JPS5828960A - Controller for flow rate - Google Patents

Controller for flow rate

Info

Publication number
JPS5828960A
JPS5828960A JP12748481A JP12748481A JPS5828960A JP S5828960 A JPS5828960 A JP S5828960A JP 12748481 A JP12748481 A JP 12748481A JP 12748481 A JP12748481 A JP 12748481A JP S5828960 A JPS5828960 A JP S5828960A
Authority
JP
Japan
Prior art keywords
flow rate
refrigerant
cooling
control device
pressure reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12748481A
Other languages
Japanese (ja)
Other versions
JPS6058381B2 (en
Inventor
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12748481A priority Critical patent/JPS6058381B2/en
Priority to KR1019820003425A priority patent/KR840000779A/en
Priority to DE19823229779 priority patent/DE3229779A1/en
Priority to AU87108/82A priority patent/AU556283B2/en
Publication of JPS5828960A publication Critical patent/JPS5828960A/en
Priority to US06/604,416 priority patent/US4621501A/en
Publication of JPS6058381B2 publication Critical patent/JPS6058381B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、冷媒の潜熱を利用する蒸気圧縮式の冷凍装
置に係り、特にその冷媒の流量制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor compression type refrigeration system that utilizes the latent heat of a refrigerant, and particularly to a flow rate control device for the refrigerant.

第1図は従来の冷凍装置の冷媒サイクルの−゛例を示す
もので、図において、(1)は圧縮機、(2)は凝縮器
、(8)は減圧装置、(4)は蒸発器であシ、これらは
順次連通して、冷凍装置を構成している。
Figure 1 shows an example of the refrigerant cycle of a conventional refrigeration system. In the figure, (1) is a compressor, (2) is a condenser, (8) is a pressure reducing device, and (4) is an evaporator. Yes, these are connected in sequence to form a refrigeration system.

このような従来の冷凍装置においては、圧縮機(1)で
高温高圧となった冷媒ガスは凝縮器(2)で冷却されて
液化し、減圧装置(8)で低温低圧になって蒸発器(4
)に導かれる。そして、蒸発器(4)内では冷媒液がガ
ス化する際に、周囲から吸熱して冷凍を行なう。この後
冷媒ガスは圧縮機(1)に吸入される。
In such conventional refrigeration equipment, refrigerant gas that has become high temperature and high pressure in the compressor (1) is cooled and liquefied in the condenser (2), becomes low temperature and low pressure in the pressure reducing device (8), and is then transferred to the evaporator ( 4
). When the refrigerant liquid is gasified in the evaporator (4), it absorbs heat from the surroundings and performs freezing. After this, the refrigerant gas is sucked into the compressor (1).

このような冷凍装置では、蒸発温度によって適正冷媒流
量が異なシ、通常は蒸発温度が高くなるにつれて大きな
冷媒流量が必要であることが知られている。ところが第
1図のような従来の冷凍装置では、このような冷媒流量
の調整が不十分で、蒸発温度が高いときに冷媒流量が不
足し、蒸発器出口冷媒の過熱度が大きくなりすぎて圧縮
機の温度が上昇したシ、蒸発温度が低いときに冷媒流量
が過大になって圧縮機に液もどシを生ずるなどの欠点が
あった。
In such a refrigeration system, it is known that the appropriate flow rate of refrigerant varies depending on the evaporation temperature, and normally, as the evaporation temperature increases, a larger flow rate of refrigerant is required. However, in conventional refrigeration equipment as shown in Figure 1, the adjustment of the refrigerant flow rate is insufficient, resulting in insufficient refrigerant flow rate when the evaporation temperature is high, and the degree of superheating of the refrigerant at the evaporator outlet becomes too large, resulting in compression failure. There were disadvantages such as when the temperature of the compressor rose or when the evaporation temperature was low, the refrigerant flow rate became excessive, causing liquid backflow in the compressor.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、減圧装置を冷却しその冷却量を調
整することによって冷媒の流量を適正に維持できるよう
な流量制御装置を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and provides a flow rate control device that can maintain an appropriate flow rate of refrigerant by cooling a pressure reducing device and adjusting the amount of cooling. The purpose is to

以下この発明の実施例を図につい・て説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図、第8図はその一実施例の構成を示すもので、第
1図と同一部分には同一符号を付してその説明を省略す
る。第2図において、(5)は冷却液、(6)は冷却液
を循環するポンプ、(7) 1i冷却液の流量を調整す
る流量調整弁、(8)は弁制御装置、(9)は冷却液と
冷媒の熱交換部である。また第8図は減圧装置として毛
細管(8a)を用いた場合の熱交換部の構造を示したも
ので、■は管、α0)は断熱材である。
FIG. 2 and FIG. 8 show the configuration of one embodiment, and the same parts as in FIG. 1 are given the same reference numerals, and the explanation thereof will be omitted. In Fig. 2, (5) is a cooling liquid, (6) is a pump that circulates the cooling liquid, (7) is a flow rate adjustment valve that adjusts the flow rate of the 1i cooling liquid, (8) is a valve control device, and (9) is a This is a heat exchange section between cooling liquid and refrigerant. Moreover, FIG. 8 shows the structure of the heat exchange section when a capillary tube (8a) is used as a pressure reducing device, where ■ is a tube and α0) is a heat insulating material.

以上のように構成された流量制御装置においては、減圧
装置(8)の冷媒をポンプ(6)で循環させた冷却液(
6)によシ、熱交換部(9)にて冷却することができる
。またこの冷却量の調整は、冷却液回路に挿入された流
量調整弁(γ)にて冷却液の流量を増減することによっ
て行なうことができる。ここで流量調整弁(7)の開度
は電気的又は機械的な方法をとる弁リフト調整装置(8
)により、たとえば、蒸発器(4)の出口温度が入口の
温度よシ常に少し高くなるように、つまシ蒸発器出口で
冷媒が完全にガス化してわずかに過熱度がつき、常に適
正な冷媒流量が供給されるように維持できる。
In the flow control device configured as described above, the refrigerant in the pressure reducing device (8) is circulated by the pump (6).
6) Alternatively, it can be cooled in the heat exchange section (9). Further, the amount of cooling can be adjusted by increasing or decreasing the flow rate of the coolant using a flow rate adjustment valve (γ) inserted into the coolant circuit. Here, the opening degree of the flow rate adjustment valve (7) is determined by a valve lift adjustment device (8) that uses an electrical or mechanical method.
), so that, for example, the outlet temperature of the evaporator (4) is always slightly higher than the inlet temperature, the refrigerant is completely gasified at the outlet of the evaporator and slightly superheated, so that the refrigerant is always at an appropriate level. Flow rate can be maintained as supplied.

ところで、この冷却量と冷媒流量の関係は第4図に示す
ように冷却量が大きくなるに従って冷媒流量が増大する
傾向を示す。とれは毛細管の中で・発生している冷媒の
2相流中のガス含有量が、冷却量が多くなるに従って少
なくなシ、流体抵抗が減少して冷媒流量が増加するため
である。
Incidentally, the relationship between the cooling amount and the refrigerant flow rate shows a tendency that the refrigerant flow rate increases as the cooling amount increases, as shown in FIG. This is because the gas content in the two-phase flow of refrigerant generated in the capillary tube decreases as the amount of cooling increases, and the fluid resistance decreases and the refrigerant flow rate increases.

この特性を利用すると、たとえば蒸発器(4)出入口の
温度によって流量調整弁の弁リフトを変え、冷媒の冷却
量を制御して冷媒流量を常に適正に制御することができ
る。
By utilizing this characteristic, for example, the valve lift of the flow rate regulating valve can be changed depending on the temperature at the inlet and outlet of the evaporator (4), and the amount of cooling of the refrigerant can be controlled, so that the refrigerant flow rate can always be appropriately controlled.

なお上記実施例では、減圧装置内の冷媒を冷却する場合
について述べたが、減圧装置入口の冷媒を冷却すること
Kよっても同様の効果が得られる。
Although the above embodiment describes the case where the refrigerant in the pressure reducing device is cooled, the same effect can be obtained by cooling the refrigerant at the inlet of the pressure reducing device.

1*、上記実施例では、外部に冷却源を用いた場合を示
したが、第5Sのように凝縮機(2)出口の冷媒液の一
部、もしくは第6図のように、凝縮器(2)中間から取
り出した冷媒を減圧して低温にしたものを冷却源として
用いても良い。またこの低温の冷媒は必ずしも第6図、
第6図のように、蒸発器(4)の入口側へ流す必要はな
く、第7図のように圧縮機(1)の吸入管中)へ、また
は第8図の蒸発器(4)の中間、第9図の減圧装置(8
)の中間など、流量調整弁(7)の上流側より圧力が低
くなるところならどこでも良い。
1*. In the above embodiment, an external cooling source is used, but as in No. 5S, a part of the refrigerant liquid at the outlet of the condenser (2), or as in Fig. 2) A refrigerant taken out from the middle and reduced in pressure to a low temperature may be used as the cooling source. Also, this low-temperature refrigerant is not necessarily as shown in Figure 6.
There is no need to flow it to the inlet side of the evaporator (4) as shown in Figure 6, but into the suction pipe of the compressor (1) as shown in Figure 7, or to the evaporator (4) in Figure 8. Intermediate, pressure reducing device (8
) may be anywhere where the pressure is lower than the upstream side of the flow rate regulating valve (7).

また低温冷媒の取り出しも、凝縮器(2)の中間や出口
に限ることはなく、第10図のように、減圧装置(8)
の中間、第11図のように減圧装置(3)の出口、さら
には、第12図に示すように吸入管ノ(イl<ス(ロ)
の圧縮機吸入ガスの一部を用いても同じ効果を奏する。
Furthermore, the extraction of low-temperature refrigerant is not limited to the middle or outlet of the condenser (2), but as shown in Fig.
11, the outlet of the pressure reducing device (3) as shown in FIG.
The same effect can be achieved by using a portion of the compressor suction gas.

また第18図のように、2個又はそれ以上の減圧装置を
有する装置においても、その一部を流量1制御すること
によって詞じ効果を奏することカニでき、さらに、その
一部が第14図のように吸入管(11)と熱交換部(ロ
)で熱交換している場合についても同じ効果を奏するこ
とは言うまでもない。   “なお以上の例では、簡単
な冷凍装置について示したが、この単純な冷凍装置以外
に、四方切換弁(6)、室内熱交換器(ロ)、逆止弁0
@、室外熱交換器(ロ)などを備えたと一トポンプ装置
においても第16図、第16図、第17図などの回路に
て、冷媒の流量を適正に保つことができ、この他、多段
冷凍サイクル、多段カスケードサイクルなど他の冷凍装
置にも適用でき、しかも油分離器、乾燥器などのような
補機を備えたものについても同様の効果を奏する。
Furthermore, even in a device having two or more pressure reducing devices as shown in FIG. 18, the same effect can be achieved by controlling the flow rate of some of them by 1; It goes without saying that the same effect can be obtained even when heat is exchanged between the suction pipe (11) and the heat exchange section (b) as shown in FIG. “Although the above example shows a simple refrigeration system, in addition to this simple refrigeration system, there is a four-way switching valve (6), an indoor heat exchanger (b), a check valve
Even in a pump system equipped with an outdoor heat exchanger (b), etc., the flow rate of the refrigerant can be maintained at an appropriate level using the circuits shown in Figures 16, 16, and 17. It can also be applied to other refrigeration systems such as refrigeration cycles and multi-stage cascade cycles, and the same effect can be achieved even in systems equipped with auxiliary equipment such as oil separators and dryers.

さらに、このような冷凍サイクルのみならず、2相流で
ガス体が冷却によって凝縮する系であれば同様に流量制
御が可能である。なお図中実線矢印は暖房回路、点線矢
印は冷房回路を示す。
Furthermore, not only such a refrigeration cycle but also a system in which a gaseous body is condensed by cooling in a two-phase flow can similarly control the flow rate. In addition, the solid line arrow in the figure indicates the heating circuit, and the dotted line arrow indicates the cooling circuit.

また冷却液の流れる熱交換部には第18図のようにフィ
ンを取付けるかスパイフルテープを挿入するなどして熱
伝達をあげれば熱交換が良くなって、性能がさらに改普
できる。
In addition, if heat transfer is increased by attaching fins or inserting spiffle tape to the heat exchange section through which the coolant flows, as shown in Fig. 18, heat exchange will be improved and performance can be further improved.

ま九低温冷媒の流量は、弁リフ′Eを変える方式の流量
調整弁のみではなく、第20図のようにスバイフ・μ状
の溝に)を有するインサート(ハ)を管内壁と密着させ
るように挿入した管(ハ)の外側に電気ヒータ(2)を
巻きつけた構造をもち、電気ヒータの入力を増減するこ
とにより流量又は液量上調整することのできる装置を第
19図に示すような構成で用いるなど低温冷媒の流量が
調整できるものなら何でも良い。
The flow rate of the low-temperature refrigerant is controlled not only by a flow rate regulating valve that changes the valve lift 'E, but also by using an insert (c) with a micro-shaped groove (in the micro-shaped groove) that is brought into close contact with the inner wall of the pipe, as shown in Figure 20. The device has a structure in which an electric heater (2) is wrapped around the outside of a tube (c) inserted into the tube, and the flow rate or liquid volume can be adjusted by increasing or decreasing the input to the electric heater, as shown in Figure 19. Any device that can adjust the flow rate of the low-temperature refrigerant may be used, such as a configuration that allows for adjustment of the flow rate of the low-temperature refrigerant.

また第21図のように、減圧装置の入口に電気ヒーター
などを取付けて冷媒を加熱し、流量を調整するものを備
えれば、さらになめらかな制御が達成できる。
Moreover, as shown in FIG. 21, if an electric heater or the like is attached to the inlet of the pressure reducing device to heat the refrigerant and adjust the flow rate, even smoother control can be achieved.

以上のように仁の発明によれば、減圧装置または減圧装
置入口の冷媒を冷却し、その冷却量を調整して冷媒の流
量が調整できるように流量制御装置を構成したので、冷
凍装置の運転条件の変化に応じて常に適正な冷媒流量が
維持でき、信頼性が高く、しかも性能の良い冷凍装置が
得られる効果がある。
As described above, according to Jin's invention, the flow rate control device is configured to cool the refrigerant at the pressure reducing device or the inlet of the pressure reducing device, and adjust the amount of cooling to adjust the flow rate of the refrigerant. An appropriate refrigerant flow rate can always be maintained in response to changes in conditions, and a refrigeration system with high reliability and good performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷媒の流量−制御装置を用いた冷凍装置
のサイクル図、第2図は本発明の一実施例を示す図、第
8図は本発明による減圧装置の構造を示す図、第4図は
減圧装置を冷却する場合の冷却量に対する冷媒流量の特
性を示す図、第6図〜− 第4図はこの発明の他の実施例を示す図である。 図中、(1)は圧縮機、(2)は凝縮器、(3)は減圧
装置、(4)は蒸発器、(5)は冷却液、(6)はポン
プ、(7)は流量調整弁、(8)は弁リフト調整装置、
(9)は熱交換部、Mは断熱材、(ロ)鉱吸入管、(ロ
)は吸入管バイパス、(ロ)は熱交換部、に)は四方切
換弁、(ロ)は室内熱交換器、Q6)Fi逆止弁、aη
は室外熱交換器、08)は流量調整装置、(ロ)は電気
入力調整装置、−は電源、Ql)は断熱材、に)は電気
ヒータ、■はパイプ、(ハ)はインサート、に)は溝で
ある。 なお図中、同一符号は同一または相当部分を示す。 第1図 第2図 第3図 第4図 小社f− 第5図 第6図 第7図 第8図 ノ 第9図 第1θ図 第11図 2 第12ff1 第1J図 第14図 第15図 第16図
FIG. 1 is a cycle diagram of a refrigeration system using a conventional refrigerant flow rate control device, FIG. 2 is a diagram showing an embodiment of the present invention, and FIG. 8 is a diagram showing the structure of a pressure reducing device according to the present invention. FIG. 4 is a diagram showing the characteristics of the refrigerant flow rate with respect to the cooling amount when cooling a pressure reducing device, and FIGS. 6 to 4 are diagrams showing other embodiments of the present invention. In the figure, (1) is the compressor, (2) is the condenser, (3) is the pressure reducing device, (4) is the evaporator, (5) is the cooling liquid, (6) is the pump, and (7) is the flow rate adjustment. valve, (8) is a valve lift adjustment device,
(9) is the heat exchange section, M is the insulation material, (b) ore suction pipe, (b) is the suction pipe bypass, (b) is the heat exchange section, (b) is the four-way switching valve, (b) is the indoor heat exchange device, Q6) Fi check valve, aη
08) is an outdoor heat exchanger, 08) is a flow rate adjustment device, (B) is an electric input adjustment device, - is a power supply, Ql) is an insulation material, ni) is an electric heater, ■ is a pipe, (c) is an insert, ni) is a groove. In the drawings, the same reference numerals indicate the same or corresponding parts. Fig. 1 Fig. 2 Fig. 3 Fig. 4 Small company f- Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 1θ Fig. 11 Fig. 2 12ff1 Fig. 1J Fig. 14 Fig. 15 Figure 16

Claims (1)

【特許請求の範囲】 (1)減圧装置または減圧装置入口流体の冷却量を調整
して流量の制御を行なうように構成したことを特徴とす
る流量制御装置。 (2)冷却を低温冷媒によって行ない、その冷媒の流量
を電気的または機械的な制御弁にて行なうようにしたこ
とを特徴とする特許請求の範囲第1項記載の流量制御装
置。 (8)冷却を凝縮器からの冷媒液を減圧して生ぜしめた
低温冷媒にて行なうようにしたことを特徴とする特許請
求の範囲第2項記載の流量制御装置(4)冷却を減圧装
置の中間又は出口からの低温冷媒によって行なうように
し喪ことを特徴とする特許請求の範囲第2項記載の流量
制御装置。 (6)冷却を蒸発器出口の低温冷媒によって行なうよう
にした仁とを特徴とする特許請求の範囲第2項記載の流
量制御装置。 (6)低温冷媒の流量制御を、管内壁との間にスパイフ
ル状の溝を有するインサートを挿入してこれを外部から
加熱することにより行なうようにし九ことを特徴とする
特許請求の範囲第2項乃至第6項のうちいずれか1項記
載の流量制御装置。
[Scope of Claims] (1) A flow rate control device characterized in that the flow rate is controlled by adjusting the amount of cooling of a pressure reducing device or a fluid at the inlet of the pressure reducing device. (2) The flow rate control device according to claim 1, wherein cooling is performed using a low-temperature refrigerant, and the flow rate of the refrigerant is controlled by an electrical or mechanical control valve. (8) The flow rate control device according to claim 2, characterized in that cooling is performed using a low-temperature refrigerant produced by reducing the pressure of the refrigerant liquid from the condenser (4) Cooling is performed by a pressure reducing device 3. The flow rate control device according to claim 2, wherein the flow rate control device is characterized in that the flow rate is controlled by low-temperature refrigerant from an intermediate or outlet of the flow rate control device. (6) The flow rate control device according to claim 2, characterized in that cooling is performed by a low-temperature refrigerant at the outlet of the evaporator. (6) The flow rate of the low-temperature refrigerant is controlled by inserting an insert having a spifle-shaped groove between the inner wall of the pipe and heating the insert from the outside. The flow rate control device according to any one of items 6 to 6.
JP12748481A 1981-08-12 1981-08-12 flow control device Expired JPS6058381B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12748481A JPS6058381B2 (en) 1981-08-12 1981-08-12 flow control device
KR1019820003425A KR840000779A (en) 1981-08-12 1982-07-30 Refrigeration system having a function of controlling refrigerant flow rate
DE19823229779 DE3229779A1 (en) 1981-08-12 1982-08-10 COOLING SYSTEM WITH SUB-COOLING TO CONTROL THE REFRIGERANT FLOW
AU87108/82A AU556283B2 (en) 1981-08-12 1982-08-12 Refrigeration system having auxiliary cooling for control of coolant flow
US06/604,416 US4621501A (en) 1981-08-12 1984-04-30 Refrigeration system having auxiliary cooling for control of coolant flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12748481A JPS6058381B2 (en) 1981-08-12 1981-08-12 flow control device

Publications (2)

Publication Number Publication Date
JPS5828960A true JPS5828960A (en) 1983-02-21
JPS6058381B2 JPS6058381B2 (en) 1985-12-19

Family

ID=14961077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12748481A Expired JPS6058381B2 (en) 1981-08-12 1981-08-12 flow control device

Country Status (1)

Country Link
JP (1) JPS6058381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563879A (en) * 1984-05-23 1986-01-14 Mitsubishi Denki Kabushiki Kaisha Heat pump with capillary tube-type expansion device
JPWO2020152873A1 (en) * 2019-01-25 2021-04-08 株式会社 オガワクリーンシステム Heat exchanger and refrigeration cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4563879A (en) * 1984-05-23 1986-01-14 Mitsubishi Denki Kabushiki Kaisha Heat pump with capillary tube-type expansion device
JPWO2020152873A1 (en) * 2019-01-25 2021-04-08 株式会社 オガワクリーンシステム Heat exchanger and refrigeration cycle

Also Published As

Publication number Publication date
JPS6058381B2 (en) 1985-12-19

Similar Documents

Publication Publication Date Title
US4621501A (en) Refrigeration system having auxiliary cooling for control of coolant flow
US5099655A (en) Refrigeration system for flooded shell evaporator
JP2001251078A (en) Exothermic body cooling device
JPS5828960A (en) Controller for flow rate
US5062571A (en) Temperature sensing control for refrigeration system
JPH05187724A (en) Electric component box cooling device for air conditioner
US3421337A (en) Reverse cycle refrigeration system
JPH05157372A (en) Electric part box cooler for air conditioner
US2959937A (en) Refrigeration system for air conditioning units
US20220252317A1 (en) A heat pump
US3955374A (en) Refrigeration apparatus and method
JPS5828961A (en) Refrigerator
JPS5847963A (en) Refrigerating cycle of air conditioner
JPS6045772B2 (en) Heating/cooling device and method for controlling the device to satisfy heating and cooling demands
KR100421618B1 (en) Method for operating load match of refrigerator
JPS5958181A (en) Refrigerator
CN105387643A (en) Constant-temperature control system for high- and low-temperature and low-air-pressure test box
JP3159038B2 (en) Absorption heat pump
JPS5918349A (en) Heat pump system separation type air conditioner
CN115875881A (en) Control method of air conditioner refrigerating system and air conditioner
JPS5915768A (en) Refrigeration cycle
JPS58120061A (en) Heat pump type refrigerator
JPS58127055A (en) Controller for refrigeration circuit
JPS58148359A (en) Refrigerator
JPS58130967A (en) Refrigerator