)の温度が低下して行く事によっ
てアキュムレータ(21)に液冷媒がたまって行って温
度が低下して一35℃になると低温始動サーモスタット
(74〉が閉じる。この時蒸発器(46)の温度は高い
から温度調節器(71)も出力電圧を発生して、接点(
S、)は閉じている。従って低温始動サーモスタット(
74)が閉じた時点でリレーコイル(Rハに通電きれて
スイッチ(S、)を閉じ、モータ(22H〉が起動して
電動圧縮@(22)より混合冷媒が吐出きれ回路(11
)内を循環し始める。この時第1の低温側冷媒回iM(
11)内の冷媒は殆んどガス状態であるから電動圧縮機
(22)吐出側の圧力は急激に上昇し26kg/Cr1
l’に到達して高圧スイッチ(73)が開いてリレーコ
イル(R7)の通電を断ち、スイッチ(Sl)を開き、
リレーフィル(R1)の通電が断たれスイッチ(S、)
が開きモータ(22M)が停止する。これによって電動
圧縮機(22)吐出側の圧力上昇は阻止され、電動圧縮
機(22)の損傷は防止される。
At this time, the solenoid valve (19A) opens, and the evaporator (46)
Since the accumulators (21) and (24) or the first cascade capacitor (28) are in a state close to room temperature, the temperature detectors (80) (81) and the low temperature start thermostat (
74) and (78) are open, so the relay coils (R6) and (R9) are not energized and the contacts (Ss, > (S
at) is open 'Ft, the valve (19B) is closed, and regardless of the temperature regulators (71)' (75), the relay coil (Rt) (l is not energized,
Contact (5,) (S,) is open, and contact (S, □
) are also open, so the motors (22M) (25M) will not start. Therefore, in the freezer bag fl (RA), the cooling operation of only the high temperature side refrigerant circuit (10) continues R1, and the solenoid valve (1
9A) is open and (19B,) is closed, the refrigerant flows only to the first evaporator portion (18A) and evaporates. As a result, the first cascade capacitor (28) is completely cooled down to -40℃, and the temperature detector (28) is detected.
81) closes the contact, so the relay coil (R9) is energized and the contact (ss, > (s-ox) is closed. Also, the first
As the temperature of the evaporator section (18A) decreases, liquid refrigerant accumulates in the accumulator (21), and when the temperature decreases to -35°C, the low temperature start thermostat (74) closes.At this time, the evaporation starts. Since the temperature of the device (46) is high, the temperature controller (71) also generates an output voltage and the contact (
S,) is closed. Therefore, the cold start thermostat (
When the relay coil (R) is closed, the relay coil (R) is energized, the switch (S,) is closed, the motor (22H) is started, and the mixed refrigerant is discharged from the electric compressor @ (22) and the circuit (11) is closed.
) begins to circulate within. At this time, the first low temperature side refrigerant circuit iM(
Since most of the refrigerant in 11) is in a gas state, the pressure on the discharge side of the electric compressor (22) rises rapidly to 26 kg/Cr1.
When reaching l', the high voltage switch (73) opens, cutting off the current to the relay coil (R7), and opening the switch (Sl).
The relay fill (R1) is de-energized and the switch (S,)
opens and the motor (22M) stops. This prevents a pressure increase on the discharge side of the electric compressor (22), and prevents damage to the electric compressor (22).

電動圧縮機(22〉の停止によって吐出側配管(22D
)(7) JE 力は低下し9 kg / cm ”に
なると高圧スイ・7チ(73)が再び閉じ前述同様にモ
ータ(22M>が起動きれるが吐出側配管(22D)の
圧力が26kg/Cr1l”に達した時点で再び高圧ス
イッチ(73)が開放してモータ(22M)は停止する
。この様なモータ(22M ’)の起動と停止を繰り返
えし、沸点の高い冷媒が蒸発して徐々に冷却作用を発揮
して行くことによって中間熱交換器(33)から徐々に
温度が低下して行きモータ(22M)起動時の吐出側配
管(22D)の圧力上昇が26kg/CTII’に達し
なくなるとモータ(22M)は連続運転となる。電動圧
縮機(22)が連続運転されることによって沸点の低い
冷媒も凝縮きれて徐々に冷却作用を発揮し始め、各中間
熱交換器(33)(3g)(42)と蒸発器り46)の
温度が徐々に低下して行って前述の最終到達温度(−1
50″C)を得る。これによって温度調節器(71)は
出力電圧の発生を停止しリレーフィル(R8〉が非通電
となって接点(S、)が開き、接点(Sりも開いてモー
タ(22M)は停止し、再び蒸発器(46)の温度が一
140°Cに上昇したら出力電圧を発生してモータ(2
2M)を起動する。これによって第1の貯蔵室(4)内
を平均−145°C程に冷却維持する。
When the electric compressor (22) is stopped, the discharge side piping (22D
) (7) JE When the force decreases to 9 kg/cm'', the high pressure switch 7 (73) closes again and the motor (22M> can be started as before, but the pressure in the discharge side piping (22D) is 26 kg/Cr1l). '', the high pressure switch (73) opens again and the motor (22M) stops. As the motor (22M') starts and stops like this, the refrigerant with a high boiling point evaporates. By gradually exerting a cooling effect, the temperature gradually decreases from the intermediate heat exchanger (33), and the pressure rise in the discharge side piping (22D) when the motor (22M) is started reaches 26 kg/CTII'. When it runs out, the motor (22M) will operate continuously.As the electric compressor (22) continues to operate, the refrigerant with a low boiling point will also be condensed and will gradually begin to exert its cooling effect, causing each intermediate heat exchanger (33) (3g) (42) and the temperature of the evaporator 46) gradually decrease to reach the final temperature (-1).
50"C). As a result, the temperature controller (71) stops generating the output voltage, the relay fill (R8) becomes de-energized, the contact (S,) opens, and the contact (S) also opens and the motor starts. (22M) stops, and when the temperature of the evaporator (46) rises to 1140°C again, an output voltage is generated to drive the motor (22M).
2M). As a result, the inside of the first storage chamber (4) is maintained cooled to an average of about -145°C.

一方蒸発器(46)が−150°Cに到達した時点で温
度検出器(80)が接点を閉じリレーコイル(R6)に
通電きれて接点(Ss + )(552)を閉じ、リレ
ーコイル(R6)自体は接点(S、、)が閉じる事によ
って自己保持する。接点(SS、)が閉じると接点(S
、t)は閉じているのでフィル(19CB )に通電さ
れ、電磁弁(19B>が開いて第2の蒸発器部分(18
B>にも冷媒が流入して蒸発し始め温度が低下して行き
、やがてアキュムレータ(24)の温度も低下して行っ
て一35℃まで下がれば、低温始動サーモスタット(7
8)が接点を閉じてリレーコイル(R4)に通電きれ、
接点(S4)が閉じてモータ(25M)が起動する。以
下は第1の低温側冷媒回路(11)同様の動作によって
中間熱交換器(52) (57)(61)及び蒸発器(
65)の温度が低下して行き、同様に第2の貯蔵室(5
)内を平均−145°Cに冷却する。
On the other hand, when the evaporator (46) reaches -150°C, the temperature detector (80) closes the contact and the relay coil (R6) is energized, which closes the contact (Ss + ) (552) and the relay coil (R6) is energized. ) itself is self-retained by closing the contacts (S, , ). When the contact (SS,) closes, the contact (S
, t) are closed, the fill (19CB) is energized, and the solenoid valve (19B> is opened to open the second evaporator section (18).
Refrigerant also flows into B> and begins to evaporate, causing the temperature to drop. Eventually, the temperature of the accumulator (24) also drops to -35°C, when the low temperature start thermostat (7)
8) closes the contact and energizes the relay coil (R4),
The contact (S4) closes and the motor (25M) starts. Below, the intermediate heat exchanger (52) (57) (61) and evaporator (
The temperature of the second storage compartment (5) decreases, and the temperature of the second storage compartment (5
) is cooled to an average of -145°C.

この様に冷凍庫(1)据え付は後の冷却運転の開始時に
は両低温側冷媒回路(11)(12)は片方づつ即ち第
1の低温側冷媒回路(11)から冷却運転が開始きれ、
同時に起動しないので、冷却運転開始時に高温側冷媒回
路(10)の電動圧縮機(13)に加わる負荷が軽減さ
れる。又、第1−の低温側冷媒回路(11)が目標の冷
却能力を発揮する様になってから、即ち安定状態となり
第1の低温側冷媒回路(11)が高温側冷媒回路(10
)に与える負担が最も軽くなってから第2の低温側冷媒
回路(12)を起動するから冷却運転開始時に高温側冷
媒回路(10)に加わる負荷は最も軽くなる。又、低温
側冷媒回路も二系統の回路(11)(12>によって構
成しているので電動圧縮機(13)(22)(25)も
能力の小きいもので済み、起動時の消費電力の低減によ
る大容量の電源装置の不要化と、低震動、低騒音を実現
できる。
In this way, when the freezer (1) is installed, at the start of later cooling operation, both low-temperature side refrigerant circuits (11) and (12) can start cooling operation from one side at a time, that is, from the first low-temperature side refrigerant circuit (11),
Since they are not started at the same time, the load applied to the electric compressor (13) of the high temperature side refrigerant circuit (10) at the start of the cooling operation is reduced. Moreover, after the first low temperature side refrigerant circuit (11) starts to exhibit the target cooling capacity, that is, it becomes a stable state, the first low temperature side refrigerant circuit (11) becomes the high temperature side refrigerant circuit (10).
) is started after the load on the high temperature side refrigerant circuit (12) is lightest, so the load on the high temperature side refrigerant circuit (10) at the start of the cooling operation becomes the lightest. In addition, since the low-temperature side refrigerant circuit is composed of two circuits (11) (12), the electric compressors (13) (22) (25) can also be of small capacity, reducing power consumption during startup. This reduction eliminates the need for large-capacity power supplies, and achieves low vibration and noise.

以上は順調に冷却運転が進行した場合について述べたが
、電磁弁(19B)が開放きれてから第2の低温側冷媒
回路(12)の冷却運転が開放きれた後に扉(6A)ま
たはく6B)が長時間開放されたり、又、第2の貯蔵室
(5)に過大の負荷が投入きれて第2の蒸発器部分(1
8B)にて消費される冷媒量が異常に多くなった場合或
いは第1の貯蔵室(4)の負荷が大きく第1の蒸発器部
分(18A)で多量の冷媒が必要となっている場合には
第1の蒸発器部分(18A)に供給される冷媒が不足し
て来る。第1の蒸発器部分(18A)に流入する冷媒が
不足して来ると第1のカスケードコンデンサ(28)の
温度が冷却不足によって上昇して来ると同時にアキュム
レータ(21)に溜まる液冷媒も少なくなって来るので
アキュムレータ(21)の温度も上昇して来る。それを
感知する膨張弁(17)は第1の蒸発器部分(18A)
に供給する冷媒量を増大する方向に動作するが、もとも
との冷媒量が不足して来ているためそれにも限度がある
。これによって第1のカスケードコンデンサ(28)の
温度の上昇し、又、当然第2の蒸発器部分(18B)に
流入する冷媒も少なくなるので第2のカスケードコンデ
ンサ(30)の温度も低くならない。
The above description is based on the case where the cooling operation progresses smoothly, but after the solenoid valve (19B) is completely opened and the cooling operation of the second low temperature side refrigerant circuit (12) is completely opened, the door (6A) or the door 6B is closed. ) is left open for a long time, or the second storage chamber (5) is overloaded and the second evaporator section (1
8B), or when the load on the first storage chamber (4) is large and a large amount of refrigerant is required in the first evaporator section (18A). The refrigerant supplied to the first evaporator section (18A) becomes insufficient. When the refrigerant flowing into the first evaporator section (18A) becomes insufficient, the temperature of the first cascade condenser (28) increases due to insufficient cooling, and at the same time, the amount of liquid refrigerant accumulated in the accumulator (21) decreases. Therefore, the temperature of the accumulator (21) also rises. The expansion valve (17) that senses this is located in the first evaporator section (18A).
The system works to increase the amount of refrigerant supplied to the system, but there is a limit to this because the original amount of refrigerant has become insufficient. As a result, the temperature of the first cascade condenser (28) increases, and since the amount of refrigerant flowing into the second evaporator section (18B) also decreases, the temperature of the second cascade condenser (30) does not decrease.

この様な状況が継続きれると双方の低温側冷媒回路(1
1)(12)の冷却能力の低下が長時間継続きれる事に
なり、目標温度よりも高い状態が長時間続くと共に、低
温側冷媒回路(11〉若しくは(12)内の圧力も高く
なるため、電動圧縮機(22)(25)の寿命にも問題
がでて来る。
If this situation continues, both low temperature side refrigerant circuits (1
1) The decrease in cooling capacity (12) will continue for a long time, and the temperature will remain higher than the target temperature for a long time, and the pressure in the low-temperature side refrigerant circuit (11> or (12) will also increase.) A problem also arises in the lifespan of the electric compressors (22) and (25).

そのため、本発明では冷媒不足によって第1のカスケー
ドコンデンサ(28)の温度が上昇し一20℃に上昇し
た時点(低温始動サーモスタット(74)の接点が開く
以前。)で温度検出器(81)が接点を開く。それによ
ってリレーコイル(R9)が非通電となって接点(ss
 I )(si−が開くため、電動圧縮機(25)は停
止し、電磁弁(19B)は強制的に閉ざされる。これは
冷却運転の開始時、或いは定常運転中に第1のカスケー
ドコンデンサ(28)の温度が上昇した場合にも行われ
る。これによって第1の蒸発器部分(18A)には冷媒
が十分に供給される様になるので第1の低温側冷媒回路
(11)はすみやかに冷却能力を回復する。又、この途
中に第1のカスケードコンデンサ(28)の温度が−4
0°C即ち第1の低温側冷媒回路(11)が十分に冷却
能力を発揮できる温度まで低下すれば温度検出器(81
)が接点を閉じるので電磁弁(19B)は開き第2の低
温側冷媒回路(12)も再び冷却運転を開始する。これ
によって第2の貯蔵室(5)の温度は一時的に上昇する
事も考えられるが、第1の貯蔵室(4)の温度は目標温
度に確実に維持できる事になり、第1の貯蔵室(4)に
貴重な試料を収納しておく事により劣化を確実に防止で
きる。又、双方の低温側冷媒回路(11)(12)の冷
却能力を回復するまでの時間がトータル的に短縮される
事になるので電動圧縮機(22)(25)の劣化も抑制
される。
Therefore, in the present invention, when the temperature of the first cascade condenser (28) rises to -20°C due to refrigerant shortage (before the contact of the low temperature start thermostat (74) opens), the temperature detector (81) is activated. Open the contacts. As a result, the relay coil (R9) becomes de-energized and the contact (ss
I) (si- is opened, so the electric compressor (25) is stopped and the solenoid valve (19B) is forcibly closed. This is because the first cascade condenser ( 28) is also carried out when the temperature rises.As a result, a sufficient amount of refrigerant is supplied to the first evaporator section (18A), so the first low-temperature side refrigerant circuit (11) is immediately activated. The cooling capacity is restored. Also, during this process, the temperature of the first cascade condenser (28) drops to -4
When the temperature drops to 0°C, that is, the temperature at which the first low-temperature side refrigerant circuit (11) can sufficiently exhibit its cooling capacity, the temperature detector (81)
) closes the contact point, so the solenoid valve (19B) opens and the second low temperature side refrigerant circuit (12) also starts cooling operation again. As a result, the temperature of the second storage chamber (5) may rise temporarily, but the temperature of the first storage chamber (4) can be reliably maintained at the target temperature. By storing valuable samples in chamber (4), deterioration can be reliably prevented. Furthermore, since the time required to recover the cooling capacity of both low-temperature side refrigerant circuits (11, 12) is reduced in total, deterioration of the electric compressors (22, 25) is also suppressed.

次に双方の低温側冷媒回路(11)(12)が冷却運転
を実行している状態で、例えば第1の低温側冷媒回路(
11)が故障した場合にはスイッチ(SWI)を閉じれ
ばリレーコイル(R2)が通電され、接点(SF り(
So)が開き電動圧縮機(22)が停止し、電磁弁(1
9A)が閉じる。これによって第1の蒸発器部分(18
A)には冷媒は流れなくなる。この状態で第1の低温側
冷媒回路(11)の修理が行える。又、故障でなくとも
第1の貯蔵室(4)内の清掃を行う場合にもスイッチ(
SWI)を閉じる事によって第1の貯蔵室(4)内の冷
却を中断し、清掃を行える。この時接点<574)は閉
じているので接点(sex)が開いたとしても第2の低
温側冷媒回路(12)は引き続き冷却運転を実行して第
2の貯蔵室(5)内を所定の温度に冷却しているから、
第1の貯蔵室(4)内に収納されていた物品は第2の貯
蔵室(5)内に移しておく事により、引き続き良好な状
態で冷却保存でき、変質の危険性は無くなる。
Next, while both low-temperature side refrigerant circuits (11) and (12) are performing cooling operation, for example, the first low-temperature side refrigerant circuit (
11) fails, closing the switch (SWI) will energize the relay coil (R2) and close the contact (SF).
So) opens, the electric compressor (22) stops, and the solenoid valve (1
9A) closes. This allows the first evaporator section (18
Refrigerant will no longer flow through A). In this state, the first low temperature side refrigerant circuit (11) can be repaired. In addition, even if there is no malfunction, the switch (
By closing SWI), cooling in the first storage chamber (4) can be interrupted and cleaning can be performed. At this time, the contact <574) is closed, so even if the contact (sex) opens, the second low-temperature side refrigerant circuit (12) continues to perform cooling operation to keep the inside of the second storage chamber (5) at a predetermined level. Because it is cooled to the temperature
By moving the articles stored in the first storage chamber (4) to the second storage chamber (5), they can be kept cool and stored in good condition, eliminating the risk of deterioration.

逆に第2の貯蔵室(5)内の清掃を行う場合や第2の低
温側冷媒回路(12)が故障した場合には、スイッチ(
SW*)を閉じる事によってリレーコイル(R、)に通
電し、接点(s、 * )(ss s )を開く事によ
って電動圧縮m(25)を停止して電磁弁(19B)を
閉ざす事ができる。これによって第2の貯蔵室(5)内
の清掃や第2の低温側冷媒回路(12)の修理が行え、
同時に第1の貯蔵室(4)において物品の保存が行える
。ここで双方のスイッチ(SWI)(SW、)が閉ざさ
れた場合には、接点(sy + )(si I)が共に
閉じるのでリレーフィル(R6)に通電きれて接点(s
s 1)(ss * )が開くので高温側冷媒回路(1
0)の電動圧縮機(13)が停止し、無駄な運転を防止
し、又、リレーフィル(R6)の自己保持を解き、初期
の状態に復帰せしめる。
Conversely, when cleaning the second storage compartment (5) or when the second low-temperature side refrigerant circuit (12) breaks down, the switch (
By closing SW*), the relay coil (R,) is energized, and by opening the contact (s, *) (ss s), the electric compression m (25) is stopped and the solenoid valve (19B) is closed. can. This allows cleaning inside the second storage room (5) and repairing the second low-temperature side refrigerant circuit (12).
At the same time, articles can be stored in the first storage room (4). Here, when both switches (SWI) (SW, ) are closed, the contacts (sy + ) (si I) are closed together, so the relay fill (R6) is energized and the contact (s
s1) (ss*) opens, so the high temperature side refrigerant circuit (1
The electric compressor (13) of No. 0) is stopped to prevent unnecessary operation, and the self-holding of the relay fill (R6) is released to return to the initial state.

(ト)発明の効果 本発明によれば一系統の高温側冷媒回路に対して二系統
の低温側冷媒回路を構成しているためそれぞれ二系統づ
つ構成するものに比して構造が簡略化できると共に、低
温側冷媒回路が分担する負荷が小きくなるため低温側冷
媒回路の電動圧縮機を小容量のものとする事ができ、低
騒音、低震動を達成できる。又、高温側冷媒回路の蒸発
器部分を通過した後の低温冷媒によって低温側冷媒回路
の電動圧縮機を冷却するので、高温となり易い低温側冷
媒回路の電動圧縮機を良好に冷却できる。
(G) Effects of the Invention According to the present invention, two low-temperature refrigerant circuits are configured for one high-temperature refrigerant circuit, so the structure can be simplified compared to a configuration in which each system has two refrigerant circuits. At the same time, since the load shared by the low-temperature side refrigerant circuit is reduced, the electric compressor of the low-temperature side refrigerant circuit can be made small in capacity, and low noise and vibration can be achieved. Furthermore, since the electric compressor of the low temperature side refrigerant circuit is cooled by the low temperature refrigerant that has passed through the evaporator section of the high temperature side refrigerant circuit, the electric compressor of the low temperature side refrigerant circuit, which tends to reach high temperatures, can be cooled well.

更にこの時それぞれの蒸発器部分に対応する低温側冷媒
回路の電動圧縮機を冷却するので、例えば両蒸発器部分
を出た冷媒を合流させ、一方の電動圧縮機を冷却した後
、他方の電動圧縮機を冷却する場合の如く、下流側の冷
却不足が生ずる等の不都合はなく、良好なる運転状態を
実現できる。
Furthermore, at this time, the electric compressors of the low-temperature side refrigerant circuits corresponding to each evaporator section are cooled, so for example, the refrigerants exiting both evaporator sections are combined, one electric compressor is cooled, and then the other electric compressor is cooled. Unlike when cooling a compressor, there is no problem such as insufficient cooling on the downstream side, and a good operating condition can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

各図は本発明の実施例を示し、第1図は冷凍用の斜視図
、第2図は冷凍装置の冷媒回路図、第3図は同電気回路
図である。 (RA’)・・・冷凍装置、 (10)・・・高温側冷
媒回路、(11)<12)・・・第1、第2の低温側冷
媒回路、 (18A)(18B)・・・第1、第2の蒸
発器部分、 (22)(25)・・・電動圧縮機、 (
23)(26)・・・オイルクーラ。
Each figure shows an embodiment of the present invention; FIG. 1 is a perspective view of a refrigeration system, FIG. 2 is a refrigerant circuit diagram of a refrigeration system, and FIG. 3 is an electric circuit diagram thereof. (RA')... Refrigeration device, (10)... High temperature side refrigerant circuit, (11)<12)... First and second low temperature side refrigerant circuits, (18A) (18B)... First and second evaporator parts, (22) (25)... electric compressor, (
23) (26)...Oil cooler.

Claims (1)

【特許請求の範囲】[Claims] 1、それぞれ圧縮機、凝縮器、蒸発器等から独立した冷
媒閉回路を構成して成る高温側冷媒回路と第1及び第2
の低温側冷媒回路とから成り、前記高温側冷媒回路の蒸
発器は第1と第2の蒸発器部分にて構成して前記両低温
側冷媒回路の凝縮器とそれぞれ熱交換器を構成すると共
に、前記両蒸発器部分から前記高温側冷媒回路の圧縮機
に帰還する冷媒にてそれぞれに対応する低温側冷媒回路
の圧縮機をそれぞれ冷却する事を特徴とする冷凍装置。
1. A high-temperature side refrigerant circuit, each consisting of a refrigerant closed circuit independent from a compressor, a condenser, an evaporator, etc., and a first and second refrigerant circuit.
and a low-temperature side refrigerant circuit, and the evaporator of the high-temperature side refrigerant circuit is constituted by first and second evaporator parts, and together with the condensers of both the low-temperature side refrigerant circuits, respectively constitute a heat exchanger. A refrigeration system characterized in that the refrigerant returned from both the evaporator parts to the compressor of the high temperature side refrigerant circuit cools the corresponding compressor of the low temperature side refrigerant circuit.
JP10546086A 1986-05-08 1986-05-08 Refrigerator Pending JPS62294855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10546086A JPS62294855A (en) 1986-05-08 1986-05-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10546086A JPS62294855A (en) 1986-05-08 1986-05-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS62294855A true JPS62294855A (en) 1987-12-22

Family

ID=14408190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10546086A Pending JPS62294855A (en) 1986-05-08 1986-05-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62294855A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432662A (en) * 1990-05-28 1992-02-04 Tabai Espec Corp Binary refrigeration arrangement
WO1998049506A1 (en) * 1997-04-25 1998-11-05 Sanyo Electric Co., Ltd. Low temperature storage cabinet
WO2004059226A1 (en) * 2002-12-18 2004-07-15 Kendro Laboratory Products, Lp Dual independent chamber ultra-low temperature freezer
JP2013015315A (en) * 2012-09-19 2013-01-24 Panasonic Healthcare Co Ltd Freezing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432662A (en) * 1990-05-28 1992-02-04 Tabai Espec Corp Binary refrigeration arrangement
WO1998049506A1 (en) * 1997-04-25 1998-11-05 Sanyo Electric Co., Ltd. Low temperature storage cabinet
WO2004059226A1 (en) * 2002-12-18 2004-07-15 Kendro Laboratory Products, Lp Dual independent chamber ultra-low temperature freezer
EP2341305B1 (en) * 2002-12-18 2018-09-26 Thermo Fisher Scientific (Asheville) LLC Dual independent chamber ultra-low temperature freezer
JP2013015315A (en) * 2012-09-19 2013-01-24 Panasonic Healthcare Co Ltd Freezing device

Similar Documents

Publication Publication Date Title
US9909786B2 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
JP3192130B2 (en) Operating method of refrigeration container and refrigeration system
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
US20130091891A1 (en) Cascade refrigeration system with modular ammonia chiller units
JPH10259962A (en) Freezing device, freezer, air-cooled condenser unit for freezing device and compressor unit
KR20100014962A (en) Cooling storage and method of operating the same
US6349558B1 (en) Ammonia refrigerator
JP2000088431A (en) Brine cooler
JP2013160427A (en) Dual refrigeration system
JP2000346466A (en) Vapor compression type refrigerating cycle
US6634182B2 (en) Ammonia refrigerator
JPS62294855A (en) Refrigerator
JP4608790B2 (en) refrigerator
JP2003336918A (en) Cooling device
JPS62294854A (en) Refrigerator
JP2021116940A (en) Freezer and use method of the same
JP3042506B2 (en) Refrigeration equipment
JPS62294853A (en) Refrigerator
JP2787882B2 (en) Heat storage type cooling device
JP2003194427A (en) Cooling device
JP2002162120A (en) Refrigerating machine of air conditioner
JP4240715B2 (en) Refrigeration equipment
JP2640051B2 (en) Refrigeration equipment
JP2500979B2 (en) Thermal storage refrigeration cycle device
JP3281973B2 (en) Frozen car