JPH0432662A - Binary refrigeration arrangement - Google Patents

Binary refrigeration arrangement

Info

Publication number
JPH0432662A
JPH0432662A JP13908390A JP13908390A JPH0432662A JP H0432662 A JPH0432662 A JP H0432662A JP 13908390 A JP13908390 A JP 13908390A JP 13908390 A JP13908390 A JP 13908390A JP H0432662 A JPH0432662 A JP H0432662A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
temperature side
refrigeration circuit
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13908390A
Other languages
Japanese (ja)
Inventor
Akihiro Ashida
彰弘 芦田
Kenji Ono
尾野 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP13908390A priority Critical patent/JPH0432662A/en
Publication of JPH0432662A publication Critical patent/JPH0432662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of a lubricating oil and a refrigerant, by a method wherein in a high temperature-refrigeration circuit, a refrigerant suction pipe line from a cascade condenser is connected to the suction port of a compressor through an oil cooler for another compressor in a low temperature refrigeration circuit. CONSTITUTION:The title arrangement has a high temperature-refrigerant circuit A and a low temperature-refrigerant circuit B. In the high temperature-refrigerant circuit A, after a refrigerant from a compressor 1 is condensed in a condenser 3, the whole of the refrigerant is passed through an oil cooler 11 for the compressor 1 and is returned to the condenser 3 again. After that, the water in the refrigerant is removed in a drier 9, and the refrigerant is expanded by an expansion mechanism 8 and led to a cascade condenser 5, and discharged from the condenser 5, following which the whole of the refrigerant is passed through an oil cooler 21 for a compressor 2 in a low temperature refrigerant circuit B and is returned to the compressor 1 again, and in such a way, the refrigerant is circulated. On the other hand, the low temperature refrigerant circuit B is composed so that another refrigerant is circulated therein. As the result of it, in the high temperature refrigerant circuit A, the compressor 1 can be fully cooled, and in the low temperature refrigerant circuit B, the lubricating oil for compressor 2 can be lowered in temperature, and thus the temperature rise of both the refrigerant and the compressor-lubricating oil is prevented, and the deterioration thereof can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低温環境試験装置その他に用いられる二元冷凍
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a binary refrigeration system used in low-temperature environment test equipment and the like.

〔従来の技術〕[Conventional technology]

二元冷凍装置は、一般に、高温側冷凍回路と低温側冷凍
回路を備え、低温側冷凍回路において圧縮機を出た冷媒
の凝縮は、高温側冷凍回路中の膨張機構のあとに接続し
たカスケードコンデンサを通過する高温側冷媒により行
うようになっている。
A binary refrigeration system generally has a high-temperature side refrigeration circuit and a low-temperature side refrigeration circuit, and condensation of the refrigerant exiting the compressor in the low-temperature side refrigeration circuit is carried out by a cascade condenser connected after the expansion mechanism in the high-temperature side refrigeration circuit. This is done by the high-temperature side refrigerant passing through.

ところで、冷凍装置において、圧縮機は冷媒圧縮により
相当発熱するが、主として大気への放熱、圧縮機潤滑オ
イルによる冷却および戻り冷媒による冷却の組み合わせ
によって冷却される。そして、潤滑オイルによる冷却を
効果あらしめるため、該オイルは、凝縮器を出た冷媒を
通過させるようにしたオイルクーラにより冷却する場合
がある。前記二元冷凍装置においても圧縮機の冷却は主
として前記王道りの冷却の組み合わせにより行われる。
Incidentally, in a refrigeration system, a compressor generates considerable heat due to refrigerant compression, but is mainly cooled by a combination of heat radiation to the atmosphere, cooling by compressor lubricating oil, and cooling by return refrigerant. In order to make the cooling by the lubricating oil more effective, the oil may be cooled by an oil cooler through which the refrigerant exiting the condenser passes. Even in the dual refrigeration system, the compressor is mainly cooled by the combination of the classic cooling methods.

今、第2図に基づいて、従来の代表的な二元冷凍装置を
説明すると、高温側冷凍回路Cおよび低温側冷凍回路り
を備えている。
Now, a typical conventional binary refrigeration system will be explained based on FIG. 2. It is provided with a high temperature side refrigeration circuit C and a low temperature side refrigeration circuit.

高温側冷凍回路Cはオイルクーラ11を備えた圧縮機1
、空冷による凝縮器3、膨張機構(本例ではキャピラリ
ーチューブ)8およびカスケードコンデンサ5を備えて
おり、これらは冷媒が次のように循環するように配管接
続されている。
The high temperature side refrigeration circuit C includes a compressor 1 equipped with an oil cooler 11
, an air-cooled condenser 3, an expansion mechanism (capillary tube in this example) 8, and a cascade condenser 5, which are connected by piping so that the refrigerant circulates as follows.

すなわち、圧縮機1において圧縮された冷媒が、まず、
凝縮器3を通過して凝縮されたのち、一部が圧縮機1の
オイルクーラ11を、残部が低温側冷凍回路における圧
縮機2のオイルクーラ21を経て再び凝縮器3において
冷やされたのち、冷媒中の水分を除去するドライヤ9を
経て膨張機構8に至り、ここで膨張してカスケードコン
デンサ5へ流れ、該コンデンサから再び圧縮機1へ戻る
ように循環する。
That is, the refrigerant compressed in the compressor 1 first
After passing through the condenser 3 and being condensed, a portion passes through the oil cooler 11 of the compressor 1, and the remainder passes through the oil cooler 21 of the compressor 2 in the low temperature side refrigeration circuit and is cooled again in the condenser 3. The refrigerant passes through a dryer 9 that removes moisture from the refrigerant, reaches the expansion mechanism 8, expands there, flows to the cascade condenser 5, and is circulated from the condenser back to the compressor 1.

一方、低温側冷凍回路りは、前記オイルクーラ21を備
えた圧縮機2、カスケードコンデンサ5中を通過する凝
縮管50、膨張機構(本例ではキャピラリーチューブ)
80および所望の低温を得るための蒸発器4を備えてお
り、これらは低温側冷媒が次のように循環するように配
管接続されている。
On the other hand, the low temperature side refrigeration circuit includes a compressor 2 equipped with the oil cooler 21, a condensing pipe 50 passing through the cascade condenser 5, and an expansion mechanism (capillary tube in this example).
80 and an evaporator 4 for obtaining a desired low temperature, these are connected by piping so that the low temperature side refrigerant circulates as follows.

すなわち、圧縮機2において圧縮された冷媒が一旦高温
側冷凍回路Cにおける凝縮器3を通過して予冷されるよ
うにし、そのあとオイルセパレータ6において冷媒中の
オイルを分離されたのち、カスケードコンデンサ5内の
凝縮管50を経て熱交換器7を通り、ドライヤ90で冷
媒中の水分を除去されたのち膨張機構80において膨張
し、蒸発器4へ流入し、そのあと前記熱交換器7を通過
して蒸発器4へ向かう冷媒を予冷したのち再び圧縮機2
へ戻るように循環する。
That is, the refrigerant compressed in the compressor 2 once passes through the condenser 3 in the high-temperature side refrigeration circuit C to be precooled, and after that, the oil in the refrigerant is separated in the oil separator 6, and then the cascade condenser 5 The refrigerant passes through the heat exchanger 7 through the condensation pipe 50 in the refrigerant, and after removing moisture in the refrigerant in the dryer 90, it expands in the expansion mechanism 80, flows into the evaporator 4, and then passes through the heat exchanger 7. After pre-cooling the refrigerant heading to the evaporator 4, the refrigerant is transferred to the compressor 2 again.
Cycles back to .

〔発明が解決しようとする課題] しかしながら、前記従来二元冷凍装置によると、低温側
冷凍回路りにおける圧縮機オイルクーラ21には、高温
側圧縮機のオイルクーラ11へ流れる高温側冷媒の残部
が流れるだけであるから、冷媒流量が少なく、したがっ
てオイルクーラ21による圧縮機2における潤滑オイル
の冷却には限界がある。しかも、低温側冷凍回路りにお
いては、蒸発器4において低い蒸発温度を得るため、蒸
発器4を出た冷媒圧力を低く設定しているため、圧縮機
2への返り冷媒量が少ない運転となり、戻り冷媒による
圧縮機2の冷却が十分行えない。
[Problems to be Solved by the Invention] However, according to the conventional dual refrigeration system, the remainder of the high temperature side refrigerant flowing to the oil cooler 11 of the high temperature side compressor is stored in the compressor oil cooler 21 in the low temperature side refrigeration circuit. Since the refrigerant only flows, the flow rate of the refrigerant is small, and therefore there is a limit to the cooling of the lubricating oil in the compressor 2 by the oil cooler 21. Moreover, in the low-temperature side refrigeration circuit, in order to obtain a low evaporation temperature in the evaporator 4, the pressure of the refrigerant exiting the evaporator 4 is set low, resulting in operation with a small amount of refrigerant returned to the compressor 2. The compressor 2 cannot be cooled sufficiently by the returned refrigerant.

従って、全体として圧縮機2の冷却を十分行い得す、そ
の結果、圧縮機2における潤滑オイルの温度や圧縮機2
からの吐出冷媒温度が上昇し、該潤滑オイルや冷媒を劣
化させたり、圧縮機2においてその摺動部の焼付等によ
る故障が発生するという問題があった。
Therefore, the compressor 2 can be sufficiently cooled as a whole, and as a result, the temperature of the lubricating oil in the compressor 2 and the
There have been problems in that the temperature of the refrigerant discharged from the compressor increases, deteriorating the lubricating oil and refrigerant, and causing failures in the compressor 2 due to seizure of sliding parts and the like.

そこで本発明は、高温側冷凍回路と低温側冷凍回路を備
え、前記低温側冷凍回路中冷媒の凝縮を前記高温側冷凍
回路中のカスケードコンデンサを通過する冷媒にて行う
ようにした二元冷凍装置において、同タイプの従来装置
に比べ、前記低温側冷凍回路中の圧縮機潤滑オイルの冷
却を十分行うことができ、それによって低温側冷凍回路
における圧縮機潤滑オイルおよび圧縮機からの吐出冷媒
の昇温を抑制して該潤滑オイルや冷媒の劣化を防止し、
圧縮機における焼付等のによる故障発生も防止すること
ができる二元冷凍装置を提供することを目的とする。
Therefore, the present invention provides a binary refrigeration system comprising a high-temperature side refrigeration circuit and a low-temperature side refrigeration circuit, and in which the refrigerant in the low-temperature side refrigeration circuit is condensed by the refrigerant passing through a cascade condenser in the high-temperature side refrigeration circuit. Compared to conventional equipment of the same type, the compressor lubricating oil in the low-temperature side refrigeration circuit can be cooled sufficiently, thereby reducing the rise of the compressor lubricating oil in the low-temperature side refrigeration circuit and the refrigerant discharged from the compressor. Controls temperature to prevent deterioration of the lubricating oil and refrigerant,
It is an object of the present invention to provide a binary refrigeration system that can prevent failures due to seizure or the like in a compressor.

〔課題を解決するための手段] 本発明は前記目的に従い、高温側冷凍回路と低温側冷凍
回路を備え、前記低温側冷凍回路中冷媒の凝縮を前記高
温側冷凍回路中のカスケードコンデンサを通過する冷媒
により行うようにした二元冷凍装置において、前記高温
側冷凍回路におけるカスケードコンデンサからの冷媒吸
込み配管を前記低温側冷凍回路における圧縮機のオイル
クーラを経て前記高温側冷凍回路の圧縮機吸入側へ接続
したことを特徴とする二元冷凍装置を提供するものであ
る。
[Means for Solving the Problems] In accordance with the above object, the present invention includes a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, and condenses the refrigerant in the low temperature side refrigeration circuit through a cascade condenser in the high temperature side refrigeration circuit. In a binary refrigeration system using a refrigerant, a refrigerant suction pipe from a cascade condenser in the high temperature side refrigeration circuit is connected to a compressor suction side of the high temperature side refrigeration circuit via an oil cooler of a compressor in the low temperature side refrigeration circuit. The present invention provides a dual refrigeration system characterized by the following:

〔作 用〕[For production]

本発明二元冷凍装置によると、低温側冷凍回路における
圧縮機オイルクーラには、前記カスケードコンデンサを
出た冷媒が全量流され、これによって、低温側冷凍回路
中の圧縮機が十分冷却される。
According to the dual refrigeration system of the present invention, the entire amount of the refrigerant that has exited the cascade condenser flows into the compressor oil cooler in the low temperature side refrigeration circuit, thereby sufficiently cooling the compressor in the low temperature side refrigeration circuit.

〔実 施 例〕 以下本発明の一実施例を第1図に基づいて説明する。〔Example〕 An embodiment of the present invention will be described below with reference to FIG.

この二元冷凍装置は、高温側冷凍回路Aおよび低温側冷
凍回路Bを備えている。各冷凍回路において、第2図に
示す従来装置における参照符号と同じ参照符号が付され
ている部品は、その参照符号が付された従来装置におけ
る部品と同し部品である。
This binary refrigeration system includes a high temperature side refrigeration circuit A and a low temperature side refrigeration circuit B. In each refrigeration circuit, parts with the same reference numerals as those in the conventional apparatus shown in FIG. 2 are the same parts as those in the conventional apparatus.

高温側冷凍回路Aは従来装置における高温側冷凍回路C
と異なっている。高温側冷凍回路Aにおける各部品は次
のように冷媒が循環するように配管接続されている。
High temperature side refrigeration circuit A is high temperature side refrigeration circuit C in the conventional device.
It is different from Each component in the high temperature side refrigeration circuit A is connected by piping so that the refrigerant circulates as follows.

すなわち、圧縮機1を出た冷媒は凝縮器3において凝縮
され、そのあと全量圧縮機オイルクーラ11を通過し、
再び凝縮器3を経たのちドライヤ9において水分を除去
され、膨張機構8において膨張し、カスケードコンデン
サ5へ至り、該コンデンサを出たあと低温側冷凍回路B
における圧縮機2のオイルクーラ21を全量通過して再
び圧縮機1へ戻るように循環する。
That is, the refrigerant leaving the compressor 1 is condensed in the condenser 3, and then passes through the entire compressor oil cooler 11,
After passing through the condenser 3 again, moisture is removed in the dryer 9, and expanded in the expansion mechanism 8, reaching the cascade condenser 5, and after leaving the condenser, the low temperature side refrigeration circuit B
The entire amount passes through the oil cooler 21 of the compressor 2 and is circulated back to the compressor 1.

低温側冷凍回路Bは、前記従来装置における低温側冷凍
回路りと同様に冷媒を循環させる構成となっている。
The low-temperature side refrigeration circuit B is configured to circulate refrigerant in the same manner as the low-temperature side refrigeration circuit in the conventional device.

この二元冷凍装置によると、高温側冷凍回路Aにおいて
は圧縮機1を出て凝縮器3により凝縮された高温側冷媒
の全量が圧縮機オイルクーラ11を通過するので、従来
装置に比べ高温側圧縮機の冷却を十分行える。
According to this binary refrigeration system, in the high-temperature side refrigeration circuit A, the entire amount of the high-temperature side refrigerant that exits the compressor 1 and is condensed by the condenser 3 passes through the compressor oil cooler 11. The compressor can be cooled sufficiently.

また、低温側冷凍回路においては、高温側冷凍回路のカ
スケードコンデンサ5を通過して湿り状態となった高温
側冷媒の全量が低温側圧縮機2のオイルクーラ21を通
過し、ここで熱交換することにより、該圧縮機2の潤滑
オイル温度を下げることができ、それによって圧縮機2
の吐出管温度を著しく低下させることができ、従って低
温側圧縮機2の信頼性が向上するとともに、オイルクー
ラ21における熱交換により、高温側圧縮機1への液返
りを防止することもできるので、高温側圧縮機1の信頼
性も向上する。
In addition, in the low-temperature side refrigeration circuit, the entire amount of the high-temperature side refrigerant that has passed through the cascade condenser 5 of the high-temperature side refrigeration circuit and has become wet passes through the oil cooler 21 of the low-temperature side compressor 2, where heat is exchanged. By this, the lubricating oil temperature of the compressor 2 can be lowered, thereby reducing the temperature of the lubricating oil of the compressor 2.
The temperature of the discharge pipe of the oil cooler 21 can be significantly lowered, thus improving the reliability of the low-temperature side compressor 2, and the heat exchange in the oil cooler 21 can also prevent liquid from returning to the high-temperature side compressor 1. , the reliability of the high temperature side compressor 1 is also improved.

さらに、蒸発器4による温度降下中は、低温側冷凍回路
Bにおいて高温側冷凍回路Aの冷凍能力が必要とされる
が、低温安定時は、低温側冷凍回路Bにおける負荷が少
なくなるため、高温側冷凍回路の冷凍能力が余るので、
カスケードコンデンサ5からの返りガスによる低温側圧
縮機2の冷却は一層十分なものとなる。
Furthermore, while the temperature is falling by the evaporator 4, the refrigeration capacity of the high temperature side refrigeration circuit A is required in the low temperature side refrigeration circuit B, but when the low temperature is stable, the load on the low temperature side refrigeration circuit B is reduced, so the high temperature Since there is extra refrigeration capacity in the side refrigeration circuit,
Cooling of the low temperature side compressor 2 by the return gas from the cascade condenser 5 becomes even more sufficient.

以上説明したようにこの実施例装置によると、従来の二
元冷凍装置に比べて圧縮機の冷却を十分に行うことがで
き、したがって、それだけ圧縮機潤滑オイルおよび使用
冷媒の劣化を防止することができるとともに、圧縮機摺
動部の焼付等による圧縮機の故障発生を防止することが
できる。
As explained above, according to this example device, the compressor can be sufficiently cooled compared to the conventional binary refrigeration system, and therefore it is possible to prevent deterioration of the compressor lubricating oil and the refrigerant used. At the same time, it is possible to prevent compressor failures due to seizure of compressor sliding parts, etc.

[発明の効果] 本発明会唾希礫噸1によると、高温側冷凍回路と低温側
冷凍回路を備え、前記低温側冷凍回路中冷媒の凝縮を前
記高温側冷凍回路中のカスケードコンデンサを通過する
冷媒により行うようにした二元冷凍装置において、同タ
イプの従来装置に比べ、圧縮機、特に前記低温側冷凍回
路中の圧縮機の潤滑オイルの冷却を十分行うことができ
、それによって低温側冷凍回路における冷媒、圧縮機潤
滑オイルの昇温を防止し、該冷媒、潤滑オイルの劣化を
防止でき、また、圧縮機における焼付等の昇温による故
障発生を防止するができる。
[Effects of the Invention] According to the Society of Inventors' Report 1, a high-temperature side refrigeration circuit and a low-temperature side refrigeration circuit are provided, and the refrigerant condensed in the low-temperature side refrigeration circuit passes through a cascade condenser in the high-temperature side refrigeration circuit. In a binary refrigeration system using a refrigerant, compared to conventional equipment of the same type, the compressor, especially the lubricating oil of the compressor in the low-temperature side refrigeration circuit, can be cooled sufficiently. It is possible to prevent the temperature of the refrigerant and compressor lubricating oil in the circuit from rising, thereby preventing deterioration of the refrigerant and lubricating oil, and also preventing failures due to temperature rise such as seizure in the compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す冷凍装置回路図、第2
図は従来例説明図である。 A・・・高温側冷凍回路 1・・・圧縮機 11・・・オイルクーラ 3・・・凝縮器 9・・・ドライヤ 8・・・膨張機構 5・・・カスケードコンデンサ B・・・低温側冷凍回路 2・・・圧縮機 21・・・オイルクーラ 50・・・凝縮管 7・・・熱交換器 90・・・ドライヤ 80・・・膨張機構 4・・・蒸発器 6・・・オイルセパレータ 出願人 タハイエスペック株式会社
FIG. 1 is a circuit diagram of a refrigeration system showing one embodiment of the present invention, and FIG.
The figure is an explanatory diagram of a conventional example. A... High temperature side refrigeration circuit 1... Compressor 11... Oil cooler 3... Condenser 9... Dryer 8... Expansion mechanism 5... Cascade condenser B... Low temperature side refrigeration Circuit 2... Compressor 21... Oil cooler 50... Condensing tube 7... Heat exchanger 90... Dryer 80... Expansion mechanism 4... Evaporator 6... Oil separator Application People Tahai Espec Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)高温側冷凍回路と低温側冷凍回路を備え、前記低
温側冷凍回路中冷媒の凝縮を前記高温側冷凍回路中のカ
スケードコンデンサを通過する冷媒により行うようにし
た二元冷凍装置において、前記高温側冷凍回路における
カスケードコンデンサからの冷媒吸込み配管を前記低温
側冷凍回路における圧縮機のオイルクーラを経て前記高
温側冷凍回路の圧縮機吸入側へ接続したことを特徴とす
る二元冷凍装置。
(1) In a binary refrigeration system comprising a high temperature side refrigeration circuit and a low temperature side refrigeration circuit, the refrigerant in the low temperature side refrigeration circuit is condensed by the refrigerant passing through a cascade condenser in the high temperature side refrigeration circuit. A dual refrigeration system characterized in that a refrigerant suction pipe from a cascade condenser in a high temperature side refrigeration circuit is connected to a compressor suction side of the high temperature side refrigeration circuit via an oil cooler of a compressor in the low temperature side refrigeration circuit.
JP13908390A 1990-05-28 1990-05-28 Binary refrigeration arrangement Pending JPH0432662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13908390A JPH0432662A (en) 1990-05-28 1990-05-28 Binary refrigeration arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13908390A JPH0432662A (en) 1990-05-28 1990-05-28 Binary refrigeration arrangement

Publications (1)

Publication Number Publication Date
JPH0432662A true JPH0432662A (en) 1992-02-04

Family

ID=15237089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13908390A Pending JPH0432662A (en) 1990-05-28 1990-05-28 Binary refrigeration arrangement

Country Status (1)

Country Link
JP (1) JPH0432662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696446A1 (en) 1994-08-09 1996-02-14 Olympus Optical Co., Ltd. Intraluminally indwelling stent and method for manufacturing the same
JP2014145500A (en) * 2013-01-28 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device
CN104813120A (en) * 2012-11-20 2015-07-29 三菱电机株式会社 Refrigeration device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421658A (en) * 1977-07-19 1979-02-19 Sanyo Electric Co Ltd Two-dimensional refrigerating cycle
JPS62294855A (en) * 1986-05-08 1987-12-22 三洋電機株式会社 Refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421658A (en) * 1977-07-19 1979-02-19 Sanyo Electric Co Ltd Two-dimensional refrigerating cycle
JPS62294855A (en) * 1986-05-08 1987-12-22 三洋電機株式会社 Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696446A1 (en) 1994-08-09 1996-02-14 Olympus Optical Co., Ltd. Intraluminally indwelling stent and method for manufacturing the same
CN104813120A (en) * 2012-11-20 2015-07-29 三菱电机株式会社 Refrigeration device
CN104813120B (en) * 2012-11-20 2016-08-17 三菱电机株式会社 Refrigerating plant
JP2014145500A (en) * 2013-01-28 2014-08-14 Toshiba Carrier Corp Dual refrigeration cycle device

Similar Documents

Publication Publication Date Title
US5996356A (en) Parallel type refrigerator
JPS5880474A (en) Cryogenic cooling device
JPH0331981B2 (en)
US7603871B2 (en) High-flow cold air chiller
JP2002349938A (en) Refrigeration unit and control method for its oil return
JPH06337171A (en) Refrigerating device
JPH0432662A (en) Binary refrigeration arrangement
JP3127818B2 (en) Refrigeration equipment
JP2000180026A (en) Refrigerating unit for refrigerator
JPS61259059A (en) Two-diemensional type refrigerator
US6993932B2 (en) Refrigerant cycle system
JPS58145859A (en) Two-stage screw refrigerator
JPH09250821A (en) Freezer
JP2559220Y2 (en) Refrigeration equipment
JP2006118772A (en) Air refrigerant type refrigeration device
JPS6078257A (en) Two-element refrigerator
JP2001153505A (en) Turbo refrigerating machine maintaining device
JPH0132429B2 (en)
JP4112090B2 (en) Heat pump equipment
JP3336032B2 (en) Refrigeration circuit with injection circuit
JPH0749326Y2 (en) Refrigeration equipment
JPH05126420A (en) Liquid cooler for refrigerating apparatus
JPH0642829A (en) Freezer for low temperature freezing
JPH07234041A (en) Cascade refrigerating equipment
SU1277441A1 (en) Device for cooling electronic equipment