JPS6146367Y2 - - Google Patents

Info

Publication number
JPS6146367Y2
JPS6146367Y2 JP1981150903U JP15090381U JPS6146367Y2 JP S6146367 Y2 JPS6146367 Y2 JP S6146367Y2 JP 1981150903 U JP1981150903 U JP 1981150903U JP 15090381 U JP15090381 U JP 15090381U JP S6146367 Y2 JPS6146367 Y2 JP S6146367Y2
Authority
JP
Japan
Prior art keywords
electric compressor
pressure
cooler
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981150903U
Other languages
Japanese (ja)
Other versions
JPS5855249U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15090381U priority Critical patent/JPS5855249U/en
Publication of JPS5855249U publication Critical patent/JPS5855249U/en
Application granted granted Critical
Publication of JPS6146367Y2 publication Critical patent/JPS6146367Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電気冷蔵庫等の冷凍装置に係り、特に
冷凍サイクルの運転、停止時におけるエネルギー
ロスを減少させるようにした冷凍装置の制御装置
に関するものである。
[Detailed Description of the Invention] The present invention relates to a refrigeration system such as an electric refrigerator, and more particularly to a control device for a refrigeration system that reduces energy loss during operation and stop of a refrigeration cycle.

一般に冷蔵庫等では、庫内温度を所定温度に維
持させる為には、ある温度幅が冷却運転、停止を
繰り返している。庫内温度が所定温度まで下がつ
た時、この温度を感知して冷却運転の停止信号が
でると電動圧縮機は停止し、冷凍サイクルの各部
の冷媒状態は、バランスする方向に変化を生ず
る。すなわち、電動圧縮機の吐出弁からシエル内
部及び凝縮器に至る高圧側と、冷却器から電動圧
縮機内の吸入ポートに至る低圧側とがバランス圧
力を取るため、毛細管あるいは電動圧縮機の摺動
部分から高圧ガス冷媒が低圧側の低温部(この場
合、冷却器)に冷媒が移動するので、冷却器内は
冷媒で満たされる。冷却器は周囲の熱によつて温
度上昇するが、毛細管あるいは電動圧縮機からの
冷却器へ流入する冷媒が凝縮して液化するときの
凝縮熱により、急速に温度上昇し、周囲の空気を
暖めてしまうことも多い。
Generally, in a refrigerator or the like, in order to maintain the internal temperature at a predetermined temperature, cooling operation and stopping are repeated over a certain temperature range. When the temperature inside the refrigerator drops to a predetermined temperature, this temperature is sensed and a signal to stop the cooling operation is issued, the electric compressor stops, and the refrigerant state in each part of the refrigeration cycle changes toward balance. In other words, the high-pressure side from the discharge valve of the electric compressor to the inside of the shell and condenser and the low-pressure side from the cooler to the suction port in the electric compressor maintain a balance pressure. Since the high-pressure gas refrigerant moves from the high-pressure gas refrigerant to the low-pressure side low-temperature part (in this case, the cooler), the inside of the cooler is filled with refrigerant. The temperature of the cooler rises due to the surrounding heat, but the heat of condensation when the refrigerant flowing into the cooler from the capillary or electric compressor condenses and liquefies causes the temperature to rise rapidly and warm the surrounding air. It often happens.

このため庫内温度が所定温度まで上昇して冷却
運転信号を受けた電動圧縮機が運転されると、冷
却器内に溜つた液冷媒は冷却器内で蒸発しきれず
に、電動圧縮機に至る配管路内を冷却して電動圧
縮機に流れる為、始動してから数分の間冷蔵庫内
を有効に冷却せず、エネルギーロスとなつていた
ばかりか、直接液冷媒や湿り状態の冷媒が電動圧
縮機に吸入されると圧縮仕事が増加し、電動機が
オーバーロードとなるので入力も極端に大きくな
るのが普通で、必然的に大きめの電動機を使用し
て、これに対処している。
Therefore, when the temperature inside the refrigerator rises to a predetermined temperature and the electric compressor receives a cooling operation signal and is operated, the liquid refrigerant that has accumulated in the cooler is not completely evaporated in the cooler and reaches the electric compressor. Since the inside of the piping is cooled and then flows to the electric compressor, the inside of the refrigerator is not effectively cooled for several minutes after startup, resulting in energy loss. When it is sucked into the machine, the compression work increases and the electric motor becomes overloaded, so the input is usually extremely large, and a larger electric motor is inevitably used to deal with this.

本考案は、かかる従来の冷媒システムでの不具
合点を解消する目的でなされたもので、以下図示
実施例について、本発明を詳細に説明すると、1
は謂ゆるローリングピストン1aタイプのシエル
内部を高圧とした電動圧縮機(以下電動圧縮機と
いう)、2は凝縮器、3は毛細管、4は冷却器
で、これらは順次連接して冷凍サイクルを構成し
ている。5は逆止弁で電動圧縮機1と冷却器4間
の配管路中に接続されている。6は電磁弁等の開
閉弁で、凝縮器2と毛細管3間の配管路中に接続
されている。
The present invention was devised for the purpose of solving the problems in such conventional refrigerant systems, and the present invention will be described in detail below with reference to the illustrated embodiments.
2 is a condenser, 3 is a capillary tube, and 4 is a cooler, which are connected in sequence to form a refrigeration cycle. are doing. Reference numeral 5 denotes a check valve connected to the piping between the electric compressor 1 and the cooler 4. Reference numeral 6 denotes an on-off valve such as a solenoid valve, which is connected in the piping path between the condenser 2 and the capillary tube 3.

7はガス溜めで逆止弁5と電動圧縮機1の配管路
中に配設されている。
Reference numeral 7 denotes a gas reservoir, which is disposed in the piping path between the check valve 5 and the electric compressor 1.

次に、これらにより構成した冷凍サイクルの作
用を説明すると、冷凍サイクル内を冷媒が循環
し、冷却運転が成されている冷蔵庫では庫内が所
定の温度まで低下した時、温度センサー等によつ
て停止信号を発し、電磁弁6を動作させて冷却器
4への冷媒流を遮断する。
Next, to explain the operation of the refrigeration cycle constructed from these, a refrigerant circulates within the refrigeration cycle, and in a refrigerator that is in cooling operation, when the temperature inside the refrigerator drops to a predetermined temperature, a temperature sensor etc. A stop signal is issued and the solenoid valve 6 is operated to cut off the refrigerant flow to the cooler 4.

さらに、停止信号が発せられると、高圧シエル
内に封じ込められた高温高圧ガス冷媒は、ローリ
ングピストン1a等の摺動面の油膜シールを通し
て冷却器4の方向に逆流する。このとき、冷却器
4と電動圧縮機1の配管路中に接続し、上記電動
圧縮機1から冷却器4への逆流防止を行なわせる
ための逆止弁5が瞬時に配管路を閉塞し、冷却器
4の高温高圧ガス冷媒による温度上昇を防止して
いる。第2図に示すように、温度センサー等によ
る冷媒サイクル停止信号が発せられた後の圧力変
化は、従来の冷凍サイクルにおける高圧カーブa
および低圧カーブbのバランス状態が高圧側であ
る凝縮器2から毛細管3を通して、さらに高圧シ
エル内に封じられたガス冷媒がローリングピスト
ン1a等の摺動面から漏れて、謂ゆる低圧側の冷
却器4内へ冷媒が徐々に流出して行なわれていた
為、バランス点がで示す時間を要したのに対
し、本考案による実施例においては、電動圧縮機
1の高圧シエル内部から凝縮器2を通して電磁弁
6に至る間の内部圧力a′は、従来の高圧側圧力よ
りも高い圧力状態を呈し、徐々に外気温度と同じ
飽和圧力で安定する。
Furthermore, when a stop signal is issued, the high-temperature, high-pressure gas refrigerant confined within the high-pressure shell flows back toward the cooler 4 through the oil film seal on the sliding surface of the rolling piston 1a and the like. At this time, a check valve 5 connected to the piping between the cooler 4 and the electric compressor 1 to prevent backflow from the electric compressor 1 to the cooler 4 instantly blocks the piping, This prevents the temperature from rising due to the high-temperature, high-pressure gas refrigerant in the cooler 4. As shown in Fig. 2, the pressure change after a refrigerant cycle stop signal is issued by a temperature sensor, etc. is a high pressure curve a in the conventional refrigeration cycle.
The gas refrigerant sealed in the high-pressure shell leaks from the condenser 2, whose balance state is on the high-pressure side, through the capillary tube 3, and from the sliding surfaces of the rolling piston 1a, etc., resulting in the so-called low-pressure side cooler. In contrast, in the embodiment of the present invention, the refrigerant flows from inside the high-pressure shell of the electric compressor 1 through the condenser 2. The internal pressure a' up to the solenoid valve 6 exhibits a pressure state higher than the conventional high-pressure side pressure, and gradually stabilizes at the same saturation pressure as the outside temperature.

一方、冷却器4から電動圧縮機1の配管路中に
配設された逆止弁5までの低圧側圧力b′は、高圧
側からの冷媒侵入が無くなり、停止直後低圧側に
封じ込められた冷媒が温度の最も低下した冷却器
4部分に流動し、配管周囲および冷却器4周囲か
らの熱影響を受けて、次の冷却運転開始の信号が
発せられて、電動圧縮機1が始動するまでわずか
ずつ上昇する程度で、停止中における上記高圧側
の圧力状態と同様、低圧側の圧力状態も極めて通
常運転時の圧力状態に近い状態に維持できるもの
である。さらに、電動圧縮機1のシエル内の高圧
ガスは、停止と同時に本考案の一実施例であるロ
ーリングピストン1aタイプの高圧シエルをもつ
電動圧縮機1のローリングピストン1a等の摺動
面より逆止弁5の方向に向つて差圧の力で摺動面
の油膜シールを通過して逆流し、逆止弁5を働か
せると同時に電動圧縮機1と逆止弁5間を高圧カ
ーブa″で示すごとく変化し、高圧で電動圧縮機1
の前後をバランスさせることができる。
On the other hand, the low-pressure side pressure b' from the cooler 4 to the check valve 5 disposed in the piping of the electric compressor 1 indicates that there is no refrigerant intruding from the high-pressure side, and the refrigerant is confined on the low-pressure side immediately after the stop. flows into the part of the cooler 4 where the temperature has dropped the most, and is affected by heat from the surroundings of the piping and the cooler 4, causing a short delay until the next cooling operation start signal is issued and the electric compressor 1 starts. As with the pressure state on the high pressure side during stoppage, the pressure state on the low pressure side can also be maintained in a state extremely close to the pressure state during normal operation, by increasing the pressure gradually. Furthermore, when the electric compressor 1 is stopped, the high pressure gas in the shell is checked by the sliding surface of the rolling piston 1a, etc. of the electric compressor 1, which has a high pressure shell of the rolling piston 1a type, which is an embodiment of the present invention. A reverse flow passes through the oil film seal on the sliding surface in the direction of the valve 5 due to the force of the differential pressure, and at the same time the check valve 5 is operated, a high pressure curve a'' is shown between the electric compressor 1 and the check valve 5. Electric compressor 1 at high pressure
You can balance the front and back.

次に冷却運転開始の信号が、温度センサー等に
より発せられた時、電磁弁は開状態に復帰し、電
動圧縮機1も同時時に運転開始する。すると、従
来は停止中に冷却器4内に溜つていた液冷媒が、
冷却器4をほとんど冷却しないので、電動圧縮機
1に戻つて圧力上昇を起こさせる要因となつてい
たが、本考案においては、凝縮器2内に液化状態
に溜つた常温高圧冷媒は電動圧縮機1の運転に伴
ない毛細管3を流れて減圧し、冷却器4が蒸発し
て冷却作用を行なつたのち、ガス状冷媒として電
動圧縮機1内に戻るもので、電動圧縮機1の始動
時の負荷軽減による入力の低下が可能となり、従
来よりも電動機を小形化することができる。
Next, when a signal to start cooling operation is issued by a temperature sensor or the like, the solenoid valve returns to the open state, and the electric compressor 1 also starts operating at the same time. Then, the liquid refrigerant that conventionally accumulated in the cooler 4 during stoppage,
Since the cooler 4 is hardly cooled, the refrigerant returns to the electric compressor 1 and causes a pressure increase. However, in the present invention, the room temperature high pressure refrigerant accumulated in the condenser 2 in a liquefied state is transferred to the electric compressor 1. When the electric compressor 1 is started, the refrigerant flows through the capillary tube 3 to reduce the pressure, evaporates in the cooler 4, performs a cooling action, and then returns to the electric compressor 1 as a gaseous refrigerant. It is possible to reduce the input by reducing the load on the motor, and the motor can be made smaller than before.

特に本考案においては逆止弁5と電動圧縮機1
の間にガス溜め7を配設したため電動圧縮機1の
始動直後はガス溜め内のガスを電動圧縮機1が吸
引後、圧力a″から冷却器4の圧力b′に変化するの
で電動圧縮機の前後の圧力(a′とa″)の圧力差が
生じる時間が長くなり、圧力差による電動機の負
荷発生が電動機の定常回転運転状態になつてから
発生するため、電動機の始動トルクの軽減が可能
である。
In particular, in this invention, the check valve 5 and the electric compressor 1
Immediately after the electric compressor 1 starts, the electric compressor 1 sucks the gas in the gas reservoir, and then the pressure changes from a'' to the pressure b' of the cooler 4. The time for the pressure difference between the pressures before and after (a′ and a″) to occur becomes longer, and the load on the motor due to the pressure difference occurs after the motor reaches a steady rotational operating state, so the starting torque of the motor can be reduced. It is possible.

本考案は以上述べたように構成したから、従来
の冷凍サイクルで、特に冷凍サイクルの運転、停
止直後における冷媒の移動を主原因とするエネル
ギーロスを極めて簡単な方法でなくすることがで
きるとともに、電動圧縮機の電動機の小形化を可
能とし、通常運転時にもエネルギーの効率アツプ
を計かることができるものである。なお、本考案
における開閉弁および電動圧縮機の停止時、運転
時の制御信号は、電子制御等によりシーケンス的
に行なわせることも十分可能である。
Since the present invention is configured as described above, it is possible to eliminate energy loss caused mainly by the movement of refrigerant in a conventional refrigeration cycle, especially immediately after operation and stoppage of the refrigeration cycle, and at the same time, This makes it possible to downsize the motor of the electric compressor and improve energy efficiency even during normal operation. It should be noted that the control signals for the on-off valve and the electric compressor when the electric compressor is stopped and operated in the present invention may be controlled sequentially by electronic control or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例による冷凍回路図、
第2図は本考案と従来の冷凍サイクルにおける冷
凍サイクル停止後の圧力バランス状態を示す説明
図である。 1は電動圧縮機、2は凝縮器、3は毛細管、4
は冷却器、5は逆止弁、6は開閉弁、7はガス溜
めである。
FIG. 1 is a refrigeration circuit diagram according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the pressure balance state after the refrigeration cycle is stopped in the refrigeration cycle of the present invention and the conventional refrigeration cycle. 1 is an electric compressor, 2 is a condenser, 3 is a capillary tube, 4
is a cooler, 5 is a check valve, 6 is an on-off valve, and 7 is a gas reservoir.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シエル内部を高圧とした電動圧縮機、凝縮機、
毛細管および冷却器を順次連設してなる冷凍サイ
クルにおいて、上記電動圧縮機と冷却器を接続す
る配管路の一部に逆止弁と、この逆止弁と圧縮機
の間に冷媒のガス溜めを設けるとともに上記凝縮
器と毛細管との接続部間に開閉弁を備えたことを
特徴とする冷凍装置。
Electric compressor, condenser, with high pressure inside the shell,
In a refrigeration cycle in which a capillary tube and a cooler are successively connected, a check valve is provided in a part of the piping connecting the electric compressor and the cooler, and a refrigerant gas reservoir is provided between the check valve and the compressor. 1. A refrigeration system characterized by comprising: an on-off valve between the condenser and the capillary;
JP15090381U 1981-10-09 1981-10-09 Refrigeration equipment Granted JPS5855249U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15090381U JPS5855249U (en) 1981-10-09 1981-10-09 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15090381U JPS5855249U (en) 1981-10-09 1981-10-09 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5855249U JPS5855249U (en) 1983-04-14
JPS6146367Y2 true JPS6146367Y2 (en) 1986-12-26

Family

ID=29943613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15090381U Granted JPS5855249U (en) 1981-10-09 1981-10-09 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5855249U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167822A1 (en) * 2018-02-27 2019-09-06 株式会社ヴァレオジャパン Refrigeration cycle, drive method for refrigeration cycle, accumulator used in refrigeration cycle, and, air conditioning apparatus for vehicle having installed refrigeration cycle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR811326A (en) * 1936-01-21 1937-04-12 Sulzer Ag Compression refrigeration machine
US2326093A (en) * 1940-05-29 1943-08-03 Detroit Lubricator Co Refrigerating system

Also Published As

Publication number Publication date
JPS5855249U (en) 1983-04-14

Similar Documents

Publication Publication Date Title
WO2009151087A1 (en) Refrigeration device
US4208883A (en) Compressors for heat pumps
JP2010002173A (en) Refrigerator
JPS6146367Y2 (en)
JPS6140899B2 (en)
JP2002364937A (en) Refrigerator
JPS6336435B2 (en)
US2492610A (en) Refrigeration
JPS6230698Y2 (en)
JPS6015083Y2 (en) Low temperature freezing equipment
JPS59191859A (en) Heat pump device
JPS58133571A (en) Refrigeration cycle of air conditioner
JPH0218447Y2 (en)
JPH07103581A (en) Refrigerating system
JP2596483Y2 (en) Cooling cycle
JPS582561A (en) Two-stage compressing refrigerator
JPH01193090A (en) Refrigerator
JPH0820126B2 (en) Refrigeration equipment
JPS6294772A (en) Method and device for controlling refrigerant compressor
JP2009168258A (en) Binary refrigerating machine
JPS6244116B2 (en)
JPH0669664U (en) Refrigerant circuit of air conditioner
JPS60186661A (en) Air conditioner
CN101178193A (en) Air-conditioner and control method thereof
JPH0536258U (en) Dual refrigerator