JPS62294853A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS62294853A
JPS62294853A JP10545886A JP10545886A JPS62294853A JP S62294853 A JPS62294853 A JP S62294853A JP 10545886 A JP10545886 A JP 10545886A JP 10545886 A JP10545886 A JP 10545886A JP S62294853 A JPS62294853 A JP S62294853A
Authority
JP
Japan
Prior art keywords
temperature
temperature side
refrigerant circuit
low
side refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10545886A
Other languages
Japanese (ja)
Inventor
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10545886A priority Critical patent/JPS62294853A/en
Publication of JPS62294853A publication Critical patent/JPS62294853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (イ)産業上の利用分野 本発明は複数の冷媒閉回路を用い、高温側冷媒回路の蒸
発器によって低温側冷媒回路の凝縮器を冷却し、低温側
冷媒回路の蒸発器にて沸点の低い冷媒を蒸発せしめて極
低温を得るための冷凍装置に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (a) Industrial Application Field The present invention uses a plurality of refrigerant closed circuits, and cools the condenser of the low temperature side refrigerant circuit by the evaporator of the high temperature side refrigerant circuit. The present invention also relates to a refrigeration system for obtaining an extremely low temperature by evaporating a refrigerant with a low boiling point in an evaporator of a low-temperature side refrigerant circuit.

(ロ)従来の技術 従来此種冷凍装置は例えば実公昭56−53236号公
報で述べられている如く二元冷凍装置と呼ばれており、
二系統の独立した冷媒閉回路を準備し、高温側冷媒回路
の蒸発器と低温側冷媒回路の凝縮器によって熱交換器即
ちカスケードコンデンサを構成する。一方低温側冷媒回
路には比較的沸点の低い冷媒を充填し、上記カスケード
コンデンサにてこの冷媒を凝縮させ、低温側冷媒回路の
蒸発器にてこの冷媒を蒸発きせる事により、低温側冷媒
回路の蒸発器にて極低温を得る構成である。前記公報の
如き構成では最終的に一85°C程度を得るのが限度で
あるが、更に低い温度(例えば−150℃等)を得るも
のとして例えは米国特許第3,733.845号明細書
の如く低温側冷媒回路を所謂混合冷媒方式として、より
沸点の高い冷媒によって、より沸点の低い冷媒を次々に
凝縮する事によって最終段の蒸発器で極めて低い温度を
得るものである。
(b) Prior Art Conventionally, this type of refrigeration system is called a binary refrigeration system, as described in, for example, Japanese Utility Model Publication No. 56-53236.
Two independent refrigerant closed circuits are prepared, and a heat exchanger, ie, a cascade condenser, is configured by the evaporator of the high temperature side refrigerant circuit and the condenser of the low temperature side refrigerant circuit. On the other hand, the low-temperature side refrigerant circuit is filled with a refrigerant with a relatively low boiling point, this refrigerant is condensed in the cascade condenser, and the refrigerant is evaporated in the evaporator of the low-temperature side refrigerant circuit. The structure is such that an extremely low temperature is obtained in the evaporator. Although the configuration as described in the above publication is limited to a final temperature of approximately 185°C, for example, US Pat. The low-temperature side refrigerant circuit is a so-called mixed refrigerant system, and by successively condensing a refrigerant with a lower boiling point with a refrigerant with a higher boiling point, an extremely low temperature is obtained in the final stage evaporator.

(ハ〉2発明が解決しようとする問題点前記公報或いは
明細書の如く低温側冷媒回路には通常極めて低い沸点の
冷媒が封入されるため電動圧縮機に加わる負宥も大きく
なる。又、低温側冷媒回路の蒸発器によって冷却すべき
空間が大きくなればその分冷却能力の増加が必要となる
ため、高温側及び低温側共に大容量大出力の電動圧縮機
が必要となる。しかし乍ら斯かる電動圧縮機では起動時
等に非常に犬なる電力を消費するため、格別なる電源設
備を必要とする許りでなく消費電力量も大きくなり又、
運転時の震動及び騒音も大きくなる問題があった。
(C) 2 Problems to be Solved by the Invention As stated in the above-mentioned publication or specification, the low-temperature side refrigerant circuit is usually filled with a refrigerant with an extremely low boiling point, so the load applied to the electric compressor is also large. If the space to be cooled by the evaporator in the side refrigerant circuit becomes larger, the cooling capacity will need to be increased accordingly, so electric compressors with large capacity and high output will be required on both the high temperature and low temperature sides. This electric compressor consumes a large amount of power when starting up, etc., so it does not require special power supply equipment, and the power consumption is also large.
There was also the problem of increased vibration and noise during operation.

(ニ)問題点を解決するための手段 本発明は斯かる問題点を解決するために成されたもので
、以下実施例に沿って本発明の詳細な説明する。
(d) Means for Solving the Problems The present invention has been made to solve these problems, and the present invention will be described in detail below with reference to Examples.

冷凍装置(RA)はそれぞれ独立した冷媒閉回路である
高温側冷媒回路(10)、第1の低温側冷媒回路(11
)及び第2の低温側冷媒回路(12)にて構成する。高
温側冷媒回路(10)の蒸発器は第1の蒸発器部分(1
8A)と第2の蒸発器部分(18B)にて構成し、それ
ぞれ第1の低温側冷媒回路(11)の凝縮器(27)及
び第2の低温側冷媒回路(12)の凝縮器(29)とそ
れぞれ第1のカスケードコンデンサ<28)及び第2の
カスケードコンデンサ(30〉を構成する。第2の蒸発
器部分(18B)への冷媒流入は電磁弁(19)によっ
て制御し、高温側冷媒回路(10)の冷却運転の開始時
は電磁弁(19)を閉じ、その後第1の低温側冷媒回路
(11)の冷却運転が開始して蒸発器(46)が目標温
度である一150℃になったら電磁弁(19)を開き、
その後第2の低温側冷媒回路(12)の冷却運転を開始
するものである。
The refrigeration system (RA) has a high temperature side refrigerant circuit (10) and a first low temperature side refrigerant circuit (11), which are independent refrigerant closed circuits.
) and a second low temperature side refrigerant circuit (12). The evaporator of the high temperature side refrigerant circuit (10) has a first evaporator section (1
8A) and a second evaporator part (18B), the condenser (27) of the first low-temperature side refrigerant circuit (11) and the condenser (29) of the second low-temperature side refrigerant circuit (12), respectively. ) constitute a first cascade condenser <28) and a second cascade condenser (30>), respectively.The refrigerant inflow into the second evaporator section (18B) is controlled by a solenoid valve (19), and the refrigerant on the high temperature side is controlled by a solenoid valve (19). When the cooling operation of the circuit (10) starts, the solenoid valve (19) is closed, and then the cooling operation of the first low temperature side refrigerant circuit (11) starts and the evaporator (46) reaches the target temperature of -150°C. When this happens, open the solenoid valve (19),
Thereafter, cooling operation of the second low temperature side refrigerant circuit (12) is started.

(ホ)作用 本発明によれば二系統の低温側冷媒回路を使用するので
一個の冷媒回路が分担すべき被冷却空間を小さくでき、
負荷の減少となり、低温側冷媒回路の電動圧縮機の容量
を小きくできる。又、低温側冷媒回路は片方づつ冷却運
転を開始するので高温側冷媒回路の電動圧縮機に加わる
負荷を分散でき、容量の小型化が図れる。
(E) Function According to the present invention, since two low-temperature side refrigerant circuits are used, the space to be cooled that should be shared by one refrigerant circuit can be reduced.
The load is reduced, and the capacity of the electric compressor in the low-temperature side refrigerant circuit can be reduced. Further, since the low-temperature side refrigerant circuits start cooling operation one by one, the load applied to the electric compressor of the high-temperature side refrigerant circuit can be distributed, and the capacity can be reduced.

(へ〉実施例 次に図面に於いて実施例を説明する。第1図は実施例と
しての冷凍庫(1)の斜視図を示している。冷凍庫(1
)は例えば理化学実験室等に設置されるものであり、断
熱箱体にて構成する本体(2)内部に形成した上方開口
の貯蔵室を断熱区画壁(3)にて左右に区画して第1の
貯蔵室(4)と第2の貯蔵室(5)を構成している。(
6)は両貯蔵室(4)(5)の上方開口を開閉自在に閉
じる断熱扉、又、(7)は後に詳述する冷凍装置(RA
)の構成部品を収容する機械室で側方に形成きれている
Example Next, an example will be explained with reference to the drawings. Fig. 1 shows a perspective view of a freezer (1) as an example.
) is installed, for example, in a physical and chemical laboratory, etc., and consists of a main body (2) consisting of an insulated box, an upward-opening storage chamber formed inside, and partitioned left and right by insulated partition walls (3). The first storage chamber (4) and the second storage chamber (5) are configured. (
6) is an insulating door that can open and close the upper openings of both storage compartments (4) and (5), and (7) is a refrigeration system (RA) that will be described in detail later.
) is formed on the side by a machine room that houses the components.

第2図は本願の冷凍装置(RA)の冷媒回路を示す。冷
凍装置(RA)はそれぞれ独立した冷媒閉回路を構成す
る高温側冷媒回路(10)と、第1の低温側冷媒回路(
11)及び第2の低温側冷媒回路(12)とから構成き
れている。(13)は高温側冷媒回路(10)を構成す
る電動圧縮機であり、その吐出側配管(13D)は凝縮
器(14)に接続きれる。(15)は凝縮器(14)冷
却用の送風機である。凝縮器(14)を出た冷媒配管は
受液器(16〉を経た後、分岐点(Pl)より二方向に
分れ、一方は温度式膨張弁(17)を経て第1の蒸発器
部分(18A)に接続され、又、他方は電磁弁(19)
と温度式膨張弁(20)を経て第2の蒸発器部分く18
B)に接続される。この第1及び第2の蒸発器部分(1
8A)(18B)が高温側冷媒回路(10)の蒸発器で
ある。第1の蒸発器部分(18A)を経た冷媒配管は冷
媒液溜めとしてのアキュムレータ(21)を経て、その
後第1の低温側冷媒回路(11)の電動圧縮機(22)
のオイルクーラ(23)に接続される。又、第2の蒸発
器部分(18B>を経た冷媒配管は同様のアキュムレー
タ(24)を経て第2の低温側冷媒回路(12)の電動
圧縮機(25)のオイルクーラ(26)に接続きれる。
FIG. 2 shows a refrigerant circuit of the refrigeration system (RA) of the present application. The refrigeration system (RA) includes a high temperature side refrigerant circuit (10) and a first low temperature side refrigerant circuit (10), each of which constitutes an independent refrigerant closed circuit.
11) and a second low temperature side refrigerant circuit (12). (13) is an electric compressor constituting the high temperature side refrigerant circuit (10), and its discharge side pipe (13D) can be connected to the condenser (14). (15) is a blower for cooling the condenser (14). The refrigerant pipe that exits the condenser (14) passes through the liquid receiver (16) and then splits into two directions at the branch point (Pl), one of which passes through the thermostatic expansion valve (17) and connects to the first evaporator section. (18A), and the other is a solenoid valve (19)
and the second evaporator section 18 via the thermostatic expansion valve (20).
B). This first and second evaporator section (1
8A) (18B) is the evaporator of the high temperature side refrigerant circuit (10). The refrigerant pipe that passes through the first evaporator section (18A) passes through an accumulator (21) as a refrigerant reservoir, and then connects to the electric compressor (22) of the first low temperature side refrigerant circuit (11).
is connected to the oil cooler (23). Furthermore, the refrigerant pipe that has passed through the second evaporator section (18B) can be connected to the oil cooler (26) of the electric compressor (25) of the second low-temperature side refrigerant circuit (12) through a similar accumulator (24). .

両オイルクーラ(23)(26)を経た冷媒配管は合流
点(P2)で合流した後電動圧縮機(13)の吸込側配
管(135)に接続される。膨張弁(17)<20>の
感温部(17A)(20A)はアキュムレータ(21)
(24)にそれぞれ熱伝導的に取付けられ、それぞれ蒸
発器部分(18A)(18B)に適正な量の冷媒を供給
する様動作する。
The refrigerant pipes that have passed through both oil coolers (23) and (26) meet at a confluence point (P2) and are then connected to the suction side pipe (135) of the electric compressor (13). The temperature sensing part (17A) (20A) of the expansion valve (17) <20> is the accumulator (21)
(24) in a thermally conductive manner and operate to supply the appropriate amount of refrigerant to the evaporator sections (18A) and (18B), respectively.

高温側冷媒回路(10)にはR502冷媒(88重量%
)とR12冷媒(12重量%)が封入きれている。今、
電磁弁(19)が開いているものとして冷媒循環を説明
すると、電動圧縮機(13)から吐出きれた高温高圧の
ガス状冷媒は凝縮器(14)にて放熱液化した後、受液
器(16)を経て分流し、膨張弁(17)(20)にて
それぞれ減圧きれてそれぞれ各蒸発器部分(18A)(
18B)に流入して蒸発する。ここで第1の蒸発器部分
(18A>は第1の低温側冷媒回路(11)の凝縮器(
27)と第1のカスケードコンデンサ(28)を構成し
、又、第2の蒸発器部分(18B)は第2の低温側冷媒
回路(12)の凝縮器(29)と第2のカスケードコン
デンサ(30)を構成している。更に各蒸発器部分(1
8A>(18B>ではR502冷媒が蒸発する事によっ
て定常状態では各カスケードコンデンサ(28)(30
)は−50℃程に冷却きれる事になるため、R12冷媒
は各蒸発器部分(18A)(18B)では殆んど蒸発で
きず(蒸発温度が一35°Cのため)、そのためR12
冷媒はカスケードコンデンサ(28)(30)の冷却に
は殆んど寄与しない。即ちR12冷媒は冷媒回路内を流
れる電動圧縮機(13)の潤滑油をその中に溶は込ませ
た状態で電動圧縮機(13)に帰還させる役割を奏する
6又、各蒸発器部分く18A)(18B>を経た低温の
冷媒はアキュムレータ(21)(24)を経てそれぞれ
オイルクーラ(23)(26)に流入するので後述の如
く沸点の低い冷媒を封入される事によって高温となり勝
ちな両低温側冷媒回路(11)(12)の電動圧縮機<
22>(25)を良好に冷却できる。又、アキュムレー
タ(21)(24)からの出口管に通常形成される油戻
し用の孔から液状のR12冷媒がオイルクーラ(23)
(26)に流入してそこで蒸発するので各電動圧縮機(
22)(25)の冷却は更に良好となると共に、これに
よって電動圧縮機(13)への液戻りも解消され破損も
防止される。又、各電動圧縮機(22) (25)はそ
れぞれの低温側冷媒回路(11)(12)の凝縮器(2
7)(29)に対応した蒸発器部分(18A)(18B
)を経た冷媒によって冷却するので、例えば後述する如
く第2の低温側冷媒回路(12)を運転しない時には電
磁弁(19〉が閉じる事によってオイルクーラ(26)
には冷媒が流れなくなり、停止中の電動圧縮機(25)
を無駄に冷却する事も防止できる事になる。
R502 refrigerant (88% by weight) is used in the high temperature side refrigerant circuit (10).
) and R12 refrigerant (12% by weight) are sealed. now,
To explain the refrigerant circulation assuming that the solenoid valve (19) is open, the high-temperature, high-pressure gaseous refrigerant discharged from the electric compressor (13) is liquefied with heat dissipation in the condenser (14), and then transferred to the liquid receiver ( 16), the pressure is reduced by the expansion valves (17) and (20), and the flow is divided into the respective evaporator parts (18A) (
18B) and evaporate. Here, the first evaporator part (18A>) is the condenser (18A) of the first low temperature side refrigerant circuit (11).
27) and the first cascade condenser (28), and the second evaporator part (18B) constitutes the condenser (29) of the second low temperature side refrigerant circuit (12) and the second cascade condenser (28). 30). Furthermore, each evaporator section (1
8A>(18B>), each cascade condenser (28) (30
) can be cooled down to about -50℃, so R12 refrigerant can hardly evaporate in each evaporator section (18A) (18B) (because the evaporation temperature is -35℃), so R12
The refrigerant hardly contributes to cooling the cascade condensers (28) (30). That is, the R12 refrigerant flows through the refrigerant circuit and returns to the electric compressor (13) with the lubricating oil of the electric compressor (13) dissolved therein. ) (18B>) The low-temperature refrigerant passes through the accumulators (21) and (24) and flows into the oil coolers (23) and (26), respectively.As will be explained later, the low-temperature refrigerant that has passed through the oil coolers (23) and (26) tends to become hot due to being filled with a refrigerant with a low boiling point. Electric compressor of low temperature side refrigerant circuit (11) (12)
22>(25) can be cooled well. In addition, liquid R12 refrigerant flows into the oil cooler (23) from the oil return holes normally formed in the outlet pipes from the accumulators (21) and (24).
(26) and evaporates there, so each electric compressor (
22) The cooling of (25) becomes even better, and this also eliminates the liquid returning to the electric compressor (13) and prevents damage. In addition, each electric compressor (22) (25) is connected to a condenser (2) of each low temperature side refrigerant circuit (11) (12).
7) Evaporator parts (18A) (18B) corresponding to (29)
), for example, when the second low-temperature side refrigerant circuit (12) is not in operation as described later, the solenoid valve (19> is closed and the oil cooler (26) is cooled.
The electric compressor (25) is stopped due to no refrigerant flowing to it.
This also prevents unnecessary cooling.

次に第1の低温側冷媒回路(11)を構成する電動圧縮
機(22)の吐出側配管(22D>は凝縮器(27)に
接続され、次に気液分離器(31)に接続される。気液
分離器(31)から出た気相配管(32)は中間熱交換
器(33)内を通過して次の気液分離器(34)に接続
きれ、液相配管(35)は乾燥器(36)を経た後減圧
器(37)を経て中間熱交換器(33)と(38)の間
に接続される。又、気液分離器(34)から出た液相配
管(39)は乾燥器(40)と減圧器(41)を経て中
間熱交換器(38)と(42)の間に接m詐れる。気液
分離器(34)から出た気相配管(43〉は中間熱交換
器(38)内を通過した後、中間熱交換器(42)内を
通過し乾燥器(44)を経て減圧器(45)を通過し蒸
発器(46)に接続される。
Next, the discharge side pipe (22D) of the electric compressor (22) that constitutes the first low temperature side refrigerant circuit (11) is connected to the condenser (27), and then to the gas-liquid separator (31). The gas phase piping (32) coming out of the gas-liquid separator (31) passes through the intermediate heat exchanger (33) and is connected to the next gas-liquid separator (34), and then the liquid phase piping (35). is connected between intermediate heat exchangers (33) and (38) via a dryer (36) and a pressure reducer (37).Also, the liquid phase pipe ( 39) is connected between the intermediate heat exchanger (38) and (42) via the dryer (40) and the pressure reducer (41). > passes through the intermediate heat exchanger (38), then the intermediate heat exchanger (42), the dryer (44), the pressure reducer (45), and is connected to the evaporator (46). .

この蒸発器(46)が第1の貯蔵室(4)の壁面外側に
取付けられる。蒸発器(46)を経た冷媒配管は中間熱
交換器に(42)(3B>(33)の順で次々に接続さ
れた後、アキュムレータ(47)を経て電動圧縮機(2
2)の吸込側配管(225)に接続される。
This evaporator (46) is attached to the outside wall of the first storage chamber (4). After passing through the evaporator (46), the refrigerant pipe is connected to the intermediate heat exchanger (42) (3B>(33) one after another in the order of
2) is connected to the suction side piping (225).

第2の低温側冷媒回路(12)も第1の低温側冷媒回路
(11)と同様に電動圧縮機(25〉の吐出側配管(2
5D)と吸込側配管(255)の間に凝縮器(29)、
気液分離器(50)(53)、各気相配管(51)(6
2)及び液相配管(54)(58)、乾燥器(55)(
59)(63)、減圧器(56)(60)(64)、中
間熱交換器(52)(57)(61)、蒸発器(65)
及びアキュムレータ(66)がそれぞれ接続され、同様
の冷媒閉回路を構成する。蒸発器(65)は第2の貯蔵
室(5)の壁面外側に取付けられる。
Similarly to the first low temperature side refrigerant circuit (11), the second low temperature side refrigerant circuit (12) also has a discharge side pipe (2
5D) and a condenser (29) between the suction side pipe (255),
Gas-liquid separator (50) (53), each gas phase piping (51) (6
2) and liquid phase piping (54) (58), dryer (55) (
59) (63), pressure reducer (56) (60) (64), intermediate heat exchanger (52) (57) (61), evaporator (65)
and an accumulator (66) are connected to each other to form a similar refrigerant closed circuit. The evaporator (65) is attached to the outside wall of the second storage chamber (5).

両低温側冷媒回路(11)(12)には沸点の異なる四
種類の混合冷媒が封入される。即ちR12(35重量%
)、R13B1(39重量%)、R14(22重量%)
及びR50(4重量%)が予め混合きれた状態で封入さ
れる。
Four types of mixed refrigerants having different boiling points are sealed in both low-temperature side refrigerant circuits (11) and (12). That is, R12 (35% by weight
), R13B1 (39% by weight), R14 (22% by weight)
and R50 (4% by weight) are sealed in a pre-mixed state.

次に定常状態における両低温側冷媒回路(11)(12
)の冷媒循環について説明する。電動圧縮機(22)(
25)から吐出きれた高温高圧のガス状混合冷媒は第1
若しくは第2のカスケードコンデンサ(2B>(30)
にて冷却され混合冷媒中のR12、R13B1冷媒が凝
縮された状態で気液分離器(31)(50)に流入する
。この時点では混合冷媒中のR14とR50は沸点が極
めて低いために未だガス状態であるためR14とR50
は気相配管(32) (51)に、R12とR13B1
は液相配管(35)(54)へと分離される。気相配管
(32) (51)に流入した冷媒混合物はそれぞれ中
間熱交換器(33バ52)と熱交換して凝縮きれた後、
気液分離器(34)(53)に至る。ここで中間熱交換
器(33)(52)には蒸発器(46)(65)から帰
還して来る低温の冷媒がそれぞれ流入し、更に液相配管
(35)(54)にそれぞれ流入したR13B1冷媒が
乾燥器(36)(55)を経て減圧器(37)(56)
でそれぞれ減圧された後、中間熱交換器(33バ52)
にそれぞれ流入してそこで蒸発することにより冷却に寄
与する為、中間熱交換器(33)(52)は−80℃程
となっている。従って気相配管(32) (51)をそ
れぞれ通過した混合冷媒中のR14は凝縮液化され、R
50は更に沸点が低い為に未だガス状態である。よって
R14は気液分離器(34)(53)から液相配管(3
9)(58)へ、又、R50は気相配管(43) (6
2)へとそれぞれ分離きれ、R14は乾燥器(40)(
59)を経て減圧器(41)(60)にて減圧され中間
熱交換器(42バ38)若しくは(61)(57)それ
ぞれの間に流入して中間熱交換器(38)(57)内で
蒸発する。中間熱交換器(38)(57)には蒸発器(
46>(65)からの帰還低温冷媒がそれぞれ流入する
と共にR14の蒸発が更に冷却に寄与するため、中間熱
交換器(38)(57)の温度は一100℃程となって
いる。更に中間熱交換器(42)(61)には蒸発器(
46)(65)からの帰還低温冷媒が直ぐに流入してい
るために、その温度は一120″C程の極めて低い温度
となっているので、中間熱交換器(38)(42)若し
くは(57)(61)とそれぞれ熱交換した気相配管(
43)<62)を通過する最も沸点の低い冷媒R50は
凝縮液化きれ、乾燥器(44)(63)を経て減圧器(
45)(64)にて減圧された後、それぞれ蒸発器(4
6)(65)に流入してそこで蒸発する。この時の蒸発
器(46)(65)の温度は一150°Cに到達してい
る。これが冷凍装置(RA)の最終到達温度であり、こ
れによって第1、第2の貯蔵室<4>(5)内を超低温
の環境とすることが可能となる。蒸発器(46)から出
た冷媒R50は中間熱交換器(42) (38)(33
)に、又、蒸発器(65)から出た冷媒R50は中間熱
交換器(61)(57)(52>にそれぞれ次々に流入
、流出し、各冷媒R14、R13B1、R12と合流し
ながらアキュムレータ(47)(66)にてそれぞれ未
蒸発の冷媒を分離した後、電動圧縮機(22)(25)
にそれぞれ吸入される。又、この循環においてR12冷
媒は冷却には殆んど寄与せず、電動圧縮機(22)(2
5)の潤滑油を帰還させる働きをする。
Next, both low temperature side refrigerant circuits (11) (12) in steady state
) refrigerant circulation will be explained. Electric compressor (22) (
The high-temperature, high-pressure gaseous mixed refrigerant discharged from the first
Or second cascade capacitor (2B>(30)
The R12 and R13B1 refrigerants in the mixed refrigerant flow into the gas-liquid separators (31) and (50) in a condensed state. At this point, R14 and R50 in the mixed refrigerant are still in a gaseous state due to their extremely low boiling points.
is the gas phase pipe (32) (51), R12 and R13B1
is separated into liquid phase piping (35) and (54). The refrigerant mixture that has flowed into the gas phase pipes (32) and (51) exchanges heat with the intermediate heat exchanger (33 bar 52) and is condensed.
The gas-liquid separator (34) (53) is reached. Here, the low-temperature refrigerant returning from the evaporators (46) and (65) flows into the intermediate heat exchangers (33) and (52), respectively, and the R13B1 flows into the liquid phase pipes (35 and 54), respectively. The refrigerant passes through the dryer (36) (55) and then the pressure reducer (37) (56)
After being depressurized by the intermediate heat exchanger (33 bar 52)
The temperature of the intermediate heat exchangers (33) and (52) is about -80° C., since the intermediate heat exchangers (33) and (52) contribute to cooling by flowing into and evaporating there. Therefore, R14 in the mixed refrigerant that has passed through the gas phase pipes (32) and (51) is condensed and liquefied, and R
50 is still in a gaseous state due to its lower boiling point. Therefore, R14 connects the liquid phase pipe (3) from the gas-liquid separator (34) (53).
9) to (58), and R50 is the gas phase piping (43) (6
2), and R14 is a dryer (40) (
59), the pressure is reduced in the pressure reducers (41) and (60), and the mixture flows into the intermediate heat exchanger (42 bar 38) or between (61) and (57), respectively, and then flows into the intermediate heat exchanger (38) and (57). It evaporates. The intermediate heat exchanger (38) (57) has an evaporator (
The temperature of the intermediate heat exchangers (38) and (57) is about -100°C because the return low-temperature refrigerant from 46>(65) flows in and the evaporation of R14 further contributes to cooling. Furthermore, the intermediate heat exchanger (42) (61) is equipped with an evaporator (
46) Since the return low-temperature refrigerant from (65) is immediately flowing in, its temperature is extremely low, about -120"C, so it is ) (61) and gas phase piping (
The refrigerant R50 with the lowest boiling point that passes through 43) < 62) is condensed and liquefied, passes through dryers (44) and (63), and is then sent to a pressure reducer (
45) After being depressurized at (64), the respective evaporators (4
6) flows into (65) and evaporates there. At this time, the temperature of the evaporators (46) and (65) has reached -150°C. This is the final temperature reached by the refrigeration apparatus (RA), and it becomes possible to create an extremely low temperature environment in the first and second storage chambers <4> (5). The refrigerant R50 coming out of the evaporator (46) is transferred to the intermediate heat exchanger (42) (38) (33
), and the refrigerant R50 coming out of the evaporator (65) sequentially flows into and out of the intermediate heat exchangers (61), (57), and (52), respectively, and flows into the accumulator while merging with the refrigerants R14, R13B1, and R12. After separating the unevaporated refrigerant at (47) and (66), the electric compressor (22) and (25)
each inhaled. In addition, in this circulation, R12 refrigerant hardly contributes to cooling, and the electric compressor (22) (2
5) functions to return the lubricating oil.

次に第3図は本発明の冷凍装置(RA)の制御用電気回
路を示す。(AC)(AC)は交流電源であり、(70
)は電源スィッチであり、後段の全ての機器の電源の大
切を行うものである。(13M)は高温側冷媒回路(1
0)の電動圧縮m(13)駆動用のモータであり、電源
スィッチ(70)が閉じている間連続運転される。(7
1)は整流回路等を含む第1の貯蔵室(4)の温度調節
器であり、蒸発器(46)の温度を感知する温度検出器
(72)に基づき、例えば−150℃まで到達したら出
力端子(71A)(71B)間の出力電圧の発生を停止
し、−140℃に上昇して出力電圧を発生する。出力端
子(71A)(71B)間にはリレーフィル(R,)と
高圧スイッチ(73)が直列接続きれる。高圧スイッチ
(73)は電動圧縮機(22)の吐出側圧力を感知し、
例えば26kg/cm2に上昇して接点を開き、8 k
g / cm ”に低下して接点を閉じる。(74)は
低温始動サーモスタットであり、アキュムレータ(21
)の温度を感知し、例えば−35°Cに低下して ゛接
点を閉じ、−10°Cに上昇して接点を開く動作をし、
リレーコイル(R8)の常開接点(51)及びリレーフ
ィル(R1)と直列に電源(AC)(AC)に接続され
る。(22M)は第1の低温側冷媒回路(11〉の電動
圧縮機(22)駆動用のモータであり、リレーコイル(
R1)の常開接点(S、)と直列に接続される。
Next, FIG. 3 shows a control electric circuit for the refrigeration apparatus (RA) of the present invention. (AC) (AC) is an alternating current power supply, (70
) is the power switch, which provides power to all devices in the subsequent stage. (13M) is the high temperature side refrigerant circuit (1
This is a motor for driving the electric compression m(13) of No. 0), and is continuously operated while the power switch (70) is closed. (7
1) is a temperature controller for the first storage chamber (4) that includes a rectifier circuit, etc. Based on a temperature detector (72) that senses the temperature of the evaporator (46), it outputs an output when the temperature reaches -150°C, for example. Generation of the output voltage between the terminals (71A) and (71B) is stopped, the temperature rises to -140°C, and the output voltage is generated. A relay fill (R,) and a high voltage switch (73) can be connected in series between the output terminals (71A) and (71B). The high pressure switch (73) senses the discharge side pressure of the electric compressor (22),
For example, increase to 26 kg/cm2 and open the contact, 8 k
g/cm” and closes the contacts. (74) is the cold start thermostat and the accumulator (21
), and when the temperature drops to, for example, -35°C, the contact closes, and when the temperature rises to -10°C, the contact opens,
It is connected to the power source (AC) in series with the normally open contact (51) of the relay coil (R8) and the relay fill (R1). (22M) is a motor for driving the electric compressor (22) of the first low-temperature side refrigerant circuit (11>), and the relay coil (
R1) is connected in series with the normally open contact (S, ).

(75)は第2の貯蔵室(5〉の温度調節器であり、蒸
発器(65)の温度を感知する温度検出器(76)に基
づき、同様に一150℃まで到達したら出力端子<75
A)(75B)間の出力電圧の発生を停止し、−140
°Cに上昇して出力電圧を発生する。出力端子(75A
)(75B)間にはリレーコイル(R1)と高圧スイッ
チ(77)が直列接続きれる。高圧スイッチ(77)は
電動圧縮機(25)の吐出側圧力を感知し、高圧スイッ
チ(73)と同様の動作をする。 (7B)は低温始動
サーモスタットであり、アキュムレータ(24〉の温度
を感知し、低温始動サーモスタット(74)と同様の動
作をし、リレーコイル(R1)の常開接点(S、)及び
リレーコイル(R4)と直列に接続きれる。(25M)
は第2の低温側冷媒回路(12)の電動圧縮機(25)
駆動用のモータであり、リレーフィル(R4)の常開接
点(S4)と直列に接続きれる。(19A)は電磁弁(
19)のコイルであり、電磁弁〈19)はコイル(19
A)に通電されて流路を開くもので、リレーコイル(R
6)の常開接点(Sax)と直列に接続される。(80
)は例えば蒸発器(46)の温度を感知する温度検出器
で、蒸発器(46)の温度が例えば−150°Cまで低
下して接点を閉じるもので、リレーコイル(R,)の常
開接点(Sl、)と並列回路を構成し、この並列回路は
リレーフィル(R6)と直列に接続される。
(75) is a temperature regulator for the second storage chamber (5), and based on the temperature detector (76) that senses the temperature of the evaporator (65), when the temperature reaches -150°C, the output terminal <75
A) Stop generating the output voltage between (75B) and -140
°C to generate an output voltage. Output terminal (75A
) (75B), a relay coil (R1) and a high voltage switch (77) can be connected in series. The high pressure switch (77) senses the discharge side pressure of the electric compressor (25) and operates in the same way as the high pressure switch (73). (7B) is a low temperature start thermostat that senses the temperature of the accumulator (24), operates in the same way as the low temperature start thermostat (74), and connects the normally open contact (S, ) of the relay coil (R1) and the relay coil ( Can be connected in series with R4) (25M)
is the electric compressor (25) of the second low temperature side refrigerant circuit (12)
This is a driving motor and can be connected in series with the normally open contact (S4) of the relay fill (R4). (19A) is a solenoid valve (
The solenoid valve (19) is the coil (19).
A) is energized to open the flow path, and the relay coil (R
6) is connected in series with the normally open contact (Sax). (80
) is a temperature detector that senses the temperature of the evaporator (46), for example, and closes the contact when the temperature of the evaporator (46) drops to, for example, -150°C, and the relay coil (R,) is normally open. A parallel circuit is formed with the contact (Sl,), and this parallel circuit is connected in series with the relay fill (R6).

次に冷凍装置(RA)の動作を説明する。冷凍庫(1)
が据え付けられて電源スィッチ(70)が閉じられると
モータ(13M)が起動し、電動圧縮機(13)が動作
して高温側冷媒回路(10)内を冷媒が循環し始める。
Next, the operation of the refrigeration system (RA) will be explained. Freezer (1)
is installed and the power switch (70) is closed, the motor (13M) starts, the electric compressor (13) operates, and refrigerant begins to circulate within the high temperature side refrigerant circuit (10).

この時蒸発器(46)、アキュムレータ(21)及び(
24)は常温に近い状態であるから温度検出器(80)
、低温始動サーモスタット(74)及び(78)は開放
しており、従ってリレーコイル(R1〉は通電されず、
接点(SS + )は開いていて電磁弁(19)は閉じ
ており、又、温度調節器(71)(75)の如何に係わ
らず、リレーコイル(R,)(R,)には通電されず、
接点(Sり(S、)は開いているためモータ(22M)
(25M)は起動しない。従って冷凍装置(RA”)で
は高温側冷媒回路(10)のみの冷却運転が継続きれ、
又、電磁弁(19)が閉じている事により、第1の蒸発
器部分く18A)のみに冷媒が流れて蒸発する。これに
よって第1の蒸発器部分(18A)の温度が低下して行
き、それに伴ってアキュムレータ(21)に液冷媒がた
まって行って温度が低下して一35°Cになると低温始
動サーモスタット(74)が閉じる。この時蒸発器(4
6)の温度は高いから温度調節器(71)も出力電圧を
発生して、接点(51)は閉じている。従って低温始動
サーモスタット(74)が閉じた時点でリレーコイル(
R2)に通電されてスイッチ(S、)を閉じ、モータ(
22M)が起動して電動圧縮機(22)より混合冷媒が
吐出され回路(11)内を循環し始める。この時第1の
低温側冷媒回路(11)内の冷媒は殆んどガス状態であ
るから電動圧縮機(22)吐出側の圧力は急激に上昇し
26kg/an”に到達して高圧スイッチ(73)が開
いてリレーコイル(R1)の通電を断ち、スイッチ(S
l)を開き、リレーコイル(R1)の通電が断たれスイ
ッチ(S、)が開きモータ(22M)が停止する。これ
によって電動圧縮機(22)吐出側の圧力上昇は阻止き
れ、電動圧縮機(22)の損傷は防止される。
At this time, the evaporator (46), accumulator (21) and (
24) is close to room temperature, so the temperature detector (80)
, the cold start thermostats (74) and (78) are open, so the relay coil (R1) is not energized;
The contact (SS + ) is open, the solenoid valve (19) is closed, and the relay coil (R,) (R,) is energized regardless of the temperature controller (71) (75). figure,
Since the contact (S,) is open, the motor (22M)
(25M) does not start. Therefore, in the refrigeration system (RA"), the cooling operation of only the high temperature side refrigerant circuit (10) can continue,
Furthermore, since the solenoid valve (19) is closed, the refrigerant flows only to the first evaporator section (18A) and evaporates. As a result, the temperature of the first evaporator section (18A) decreases, and as a result, liquid refrigerant accumulates in the accumulator (21), and when the temperature decreases to -35°C, the low temperature start thermostat (74 ) closes. At this time, the evaporator (4
Since the temperature of point 6) is high, the temperature regulator (71) also generates an output voltage and the contact (51) is closed. Therefore, when the cold start thermostat (74) closes, the relay coil (
R2) is energized, the switch (S,) is closed, and the motor (
22M) is activated, mixed refrigerant is discharged from the electric compressor (22) and begins to circulate within the circuit (11). At this time, since the refrigerant in the first low-temperature side refrigerant circuit (11) is almost in a gas state, the pressure on the discharge side of the electric compressor (22) rises rapidly and reaches 26 kg/an'', and the high pressure switch ( 73) opens to cut off the current to the relay coil (R1), and the switch (S
l) is opened, the relay coil (R1) is de-energized, the switch (S,) is opened, and the motor (22M) is stopped. This completely prevents the pressure from increasing on the discharge side of the electric compressor (22), thereby preventing damage to the electric compressor (22).

電動圧縮機(22)の停止によって吐出側配管(22D
)の圧力は低下し8kg/CT11”になると高圧スイ
ッチ(73)が再び閉じ前述同様にモータ(22M)が
起動されるが吐出側配管(22D)の圧力が26kg/
cm”に達した時点で再び高圧スイッチ(73)が開放
してモータ(22M)は停止する。この様なモータ(2
2M )の起動と停止を繰り返えし、沸点の高い冷媒が
蒸発して徐々に冷却作用を発揮して行くことによって中
間熱交換器(33)から徐々に温度が低下して行きモー
タ(22M)起動時の吐出側配管(22D )の圧力上
昇が26 kg/cm”に達しなくなるとモー タ(2
2M)It連続運転となる。電動圧縮機(22)が連続
運転されることによって沸点の低い冷媒も凝縮されて徐
々に冷却作用を発揮し始め、各中間熱交換器(33)(
38)(42)と蒸発器(46)の温度が徐々に低下し
て行って前述の最終到達温度(−150°C)を得る。
By stopping the electric compressor (22), the discharge side piping (22D
) decreases to 8 kg/CT11", the high pressure switch (73) closes again and the motor (22M) is started in the same manner as described above, but the pressure in the discharge side piping (22D) decreases to 26 kg/CT11".
cm'', the high voltage switch (73) opens again and the motor (22M) stops.
As the refrigerant with a high boiling point evaporates and gradually exerts a cooling effect, the temperature gradually decreases from the intermediate heat exchanger (33) and the motor (22M) starts and stops repeatedly. ) When the pressure rise in the discharge side piping (22D) at startup does not reach 26 kg/cm, the motor (2
2M) It becomes continuous operation. As the electric compressor (22) is continuously operated, the refrigerant with a low boiling point is also condensed and gradually begins to exert a cooling effect, and each intermediate heat exchanger (33) (
38) The temperatures of (42) and the evaporator (46) are gradually lowered to reach the aforementioned final temperature (-150°C).

これによって温度調節器(71)は出力電圧の発生を停
止しリレーコイル(R1)が非通電となって接点(S、
)が開き、接点(Sよ)も開いてモータ(22M>は停
止し、再び蒸発器(46)の温度が一140℃に上昇し
たら出力電圧を発生してモータ(22M)を起動する。
As a result, the temperature regulator (71) stops generating output voltage, the relay coil (R1) becomes de-energized, and the contacts (S,
) opens, the contact (S) also opens, the motor (22M) stops, and when the temperature of the evaporator (46) rises to 1140°C again, an output voltage is generated and the motor (22M) is started.

これによって第1の貯蔵室(4)内を平均−145℃程
に冷却維持する。
This keeps the inside of the first storage chamber (4) cooled to an average of about -145°C.

一方蒸発器(46)が−150℃に到達した時点で温度
検出器(80)が接点を閉じリレーコイル(R6)に通
電きれて接点(SS□>(55,)を閉じ、リレーコイ
ル(R8)自体は接点(56りが閉じる事によって自己
保持する。接点(Sa+)が閉じるとフィル(19A)
に通電され、電磁弁(19)が開いて第2の蒸発器部分
く18B)にも冷媒が流入して蒸発し始め温度が低下し
て行き、やがてアキュムレータ(24)の温度も低下し
て行って一35℃まで下がれば、低温始動サーモスタッ
ト(78)が接点を閉じてリレーコイル(R4)に通電
され、接点(S4)が閉じてモータ(25M)が起動す
る。以下は第1の低温側冷媒回路(11)同様の動作に
よって中間熱交換器(52) (57)(61)及び蒸
発器(65)の温度が低下して行き、同様に第2の貯蔵
室(5)内を平均−145°Cに冷却する。
On the other hand, when the evaporator (46) reaches -150°C, the temperature detector (80) closes the contact, the relay coil (R6) is energized, the contact (SS□>(55,) closes, and the relay coil (R8 ) itself holds itself by closing the contact (56). When the contact (Sa+) closes, the fill (19A)
is energized, the solenoid valve (19) opens, and the refrigerant flows into the second evaporator section (18B), where it begins to evaporate and the temperature decreases, and eventually the temperature of the accumulator (24) also decreases. When the temperature drops to -35°C, the low temperature starting thermostat (78) closes its contacts, energizes the relay coil (R4), closes its contacts (S4), and starts the motor (25M). Below, the temperature of the intermediate heat exchanger (52) (57) (61) and evaporator (65) decreases by the same operation as that of the first low-temperature side refrigerant circuit (11), and similarly, the temperature of the second storage compartment decreases. (5) Cool the inside to an average of -145°C.

この様に冷凍庫(1)据え付は後の冷却運転の開始時に
は両低温側冷媒回路(11)(12)は片方づつ即ち第
1の低温側冷媒回路(11)から冷却運転が開始され、
同時に起動しないので、冷却運転開始時に高温側冷媒回
路(10)の電動圧縮機(13)に加わる負荷が軽減さ
れる。又、第1の低温側冷媒回路(11)が目標の冷却
能力を発揮する様になってから、即ち安定状態となり第
1の低温側冷媒回路(11)が高温側冷媒回路(10)
に与える負担が最も軽くなってから第2の低温側冷媒回
路(12)を起動するから冷却運転開始時に高温側冷媒
回路(10)に加わる負荷は最も軽くなる。又、低温側
冷媒回路も二系統の回路(11)(12)によって構成
しているので電動圧縮機(13)(22)(25)も能
力の小さいもので済み、起動時の消費電力の低減による
大容量の電源装置の不要化と、低震動、低騒音を実現で
きる。
In this way, when the freezer (1) is installed, when the cooling operation starts later, the cooling operation is started from both low temperature side refrigerant circuits (11) and (12) one at a time, that is, from the first low temperature side refrigerant circuit (11),
Since they are not started at the same time, the load applied to the electric compressor (13) of the high temperature side refrigerant circuit (10) at the start of the cooling operation is reduced. Moreover, after the first low-temperature side refrigerant circuit (11) reaches its target cooling capacity, that is, it becomes stable, the first low-temperature side refrigerant circuit (11) becomes the high-temperature side refrigerant circuit (10).
Since the second low-temperature side refrigerant circuit (12) is activated after the load on the high-temperature side refrigerant circuit (10) is lightest, the load applied to the high-temperature side refrigerant circuit (10) at the start of the cooling operation becomes the lightest. In addition, since the low temperature side refrigerant circuit is composed of two circuits (11) (12), the electric compressors (13) (22) (25) can also be of small capacity, reducing power consumption at startup. This eliminates the need for large-capacity power supplies, and achieves low vibration and noise.

ここで実施例では冷凍庫(1)の本体(2)内を断熱区
画壁(3)で区画して第1の貯蔵室(4)と第2の貯蔵
室(5)を形成し、第1及び第2の低温側冷媒回路(1
1)(12)の蒸発器(46)(65)にてそれぞれ冷
却する構成としたが、それに限られず、本体(2)内を
区画せずに大容積の一連の貯蔵室とし、その貯蔵室を双
方の蒸発器(46)(65)にて冷却する様にしても良
い。その場合も第1の低温側冷媒回路(11)の蒸発器
(46)の温度が目標温度となってから電磁弁(19)
が開くため、貯蔵室全体としての温度低下速度は遅くな
る。
In the embodiment, the inside of the main body (2) of the freezer (1) is partitioned by a heat insulating partition wall (3) to form a first storage chamber (4) and a second storage chamber (5). Second low temperature side refrigerant circuit (1
1) The configuration is such that the evaporators (46) and (65) of (12) are used for cooling, but the structure is not limited thereto. may be cooled by both evaporators (46) and (65). In that case, after the temperature of the evaporator (46) of the first low-temperature side refrigerant circuit (11) reaches the target temperature, the electromagnetic valve (19)
, the rate of temperature drop in the storage room as a whole slows down.

(ト)発明の効果 本発明によれば低温側冷媒回路を二系統の冷媒回路にて
構成しているため、それぞれの分担する負荷が小さくな
るので、被冷却空間が大なる場合でも低温側冷媒回路の
電動圧縮機を小容量のものとする事が出来る。又、冷却
運転開始時には開閉弁により第2の蒸発器部分への冷媒
流入を漿止して第1の蒸発器部分のみを冷却し第1の低
温側冷媒回路から冷却運転を開始するため高温側冷媒回
路の電動圧縮機に加わる負荷を軽減すると共に冷却運転
の開始時に各蒸発器部分をそれぞれ十分に冷却する事が
可能になるので低温側冷媒回路の起動時の圧力上昇をよ
り低く抑える事ができるため、電動圧縮機の耐久性の向
上が図れる。又、これによって高温側冷媒回路は一系統
で済み、構成の簡略化が図れる。更に以上の事より各冷
媒回路の電動圧縮機の小容量化が図れるので消費電力の
低減と低震動、低騒音の冷凍装置を実現できる。
(G) Effects of the Invention According to the present invention, since the low-temperature side refrigerant circuit is configured with two refrigerant circuits, the load shared by each circuit becomes small, so even when the space to be cooled is large, the low-temperature side refrigerant The electric compressor in the circuit can be of small capacity. In addition, at the start of cooling operation, the on-off valve stops the refrigerant from flowing into the second evaporator section, cools only the first evaporator section, and starts cooling operation from the first low temperature side refrigerant circuit. This reduces the load on the electric compressor of the refrigerant circuit and makes it possible to sufficiently cool each evaporator section at the start of cooling operation, thereby suppressing the pressure rise at the start of the low-temperature side refrigerant circuit. As a result, the durability of the electric compressor can be improved. Furthermore, this allows only one high-temperature side refrigerant circuit to be provided, thereby simplifying the configuration. Furthermore, as a result of the above, it is possible to reduce the capacity of the electric compressor in each refrigerant circuit, thereby realizing a refrigeration system with reduced power consumption, low vibrations, and low noise.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の実施例を示し、第1図は冷凍庫の斜視図
、第2図は冷凍装置の冷媒回路図、第3図は同電気回路
図である。 (RA)・・・冷凍装置、 (10)・・・高温側冷媒
回路、(11)・・・第1の低温側冷媒回路、 (12
)・・・第2の低温側冷媒回路、 (18A)(18B
)・・・第1及び第2の蒸発器部分、 (19)・・・
電磁弁、 (2B)<30>・・・第1及び第2のカス
ケードコンデンサ、(80)・・・温度検出器。
Each figure shows an embodiment of the present invention; FIG. 1 is a perspective view of a freezer, FIG. 2 is a refrigerant circuit diagram of the refrigeration system, and FIG. 3 is an electric circuit diagram thereof. (RA)...refrigeration device, (10)...high temperature side refrigerant circuit, (11)...first low temperature side refrigerant circuit, (12)...
)...Second low temperature side refrigerant circuit, (18A) (18B
)...first and second evaporator parts, (19)...
Solenoid valve, (2B)<30>...first and second cascade capacitors, (80)...temperature detector.

Claims (1)

【特許請求の範囲】[Claims] 1、第1と第2の蒸発器部分を有した高温側冷媒回路と
、前記両蒸発器部分とそれぞれ熱交換器を構成する凝縮
器を有した第1及び第2の低温側冷媒回路とから成り、
前記第2の蒸発器部分への冷媒流通を制御する開閉弁を
設け、前記高温側冷媒回路の冷却運転開始時に前記開閉
弁により前記第2の蒸発器部分への冷媒流通を禁止し前
記第1の低温側冷媒回路から冷却運転を開始する制御装
置を設けた事を特徴とする冷凍装置。
1. A high-temperature side refrigerant circuit having first and second evaporator sections, and first and second low-temperature side refrigerant circuits having both the evaporator sections and condensers respectively constituting heat exchangers. Becomes,
An on-off valve is provided to control the flow of refrigerant to the second evaporator section, and the on-off valve prohibits the flow of refrigerant to the second evaporator section when the cooling operation of the high temperature side refrigerant circuit is started. A refrigeration system comprising a control device that starts cooling operation from a low-temperature side refrigerant circuit.
JP10545886A 1986-05-08 1986-05-08 Refrigerator Pending JPS62294853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10545886A JPS62294853A (en) 1986-05-08 1986-05-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10545886A JPS62294853A (en) 1986-05-08 1986-05-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS62294853A true JPS62294853A (en) 1987-12-22

Family

ID=14408138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10545886A Pending JPS62294853A (en) 1986-05-08 1986-05-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS62294853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525745A (en) * 2017-06-21 2020-08-27 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Refrigeration system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020525745A (en) * 2017-06-21 2020-08-27 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Refrigeration system and method

Similar Documents

Publication Publication Date Title
JPH10259962A (en) Freezing device, freezer, air-cooled condenser unit for freezing device and compressor unit
KR20100014962A (en) Cooling storage and method of operating the same
JP2009300000A (en) Refrigerator-freezer and cooling storage
JPH05223368A (en) Refrigerator
JP2000088431A (en) Brine cooler
JP2000346466A (en) Vapor compression type refrigerating cycle
JP2013174402A (en) Refrigerating device
JPH09196480A (en) Liquid refrigerating apparatus for refrigerating device
EP1312875A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JPS62294853A (en) Refrigerator
RU2003107928A (en) STIRLING COOLER, COOLER AND REFRIGERATOR
US20050016184A1 (en) Stirling cooling device, cooling chamber, and refrigerator
JPS62294855A (en) Refrigerator
JP2003336918A (en) Cooling device
JPS62294854A (en) Refrigerator
JPS6273046A (en) Refrigerator
CN116697645A (en) Refrigerating system and refrigerating equipment
JP2002162120A (en) Refrigerating machine of air conditioner
JPH0792295B2 (en) Cold storage device
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2500979B2 (en) Thermal storage refrigeration cycle device
WO2009157318A1 (en) Cooling device
JPS62248968A (en) Refrigerator
JP2001201194A (en) Cold storage system with deep freezer
JP2640051B2 (en) Refrigeration equipment