JPS6245454B2 - - Google Patents

Info

Publication number
JPS6245454B2
JPS6245454B2 JP817781A JP817781A JPS6245454B2 JP S6245454 B2 JPS6245454 B2 JP S6245454B2 JP 817781 A JP817781 A JP 817781A JP 817781 A JP817781 A JP 817781A JP S6245454 B2 JPS6245454 B2 JP S6245454B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
liquid
refrigeration system
reducing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP817781A
Other languages
Japanese (ja)
Other versions
JPS57122258A (en
Inventor
Naoki Tanaka
Masahiro Sugihara
Hiroshi Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP817781A priority Critical patent/JPS57122258A/en
Publication of JPS57122258A publication Critical patent/JPS57122258A/en
Publication of JPS6245454B2 publication Critical patent/JPS6245454B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、冷媒の潜熱を利用する蒸気圧縮式
の冷凍装置に係り、特に、その圧縮機の液戻り防
止と起動負荷低減を行うようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor compression type refrigeration system that utilizes the latent heat of a refrigerant, and is particularly designed to prevent liquid return to the compressor and reduce the startup load.

第1図は従来の冷凍装置の冷媒サイクルの一例
を示す図であり、図中の1は圧縮機、2は凝縮
器、3は減圧装置、、4は蒸発器であり、これら
は順次連通して、冷凍装置を構成している。
Fig. 1 is a diagram showing an example of a refrigerant cycle of a conventional refrigeration system. In the figure, 1 is a compressor, 2 is a condenser, 3 is a pressure reducing device, and 4 is an evaporator, which are connected in sequence. This constitutes a refrigeration system.

このような従来の冷凍装置においては、圧縮機
1で高温高圧となつた冷媒ガスは凝縮器2で冷却
されて、液化し、減圧装置3で低温低圧になつて
蒸発器4に導かれる。そして、蒸発器4内では冷
媒液がガス化する際に、周囲から吸熱して冷凍を
行う。この後、冷凍ガスは圧縮機1に吸入され
る。
In such a conventional refrigeration system, refrigerant gas that has become high temperature and high pressure in the compressor 1 is cooled and liquefied in the condenser 2, becomes low temperature and low pressure in the pressure reducing device 3, and is guided to the evaporator 4. When the refrigerant liquid is gasified in the evaporator 4, it absorbs heat from the surroundings and performs freezing. After this, the frozen gas is sucked into the compressor 1.

このような従来の冷凍装置では、運転停止後に
凝縮器2と蒸発器4との圧力差のために、凝縮器
2の液冷媒の大部分が蒸発器4に流れ込み、蒸発
器4へ多量の液冷媒が集中する。
In such conventional refrigeration equipment, most of the liquid refrigerant in the condenser 2 flows into the evaporator 4 due to the pressure difference between the condenser 2 and the evaporator 4 after the operation is stopped, and a large amount of liquid refrigerant flows into the evaporator 4. Refrigerant concentrates.

この状態で運転を開始した場合は、蒸発器4に
溜つた液冷媒が急激に圧縮機1へ流れ込むため
に、圧縮機1に故障を生じたり、電動機(図示せ
ず)に過大な負荷がかかる。また、蒸発圧力と凝
縮圧力が第6図の曲線aで示すような経過をたど
つて、停止状態cから定常状態dへ至るため、第
7図(運転時間対圧縮仕事の関係を示す)におけ
る曲線eに示すように、途中で過大な乗り切り負
荷が発生する欠点があつた。
If operation is started in this state, the liquid refrigerant accumulated in the evaporator 4 will rapidly flow into the compressor 1, which may cause a malfunction of the compressor 1 or place an excessive load on the electric motor (not shown). . In addition, since the evaporation pressure and condensation pressure follow the course shown by curve a in Fig. 6, from the stopped state c to the steady state d, in Fig. 7 (showing the relationship between operating time and compression work), As shown by curve e, there was a drawback that an excessive ride-through load was generated in the middle.

なお、第6図におけるYは圧縮仕事が増加する
向きを示すものであり、また、X1〜Xoは等圧縮
仕事線を示すものである。
Note that Y in FIG. 6 indicates the direction in which the compression work increases, and X 1 to X o indicate equal compression work lines.

この発明は、上記従来の欠点を除去するために
なされたもので、冷凍装置の停止時に凝縮器内の
液冷媒をバイパス中の液溜め容器内に導くことに
より、運転開始時に圧縮機へ多量の液冷媒が流入
することを防ぎ、かつ運転開始時に冷凍装置内を
冷媒不足状態に保つことによつて、乗り切り負荷
の低減ができる冷凍装置を提供することを目的と
する。
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and by guiding the liquid refrigerant in the condenser into the bypass liquid storage container when the refrigeration equipment is stopped, a large amount of refrigerant is delivered to the compressor at the start of operation. It is an object of the present invention to provide a refrigeration system that can reduce the overload load by preventing liquid refrigerant from flowing in and keeping the inside of the refrigeration system in a refrigerant-sufficient state at the start of operation.

以下、この発明の冷凍装置の実施例について図
面に基づき説明する。第2図はその一実施例の構
成を示す図である。この第2図において、第1図
と同一部分には同一符号を付してその説明を省略
する。
Embodiments of the refrigeration system of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the configuration of one embodiment. In FIG. 2, the same parts as in FIG. 1 are given the same reference numerals and their explanations will be omitted.

この第2図を第1図と比較しても明らかなよう
に、第2図において、圧縮機1、凝縮器2、減圧
装置3、蒸発器4の部分は第1図と同様であり、
以下に述べる部分が第1図と異なるものである。
すなわち、減圧装置3に並列に、電磁弁5、液
溜め容器6、電磁弁5、減圧装置8の冷媒回路
が設けられている。
As is clear from comparing FIG. 2 with FIG. 1, the compressor 1, condenser 2, pressure reducing device 3, and evaporator 4 in FIG. 2 are the same as in FIG.
The parts described below are different from FIG. 1.
That is, a refrigerant circuit including a solenoid valve 5 1 , a liquid reservoir 6 , a solenoid valve 5 2 , and a pressure reducing device 8 is provided in parallel with the pressure reducing device 3 .

電磁弁5はバイパス管7に設けられてお
り、運転時に閉、停止時に開となるものである。
また、電磁弁5はバイパス管7に取り付けら
れ、運転時に開、停止時に閉となる電磁弁であ
る。
The electromagnetic valve 51 is provided in the bypass pipe 71 , and is closed during operation and opened when stopped.
Further, the solenoid valve 52 is attached to the bypass pipe 72 , and is a solenoid valve that opens during operation and closes when stopped.

液溜め容器6は第3図に示すように構成されて
おり、その両端には上記バイパス管7,7
連結されている。なお、第6図における10は冷
媒液を示す。
The liquid reservoir 6 is constructed as shown in FIG. 3, and the bypass pipes 7 1 and 7 2 are connected to both ends thereof. Note that 10 in FIG. 6 indicates a refrigerant liquid.

次に、以上のように構成されたこの発明の冷媒
装置の動作について説明する。通常運転時には、
電磁弁5が閉、電磁弁5が開の状態となつて
いるため、液溜め容器6内には冷媒液10がたま
らず、第1図に示した従来の冷凍装置と全く同じ
運転状態となる。
Next, the operation of the refrigerant device of the present invention configured as above will be explained. During normal operation,
Since the solenoid valve 51 is closed and the solenoid valve 52 is open, the refrigerant liquid 10 does not accumulate in the liquid reservoir 6, and the operating state is exactly the same as the conventional refrigeration system shown in FIG. becomes.

一方、冷凍装置の運転停止時には、電磁弁5
が開で、電磁弁5が閉となるため、予め蒸発圧
力に等しくなつていた液溜め容器6内へ凝縮器2
の液冷媒が電磁弁5を通して流れ込み、冷凍装
置内の液冷媒量が減少する。
On the other hand, when the refrigeration equipment is stopped, the solenoid valve 5 1
is open and the solenoid valve 52 is closed, so the condenser 2 flows into the liquid reservoir 6, which has been made equal to the evaporation pressure.
of liquid refrigerant flows through the solenoid valve 51 , and the amount of liquid refrigerant in the refrigeration system decreases.

このため、再運転開始時に多量の冷媒液が蒸発
器に集中することを防ぐことができる。すなわ
ち、運転開始後、多量の液冷媒が急激に圧縮機1
に戻らなくなる。
Therefore, it is possible to prevent a large amount of refrigerant liquid from concentrating on the evaporator at the time of restarting the operation. In other words, after the start of operation, a large amount of liquid refrigerant suddenly flows into the compressor 1.
I won't be able to return to it.

また、運転開始時に電磁弁5が閉止され、電
磁弁5が開放されるため、液溜め容器6内の液
冷媒はバイパス管7、電磁弁5を通つて徐々
に冷凍装置内へ戻る。
Furthermore, since the solenoid valve 5 1 is closed and the solenoid valve 5 2 is opened at the start of operation, the liquid refrigerant in the liquid reservoir 6 gradually flows into the refrigeration system through the bypass pipe 7 2 and the solenoid valve 5 2 . return.

これにより、運転開始後しばらくは、冷凍装置
が冷凍量不足の運転となり、蒸発圧力と凝縮圧力
と凝縮圧力は第6図の破線で示す曲線bのような
経過をたどつて、停止状態cから定常状態dへ至
るようになる。このとき、圧縮仕事は第7図の破
線の曲線fのような経過となるため、過大な乗り
切り負荷の発生は防止できる。
As a result, for a while after the start of operation, the refrigeration system operates with an insufficient amount of refrigeration, and the evaporation pressure, condensation pressure, and condensation pressure follow the course of curve b shown by the broken line in Figure 6, and from the stop state c. A steady state d is reached. At this time, since the compression work progresses as shown by the broken line curve f in FIG. 7, generation of an excessive ride-through load can be prevented.

なお、バイパス管7、電磁弁5を用いただ
けでは液溜め容器6内の冷媒液が急激に冷凍装置
内へ戻つてしまい、上記の運転が実現できないこ
ともある。この場合には、第2図のように、減圧
装置8を設けて流量の調節をすればよい。
Note that if only the bypass pipe 7 2 and the solenoid valve 5 2 are used, the refrigerant liquid in the liquid reservoir 6 will suddenly return to the inside of the refrigeration apparatus, and the above operation may not be realized. In this case, as shown in FIG. 2, a pressure reducing device 8 may be provided to adjust the flow rate.

また、運転停止時に、凝縮器2の冷媒液が液溜
め容器6内へ流れ込みにくい配置の場合には、第
4図に示すようなバイパス管7、減圧装置9を
設けることにより、第5図に示すような液溜め容
器6内の冷媒ガスを蒸発器側へ導いて、液溜め容
器6内の圧力を下げ、凝縮器2内の冷媒液が流れ
込み易くすることができる。
If the arrangement is such that the refrigerant liquid in the condenser 2 is difficult to flow into the liquid storage container 6 when the operation is stopped, by providing a bypass pipe 7 3 and a pressure reducing device 9 as shown in FIG. By guiding the refrigerant gas in the liquid reservoir 6 as shown in FIG.

さらに、上記実施例では、電磁弁5の開、電
磁弁5の閉作動を運転停止時に実施していた
が、運転停止時に先立つて実施し、その時間を調
整することによつて、液溜め容器6に貯溜する液
冷媒量を調整することも可能である。
Furthermore, in the above embodiment, the opening of the solenoid valve 51 and the closing of the solenoid valve 52 were carried out when the operation was stopped. It is also possible to adjust the amount of liquid refrigerant stored in the storage container 6.

以上のように、この発明の冷凍装置によれば、
減圧装置の入口と出口部分にバイパス管を接続
し、この両バイパス管の間に液溜め容器を連結
し、この液溜め容器の入口と出口にそれぞれ電磁
弁を設けることにより、停止時に液冷媒が液溜め
容器内に貯溜するようにしたので、運転開始時に
多量の冷媒液が圧縮機へ戻ることがなくなり、し
たがつて、電動機にも過大な負荷がかからなくな
り、信頼性を高めることができる。また、乗り切
り負荷の低減によつて小形で安価な圧縮機が得ら
れる効果がある。
As described above, according to the refrigeration device of the present invention,
By connecting a bypass pipe to the inlet and outlet of the pressure reducing device, connecting a liquid reservoir between the two bypass pipes, and providing a solenoid valve at the inlet and outlet of the liquid reservoir, liquid refrigerant can be prevented from flowing when stopped. Since the refrigerant is stored in the liquid storage container, a large amount of refrigerant liquid does not return to the compressor at the start of operation, which prevents excessive load from being placed on the electric motor, improving reliability. . Further, by reducing the ride-through load, a compact and inexpensive compressor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍装置の冷媒のサイクル図、
第2図はこの発明の冷凍装置の一実施例の冷媒の
サイクル図、第3図は第2図の冷凍装置における
液溜め容器の構成を示す図、第4図はこの発明の
冷凍装置の他の実施例の冷媒サイクル図、第5図
は第4図の冷凍装置における液溜め容器の構成を
示す図、6図は従来およびこの発明の冷凍装置の
凝縮圧力と蒸発圧力の経過を示す特性図、第7図
は従来およびこの発明の冷凍装置の圧縮仕事を示
す特性図である。 1……圧縮機、2……凝縮器、3,8,9……
減圧装置、4……蒸発器、5,5……電磁
弁、6……液溜め容器、7〜7……バイパス
管、10……冷媒液。なお、図中同一符号は同一
または相当部分を示す。
Figure 1 is a refrigerant cycle diagram of a conventional refrigeration system.
Fig. 2 is a refrigerant cycle diagram of an embodiment of the refrigeration system of the present invention, Fig. 3 is a diagram showing the configuration of a liquid reservoir in the refrigeration system of Fig. 2, and Fig. 4 is a diagram showing another embodiment of the refrigeration system of the invention. Fig. 5 is a diagram showing the structure of the liquid reservoir in the refrigeration system shown in Fig. 4, and Fig. 6 is a characteristic diagram showing the progression of condensing pressure and evaporation pressure in the conventional refrigeration system and the present invention. , FIG. 7 is a characteristic diagram showing the compression work of the conventional refrigeration system and the present invention. 1... Compressor, 2... Condenser, 3, 8, 9...
Pressure reducing device, 4...Evaporator, 51,52 ...Solenoid valve, 6 ...Liquid reservoir, 71-73 ...Bypass pipe, 10... Refrigerant liquid. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 冷媒を圧縮して高温高圧にして吐出する圧縮
機、この圧縮機から吐出された高温高圧の冷媒を
凝縮して冷却して液化する凝縮器、この凝縮器で
液化された冷媒液を減圧して低温低圧にする減圧
装置、この減圧装置で減圧された低温低圧の冷媒
液を蒸発させてガス化して上記圧縮機に戻す蒸発
器からなる冷凍装置において、液溜め容器を設
け、この容器と上記減圧装置の入口と出口にそれ
ぞれ連結する第1、第2のバイパス管、上記第1
のバイパス管に設けられ運転時に閉で運転停止時
に開となる第1の電磁弁、上記第2のバイパス管
に設けられ運転時に開で停止時に閉となり第1の
電磁弁とともに停止時に上記冷媒を液溜め容器に
貯溜させかつ運転時にこの液溜め容器に冷媒を貯
溜させない第2の電磁弁を有することを特徴とす
る冷凍装置。 2 第2のバイパス管に第2の減圧装置を設ける
ことを特徴とする特許請求の範囲第1項記載の冷
凍装置。 3 液溜め容器の上部と第2のバイパス管の蒸発
器側との間に第3の減圧装置を有する第3のバイ
パス管を設けたことを特徴とする特許請求の範囲
第1項記載の冷凍装置。
[Claims] 1. A compressor that compresses refrigerant and discharges it at high temperature and high pressure, a condenser that condenses and cools the high temperature and high pressure refrigerant discharged from this compressor, and liquefies the refrigerant in this condenser. In a refrigeration system consisting of a pressure reducing device that reduces the pressure of a refrigerant liquid to a low temperature and low pressure, and an evaporator that evaporates and gasifies the low temperature, low pressure refrigerant liquid that has been reduced in pressure by this pressure reducing device and returns it to the compressor, a liquid storage container is used. first and second bypass pipes provided and connected to the inlet and outlet of the container and the pressure reducing device, respectively;
a first electromagnetic valve provided in the bypass pipe that closes during operation and opens when operation is stopped; a first electromagnetic valve provided in the second bypass pipe that opens during operation and closes when stopped; together with the first electromagnetic valve, the refrigerant is discharged when stopped; A refrigeration system characterized by having a second electromagnetic valve that stores refrigerant in a liquid storage container and prevents refrigerant from storing in the liquid storage container during operation. 2. The refrigeration system according to claim 1, wherein the second bypass pipe is provided with a second pressure reducing device. 3. Refrigeration according to claim 1, characterized in that a third bypass pipe having a third pressure reducing device is provided between the upper part of the liquid storage container and the evaporator side of the second bypass pipe. Device.
JP817781A 1981-01-21 1981-01-21 Refrigerating plant Granted JPS57122258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP817781A JPS57122258A (en) 1981-01-21 1981-01-21 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP817781A JPS57122258A (en) 1981-01-21 1981-01-21 Refrigerating plant

Publications (2)

Publication Number Publication Date
JPS57122258A JPS57122258A (en) 1982-07-30
JPS6245454B2 true JPS6245454B2 (en) 1987-09-26

Family

ID=11686028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP817781A Granted JPS57122258A (en) 1981-01-21 1981-01-21 Refrigerating plant

Country Status (1)

Country Link
JP (1) JPS57122258A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105271B2 (en) * 2012-12-14 2017-03-29 シャープ株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS57122258A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
JP2001296066A (en) Refrigerating cycle
JPS5984050A (en) Refrigerator
AU7402994A (en) A quick cooling air conditioning system
JPS6245454B2 (en)
JPH04313647A (en) Heat pump type air conditioner
JPS5849868A (en) Air conditioner
JP2617172B2 (en) Cryogenic cooling device
JPS5912527Y2 (en) dual refrigeration equipment
JP3048776B2 (en) Refrigeration equipment
JPS6246775B2 (en)
JPS5974465A (en) Cascade type refrigerator
JPS62217058A (en) Refrigerant circuit
JPS59197768A (en) Refrigerator
JPS58130968A (en) Refrigerator
JPS59217456A (en) Refrigerator
JPS5843363A (en) Refrigerating cycle of air conditioner
JPS6257905B2 (en)
JPS5843362A (en) Refrigerating cycle of air conditioner
JPH0459546B2 (en)
JPH03177766A (en) Freezer
JPH0226146B2 (en)
JPS5888556A (en) Refrigerator
JPS6026253A (en) Refrigeration cycle
JPH05312357A (en) Heat accumulation type air conditioner
JPS6030964A (en) Refrigerator