JPS6078257A - Two-element refrigerator - Google Patents

Two-element refrigerator

Info

Publication number
JPS6078257A
JPS6078257A JP18300683A JP18300683A JPS6078257A JP S6078257 A JPS6078257 A JP S6078257A JP 18300683 A JP18300683 A JP 18300683A JP 18300683 A JP18300683 A JP 18300683A JP S6078257 A JPS6078257 A JP S6078257A
Authority
JP
Japan
Prior art keywords
condenser
temperature side
refrigerant
low
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18300683A
Other languages
Japanese (ja)
Inventor
元博 伊藤
文雄 原田
健治 戸草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18300683A priority Critical patent/JPS6078257A/en
Publication of JPS6078257A publication Critical patent/JPS6078257A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は二元冷凍装置に係シ、特に低温側冷凍サイクル
における複数の蒸発器に冷媒を均一に流通させる構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a binary refrigeration system, and particularly to a structure for uniformly circulating a refrigerant to a plurality of evaporators in a low-temperature side refrigeration cycle.

〔発明の背景〕[Background of the invention]

従来の二元冷凍装置を第1図により説明すると、高温側
圧縮機1、凝縮器2、キャピラリチューブ3、カスケー
ドコンデンサ4からなる高温側冷凍サイクルと、低温側
圧縮機5、前記カスケードコンデンサ4、キャピラリチ
ューブ6、久発器7、アキュムレータ8からなる低温側
冷凍サイクルとを組合せた構成となっている。
To explain a conventional binary refrigeration system with reference to FIG. 1, there is a high temperature side refrigeration cycle consisting of a high temperature side compressor 1, a condenser 2, a capillary tube 3, and a cascade condenser 4, a low temperature side compressor 5, the cascade condenser 4, It has a configuration in which a low-temperature side refrigeration cycle consisting of a capillary tube 6, an evacuator 7, and an accumulator 8 are combined.

そして、高温側冷凍サイクルにおいては、高温側圧縮機
1より吐出する冷媒が凝縮器2で凝縮液化し、キャピラ
リーチューブ3で減圧された後、カスケードコンデンサ
4のコンデンサ部4 Aで低温側冷凍サイクルの冷媒と
熱交換して蒸発し、再び高温側圧縮機1に戻る。という
サイクルを繰り返す。
In the high-temperature side refrigeration cycle, the refrigerant discharged from the high-temperature side compressor 1 is condensed and liquefied in the condenser 2, and after being depressurized in the capillary tube 3, the refrigerant is transferred to the condenser section 4A of the cascade condenser 4 in the low-temperature side refrigeration cycle. It exchanges heat with the refrigerant, evaporates, and returns to the high temperature side compressor 1 again. Repeat this cycle.

一方、低温側冷凍サイクルにおいては、低温側圧縮機5
よシ吐出する冷媒がカスケードコンデンサ4のコンデン
サ部4Bで凝縮液化し、キャピラリチューブ6で減圧さ
れた後、蒸発器7で被冷却物と熱交換して蒸発し、再び
低温側圧縮機5に戻るというサイクルを繰り返す。
On the other hand, in the low temperature side refrigeration cycle, the low temperature side compressor 5
The discharged refrigerant is condensed and liquefied in the condenser part 4B of the cascade condenser 4, and after being depressurized in the capillary tube 6, it is evaporated by exchanging heat with the object to be cooled in the evaporator 7, and returns to the low-temperature side compressor 5 again. Repeat this cycle.

ところで、前述の蒸発器7が図示のように2台ある場合
には冷媒の分岐は、各々の蒸発器7の容量に応じたキャ
ピラリチューブ6の手前で行う。
By the way, when there are two evaporators 7 as shown in the figure, the refrigerant is branched before the capillary tube 6 according to the capacity of each evaporator 7.

しかるにキャピラリチューブ6は冷媒の流量を調整する
自己調整作用があり、キャピラリチューブ60手前が過
冷却状態の場合は冷媒の分岐は問題ないが、しかしキャ
ピラリチューブ6の手前が飽和域の二相流になると冷媒
の分岐が円滑に行われなくなる。つまり各蒸発器7へ必
要とする冷媒量が流れなくなり、極端の場合には片方の
蒸発器7に冷媒が全く流れなくなりで、冷却不良のトラ
ブルを起すことがある。
However, the capillary tube 6 has a self-adjusting function that adjusts the flow rate of the refrigerant, and if the part before the capillary tube 60 is in a supercooled state, there is no problem in branching the refrigerant, but the part before the capillary tube 6 is in a two-phase flow in the saturated region. If this happens, the refrigerant will not be branched smoothly. In other words, the required amount of refrigerant will no longer flow to each evaporator 7, and in extreme cases, no refrigerant will flow to one of the evaporators 7 at all, which may result in poor cooling.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、複数の蒸発器への冷媒の分岐が良好に
行われるようにして、各蒸発器において冷却不良といっ
たトラブルを起すことのない二元冷凍装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a binary refrigeration system in which a refrigerant is efficiently branched to a plurality of evaporators, thereby preventing troubles such as poor cooling in each evaporator.

〔発明の概賛〕[Overview of the invention]

この目的を達成するために、本発明の二元冷凍装置は、
カスケードコンデンサの、低温側冷凍サイクルの冷媒が
流通するコンデンサ部を蒸発器の数に見合った数に分割
し、各コンデンサ部の入口を低温側圧縮機の吐出側にそ
れぞれ接続すると共に、各コンデンサの出口を各蒸発器
に対応するキャピラリチューブの入口側にそれぞれ接続
したことを特徴とする。
To achieve this objective, the dual refrigeration device of the present invention:
The condenser section of the cascade condenser through which the refrigerant of the low-temperature side refrigeration cycle flows is divided into a number corresponding to the number of evaporators, and the inlet of each condenser section is connected to the discharge side of the low-temperature side compressor. It is characterized in that the outlet is connected to the inlet side of the capillary tube corresponding to each evaporator.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。第2
図は本発明による二元冷凍装置のサイクル系統図を示し
、第1図と同一符号のものは同じもの、もしくは相当す
るものを表わしている。この二元冷凍装置では、カスケ
ードコンデンサ4の、低温側冷凍サイクルの冷媒を流通
させるコンデンサ部が、蒸発器7の数に見合った数に分
割されている。即ち、カスケードコンデンサ4のコンデ
ンサ部が2個のコンデンサ部4c、4Dに分割され、各
コンデンサ部4c、4Dの人口は低温側圧縮機5の吐出
側にそれぞれ接続され、かつ出口は2台の蒸発器7に対
応するキャピラリ+ニープロ、y−a+。
An embodiment of the present invention will be described below with reference to FIG. Second
The figure shows a cycle system diagram of a binary refrigeration system according to the present invention, and the same reference numerals as in FIG. 1 represent the same or equivalent parts. In this binary refrigeration system, the condenser section of the cascade condenser 4 through which the refrigerant of the low temperature side refrigeration cycle flows is divided into a number corresponding to the number of evaporators 7. That is, the condenser part of the cascade condenser 4 is divided into two condenser parts 4c and 4D, each of the condenser parts 4c and 4D is connected to the discharge side of the low temperature side compressor 5, and the outlet is connected to the two evaporators. Capillary + knee pro corresponding to vessel 7, ya+.

の入口側にそれぞれ接続されている。are connected to the entrance side of each.

次に本発明の作用について説明する。低温側冷凍サイク
ルにおいて、低温側圧縮機5よシ吐出された冷媒はカス
ケードコンデンサ40手前の過熱ガス域で二方向に分岐
してコンデンサ部4C14Dに流入する。この時、冷媒
は一相域であるのでコンデンサ部4G、4Dへの分岐が
良好に行われる。各コンデンサ部4C14Dに流入した
冷媒はここで凝縮液化した後、キャピラリチューブ6で
各蒸発器7に応じた流量に調整されて蒸発器7に流入す
る。
Next, the operation of the present invention will be explained. In the low-temperature side refrigeration cycle, the refrigerant discharged from the low-temperature side compressor 5 branches into two directions in the superheated gas region before the cascade condenser 40 and flows into the condenser section 4C14D. At this time, since the refrigerant is in a one-phase region, branching to the condenser parts 4G and 4D is performed well. The refrigerant that has flowed into each condenser section 4C14D is condensed and liquefied here, and then flows into the evaporator 7 after being adjusted to a flow rate according to each evaporator 7 in the capillary tube 6.

従って、各蒸発@7では常に必要とする冷媒流量を得ら
れるので、従来技術のような冷却不良といったトラブル
を起すことがない。
Therefore, in each evaporation @7, the required refrigerant flow rate can always be obtained, and problems such as poor cooling as in the prior art do not occur.

尚、前述した実施例は、2台の蒸発器7を具えた例につ
いて示したが、3台以上の蒸発器を具えているものにつ
いては、カスケードコンデンサ4のコンデンサ部をその
数に見合って分割することにより、前記と同様な効果を
達成できる。
In addition, although the above-mentioned embodiment was shown as an example equipped with two evaporators 7, in the case of an embodiment equipped with three or more evaporators, the condenser section of the cascade condenser 4 may be divided according to the number of evaporators. By doing so, the same effect as described above can be achieved.

〔発明の効果〕〔Effect of the invention〕

、−47 以上説明したように、本発明によれば、複数の蒸発器へ
の冷媒の分岐を良好に行えるから、各蒸発器において冷
却不良といったトラブルを起すことがない。
, -47 As explained above, according to the present invention, since refrigerant can be branched to a plurality of evaporators in a good manner, troubles such as poor cooling in each evaporator do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二元冷凍装置を示すサイクル系統図、第
2図は本発明二元冷凍装置の一実施例を示すサイクル系
統図である。 1・・・高温側圧縮機 2・・・凝縮器 3・・・キャ
ピラリチューブ 4・・・カスケードコンデンサ 4C
。 4D・・・コンデンサ部 5・・・低温側圧縮機 6・
・・キャピラリチューブ 7・・・蒸発器
FIG. 1 is a cycle system diagram showing a conventional binary refrigeration system, and FIG. 2 is a cycle system diagram showing an embodiment of the dual system refrigeration system of the present invention. 1... High temperature side compressor 2... Condenser 3... Capillary tube 4... Cascade condenser 4C
. 4D... Condenser part 5... Low temperature side compressor 6.
・・Capillary tube 7・・Evaporator

Claims (1)

【特許請求の範囲】 高温側圧縮機、凝縮器、キャピラリチューブ、カスケー
ドコンデンサよりなる高温側冷凍サイクルと、低温側圧
縮機、前記カスケードコンデサ、キャピラリチューブ及
び複数の蒸発器よりなる低m01lI冷凍サイクルとを
組合せた二元冷凍装置において、前記カスケードコンデ
ンサの、低温側冷凍サイクルの冷媒が流通するコンデン
サ部を蒸発器分 の数に見合−た数:!すし、各・ンデンサ部の入口を低
温側圧縮機の吐出側にそれぞれ接続すると共に、各コン
デンサの出口を各蒸発器に対応するキャピラリチューブ
の人口側にそれぞれ接続したと
[Claims] A high temperature side refrigeration cycle consisting of a high temperature side compressor, a condenser, a capillary tube, and a cascade condenser; and a low m01lI refrigeration cycle consisting of a low temperature side compressor, the cascade condenser, a capillary tube, and a plurality of evaporators. In a binary refrigeration system in which the refrigerant of the low-temperature side refrigeration cycle flows in the cascade condenser, the number of condenser sections corresponding to the number of evaporators: ! The inlet of each condenser section was connected to the discharge side of the low-temperature side compressor, and the outlet of each condenser was connected to the population side of the capillary tube corresponding to each evaporator.
JP18300683A 1983-10-03 1983-10-03 Two-element refrigerator Pending JPS6078257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18300683A JPS6078257A (en) 1983-10-03 1983-10-03 Two-element refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18300683A JPS6078257A (en) 1983-10-03 1983-10-03 Two-element refrigerator

Publications (1)

Publication Number Publication Date
JPS6078257A true JPS6078257A (en) 1985-05-02

Family

ID=16128093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18300683A Pending JPS6078257A (en) 1983-10-03 1983-10-03 Two-element refrigerator

Country Status (1)

Country Link
JP (1) JPS6078257A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273046A (en) * 1985-09-25 1987-04-03 三洋電機株式会社 Refrigerator
WO2004059226A1 (en) * 2002-12-18 2004-07-15 Kendro Laboratory Products, Lp Dual independent chamber ultra-low temperature freezer
JP2014037954A (en) * 2012-08-17 2014-02-27 Yutaka Takahashi Combined heat pump system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273046A (en) * 1985-09-25 1987-04-03 三洋電機株式会社 Refrigerator
WO2004059226A1 (en) * 2002-12-18 2004-07-15 Kendro Laboratory Products, Lp Dual independent chamber ultra-low temperature freezer
EP2341305A3 (en) * 2002-12-18 2011-11-09 Thermo Fisher Scientific (Asheville) LLC Dual independent chamber ultra-low temperature freezer
JP2014037954A (en) * 2012-08-17 2014-02-27 Yutaka Takahashi Combined heat pump system

Similar Documents

Publication Publication Date Title
JPH0331981B2 (en)
JPS6078257A (en) Two-element refrigerator
JPH06337171A (en) Refrigerating device
US2167697A (en) Refrigeration
US4283919A (en) Vapor compression cycle device with multi-component working fluid mixture and method of modulating the thermal transfer capacity thereof
JPS58145859A (en) Two-stage screw refrigerator
JPS5837457A (en) Refrigerant circuit for refrigerator
JPH0432662A (en) Binary refrigeration arrangement
JPS6124950A (en) Two-element refrigerator
JPS582564A (en) Composite absorption type refrigerator
JPH0113969Y2 (en)
JPH0132429B2 (en)
JPS6146859A (en) Two-element refrigerator
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
JPS62258962A (en) Refrigerator
JPS6337865B2 (en)
JPH0641097Y2 (en) Low temperature refrigerator
JPS588953A (en) Refrigerator
JP2520945B2 (en) Air-cooled absorption refrigerator
JPS58130968A (en) Refrigerator
JPS6066064A (en) Refrigerator
JPS61217658A (en) Cryogenic cooling device
JPS6078258A (en) Two-element refrigerator
JPS62153656A (en) Refrigerator
JP2008241195A (en) Refrigerating device