JPS58130968A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS58130968A
JPS58130968A JP1447882A JP1447882A JPS58130968A JP S58130968 A JPS58130968 A JP S58130968A JP 1447882 A JP1447882 A JP 1447882A JP 1447882 A JP1447882 A JP 1447882A JP S58130968 A JPS58130968 A JP S58130968A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
refrigeration system
flow rate
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1447882A
Other languages
Japanese (ja)
Inventor
直樹 田中
正毅 池内
浜 宏明
正美 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1447882A priority Critical patent/JPS58130968A/en
Publication of JPS58130968A publication Critical patent/JPS58130968A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷媒の潜熱を利用する蒸気圧縮式の冷凍装
置にかかり、特にその冷媒の流量制御に関するものであ
ろう 第1図は、従来の冷凍装置の冷媒サイクルの一例を示す
もので1図において、(11は圧縮機、(2)は凝縮器
、(3)はアキュムレータ(6)内の底部に配設された
熱交換器、(4)はキャピラリチューブ、15)は蒸発
器、to+はアキュムレータであ1】、これらは順次連
通して、冷凍装置を構成している。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor compression type refrigeration system that utilizes the latent heat of a refrigerant, and is particularly concerned with flow rate control of the refrigerant. Figure 1 shows the refrigerant cycle of a conventional refrigeration system. An example is shown in Figure 1, (11 is a compressor, (2) is a condenser, (3) is a heat exchanger disposed at the bottom of the accumulator (6), (4) is a capillary tube, 15 ) is an evaporator, and to+ is an accumulator (1), which are connected in sequence to constitute a refrigeration system.

このような従来の冷凍装置においては、圧縮機+11で
高温高庄となった冷媒ガスは凝縮器(21で冷却されて
液化し、さらに熱交換器13)でアキュムレータ(6)
内に貯溜された冷媒液と熱交換し、熱交換器(31内の
冷媒液の過冷却が増加したのちキャビラリチューブ(4
)で減圧され低温低圧になって蒸発器15)に導かれる
。そして、蒸発器15)内では冷媒液がガス化する際に
1周囲から吸熱して冷凍を行なう。
In such a conventional refrigeration system, the refrigerant gas that has become high temperature and high strength in the compressor +11 is cooled and liquefied in the condenser (21), and then transferred to the accumulator (6) in the heat exchanger (13).
After exchanging heat with the refrigerant liquid stored in the heat exchanger (31) and increasing the supercooling of the refrigerant liquid in the heat exchanger (31), the cabillary tube (4
) is reduced in temperature and pressure, and is led to the evaporator 15). When the refrigerant liquid is gasified in the evaporator 15), it absorbs heat from the surroundings and performs freezing.

この後冷媒は熱交換器(3)の冷媒液と熱交換して完全
(=ガス化し、圧縮機(1)に吸入される。
Thereafter, the refrigerant exchanges heat with the refrigerant liquid in the heat exchanger (3), becomes completely gasified, and is sucked into the compressor (1).

ところで、予ヤピラリチューブ(4)は、その入口冷媒
液の過冷却度が大きくなる1:つれて冷媒流量が増加し
、過冷却度が小さくなるにつれて冷媒流量が減少する傾
向を示す。そしてこの特性が冷凍装置の冷媒流量を適正
に保つ上で重要な役割を果たしているすなわち、蒸発温
度が下がって必要冷媒流量が減ったときには、過冷却度
が減って冷媒流量を減らし、逆に蒸発温度が上昇したと
きには過冷却度が増加して冷媒流量を増やすことにより
常ζ二適正な冷媒流量を保とうとするのである。
By the way, as the degree of subcooling of the inlet refrigerant liquid increases, the flow rate of the refrigerant increases, and as the degree of subcooling decreases, the flow rate of the refrigerant decreases. This characteristic plays an important role in maintaining the appropriate refrigerant flow rate in the refrigeration system.In other words, when the evaporation temperature falls and the required refrigerant flow rate decreases, the degree of supercooling decreases, reducing the refrigerant flow rate, and conversely evaporates. When the temperature rises, the degree of subcooling increases and the refrigerant flow rate is increased to try to maintain a proper refrigerant flow rate.

ところが、41図のような冷凍装置においては、、l縮
器12)出口冷媒液は、熱交換器(3)で冷却されてい
るため、蒸発温度が低下するに従って過冷却度が大きく
なり、蒸発温度が上昇するに従って過冷却度が減少する
という傾向を示し、冷媒流量が適正に保たれなくなって
圧縮機fi+への液戻りを生じたり、凝縮器(2)(二
液がたまって高圧が上昇しすぎてしまうなどの不具合を
生じていた。
However, in the refrigeration system shown in Figure 41, the refrigerant liquid at the outlet of the condenser 12) is cooled by the heat exchanger (3), so as the evaporation temperature decreases, the degree of supercooling increases, and the evaporation rate increases. The degree of supercooling tends to decrease as the temperature rises, and the refrigerant flow rate cannot be maintained properly, causing liquid to return to the compressor fi+, or causing the condenser (2) (two liquids accumulate and high pressure rises). This caused problems such as overloading.

この発明は上記のような従来のもの一欠点を除去するた
めになされたもので、凝縮器出口と蒸発器入口を接続す
るバイパス流路を設け、とこに冷媒液の一部を流すこと
によって、蒸発器への冷媒流量が常に適正に保てる冷凍
装置を提供することを目的としている。
This invention was made in order to eliminate one drawback of the conventional ones as described above, and by providing a bypass flow path connecting the condenser outlet and the evaporator inlet, and flowing a part of the refrigerant liquid therein, It is an object of the present invention to provide a refrigeration system that can always maintain an appropriate flow rate of refrigerant to an evaporator.

以下この発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図はその一実施例の構成を示すもので、第1図と同
一符号は同一または相当部分を示すのでその説明な省略
する。第2図において、 (30)は凝縮器(21の出
口に設けられた凝縮器出口配管、 (31)は蒸発器入
口配管、(1!31211は凝縮器出口配管(30)と
蒸発器入口配管(31)を接続するバイパス流路、jη
はバイパス流路に設けた減圧装置である、以上のように
構成された冷凍装置においては。
FIG. 2 shows the configuration of one embodiment, and the same reference numerals as in FIG. 1 indicate the same or corresponding parts, so the explanation thereof will be omitted. In Figure 2, (30) is the condenser outlet pipe provided at the outlet of the condenser (21), (31) is the evaporator inlet pipe, (1!31211 is the condenser outlet pipe (30) and the evaporator inlet pipe) Bypass flow path connecting (31), jη
In the refrigeration system configured as described above, is a pressure reducing device provided in the bypass flow path.

凝縮器(2)出口冷媒液の一部は従来の装置と同様熱交
換器(3)に導かれて圧縮fill+への吸入冷媒を完
全にガス化する働きをし、この熱々換により過冷却度が
増加してキャピラリチューブ(41へと導かれる。一方
、他の凝縮器(2)出口冷媒液は凝縮器121出口の過
冷却度を維持したま\、バイパス管σ優を経て減圧装置
−へと導かれる。このような構成をとる冷却装置では、
熱交換器(3)を通ってキャピラリチューブ(4)へ流
れる冷媒液の過冷却1;よる影響を緩和することができ
1.従来の冷凍装置で生じていた不具合を解消すること
ができる。すなわち蒸発温度が高くなったときには過冷
却度が増大し、lA発湿温度低くなったときには過冷却
度が減少して。
A part of the refrigerant liquid at the outlet of the condenser (2) is led to the heat exchanger (3), similar to the conventional device, to completely gasify the refrigerant sucked into the compression fill+, and this heat exchange increases the degree of supercooling. increases and is guided to the capillary tube (41). On the other hand, the refrigerant liquid at the outlet of the other condenser (2) maintains the degree of supercooling at the outlet of the condenser 121, and passes through the bypass pipe σ to the decompression device. In a cooling device with such a configuration,
The effects of supercooling of the refrigerant liquid flowing through the heat exchanger (3) to the capillary tube (4) can be alleviated.1. It is possible to eliminate the problems that occurred with conventional refrigeration equipment. That is, when the evaporation temperature becomes high, the degree of supercooling increases, and when the 1A humidity temperature becomes low, the degree of supercooling decreases.

常に適正な冷媒流量が保てる。Appropriate refrigerant flow rate can be maintained at all times.

なお、減圧装置−としては、開窓された絞りをもつ弁、
あるいは電気式膨張弁のように系の信号を用いて開度な
変化させるものであっても良い。
Note that the pressure reducing device may include a valve with a fenestrated throttle;
Alternatively, the opening may be changed using a system signal, such as an electric expansion valve.

また、減圧装置としてキャピラリーチューブを用いれば
、安価な装置にて同様の効果を発揮する。
Furthermore, if a capillary tube is used as the pressure reducing device, a similar effect can be achieved with an inexpensive device.

父上記実施例は・、簡単な冷凍装置について示したが、
このような冷凍装置以外に、ヒートポンプサイクルや多
段冷凍サイクル、多段カスケード冷凍サイクルなど、他
の冷凍サイクルなどにも適用でき、しかも油分離器、乾
燥器、アキュムレータなどの補機な備えたものについて
も同様の効果を奏する。
Although the above example shows a simple refrigeration device,
In addition to this type of refrigeration system, it can also be applied to other refrigeration cycles such as heat pump cycles, multistage refrigeration cycles, and multistage cascade refrigeration cycles, as well as those equipped with auxiliary equipment such as oil separators, dryers, and accumulators. It has a similar effect.

以上のようC二この発明1:よれば、キャピラリチュー
ブ入口冷媒の過冷却の影響を緩和することにより、冷凍
装置の運転条件の変化に応じて常に最適な冷媒流量が維
持でき、信頼性が高く、シかも性能の良い冷凍装置が得
られる効果がある。
As described above, according to the present invention 1, by alleviating the influence of supercooling of the refrigerant at the entrance of the capillary tube, the optimal refrigerant flow rate can be maintained at all times in response to changes in the operating conditions of the refrigeration equipment, resulting in high reliability. This has the effect of providing a refrigeration system with good performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍装置を示す構成図、第2図はこの発
明の一実施例を示す構成図である。 図において、(1)は圧縮機、(2)は凝縮器、(3:
は熱交換器、(4)はキャピラリチューブ、;5)は蒸
発器。 16+はアキュムレータ、 、19. f21)はバイ
パス配管、@は減圧装置である。 なお、図中同一符号は同一または相当部分を示す。 代理人 葛野信− 第1図 2 第2図 手続補正書(自発) 昭和6−4月 6日 2、発明の名称 冷凍装置 3、補正をする者 (1) S、  @正の対象 図面 6、補正の内容 図面第2図を別紙の通り訂正する。 以上 第2図
FIG. 1 is a block diagram showing a conventional refrigeration system, and FIG. 2 is a block diagram showing an embodiment of the present invention. In the figure, (1) is a compressor, (2) is a condenser, (3:
is a heat exchanger, (4) is a capillary tube, and (5) is an evaporator. 16+ is an accumulator, , 19. f21) is a bypass pipe, and @ is a pressure reducing device. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 2 Figure 2 procedural amendment (voluntary) April 6, 1932 2, Title of invention Refrigeration device 3, Person making the amendment (1) S, @ Original target drawing 6, Contents of the amendment Figure 2 of the drawing will be corrected as shown in the attached sheet. Figure 2 above

Claims (1)

【特許請求の範囲】 fi+圧縮機、凝縮器、上記圧縮機の吸入冷媒との熱交
換器、キャピラリチューブ、蒸発器を順次連結してなる
冷凍装置において、上記凝縮器の出口と蒸発器の入口と
を接続するバイパス流路を設け、そのバイパス流路に減
圧装置を備えたことを特徴とする冷凍装置。 (2)減圧装置がキャピラリチューブであることを特徴
とする特許請求範囲第1項記載の冷凍装置う
[Scope of Claims] A refrigeration system comprising a fi+ compressor, a condenser, a heat exchanger with the refrigerant sucked into the compressor, a capillary tube, and an evaporator connected in sequence, wherein an outlet of the condenser and an inlet of the evaporator are connected in sequence. 1. A refrigeration system characterized by having a bypass flow path connecting the refrigeration system and the bypass flow path, the bypass flow path being equipped with a pressure reducing device. (2) The refrigeration device according to claim 1, wherein the pressure reducing device is a capillary tube.
JP1447882A 1982-01-29 1982-01-29 Refrigerator Pending JPS58130968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1447882A JPS58130968A (en) 1982-01-29 1982-01-29 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1447882A JPS58130968A (en) 1982-01-29 1982-01-29 Refrigerator

Publications (1)

Publication Number Publication Date
JPS58130968A true JPS58130968A (en) 1983-08-04

Family

ID=11862162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1447882A Pending JPS58130968A (en) 1982-01-29 1982-01-29 Refrigerator

Country Status (1)

Country Link
JP (1) JPS58130968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528011A (en) * 2000-03-21 2003-09-24 スティルマン、スザンヌ・ジャッフェ Infusion packet comprising useful and decorative elements, a support member, and a release system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528011A (en) * 2000-03-21 2003-09-24 スティルマン、スザンヌ・ジャッフェ Infusion packet comprising useful and decorative elements, a support member, and a release system and method
JP4942273B2 (en) * 2000-03-21 2012-05-30 スティルマン、スザンヌ・ジャッフェ Infusion packet comprising useful and decorative elements, a support member, and a release system and method

Similar Documents

Publication Publication Date Title
JP4356146B2 (en) Refrigeration equipment
JPS58130968A (en) Refrigerator
JPH03105155A (en) Freezer with economizer
JPH078999Y2 (en) Air source heat pump
JP2003194427A (en) Cooling device
JPH03294750A (en) Freezing apparatus
JPS6136131Y2 (en)
JPS5847963A (en) Refrigerating cycle of air conditioner
JPS6146367Y2 (en)
JPS5915768A (en) Refrigeration cycle
JPS58130967A (en) Refrigerator
JPS6066064A (en) Refrigerator
JPS58219366A (en) Cooling device
JPS62178856A (en) Multi-chamber air conditioner
JPS5862389A (en) Refrigerating cycle
JPS5828960A (en) Controller for flow rate
JPS58120056A (en) Refrigerator
JPH0251110B2 (en)
JPS5888556A (en) Refrigerator
JPS59197768A (en) Refrigerator
JPS63306364A (en) Air-conditioning changeover type air conditioner
JPH0351673A (en) Heat pump type cooling or heating device
JPS60144570A (en) Air conditioner
JPS6186538A (en) Refrigerator
JPS6245454B2 (en)