JPS62244104A - Rare earth-iron permanent magnet - Google Patents

Rare earth-iron permanent magnet

Info

Publication number
JPS62244104A
JPS62244104A JP61088746A JP8874686A JPS62244104A JP S62244104 A JPS62244104 A JP S62244104A JP 61088746 A JP61088746 A JP 61088746A JP 8874686 A JP8874686 A JP 8874686A JP S62244104 A JPS62244104 A JP S62244104A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
coercive force
iron
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61088746A
Other languages
Japanese (ja)
Inventor
Koji Akioka
宏治 秋岡
Osamu Kobayashi
理 小林
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61088746A priority Critical patent/JPS62244104A/en
Publication of JPS62244104A publication Critical patent/JPS62244104A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain coercive force under a bulky state, and to simplify a manufacturing process by adding a small quantity of Ni to an R-Fe-B magnet. CONSTITUTION:An alloy consisting of 8-25% R (where R represents at least one kind of rare earth elements containing Y), 2-8% B, 0-15% Ni at an atomic percentage and iron as the remainder is melted and casted so that a casting macrostructure thereof is brought to a colum nar crystal, and the casting ingot is thermally treated at a temperature of 500 deg.C or more and cured magnetically. According to the method, the columnar crystal can be acquired under the state of casting, thus reducing cost, then manufacturing a magnet having high performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類−鉄系永久磁石に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth-iron permanent magnets.

〔従来の技術〕[Conventional technology]

従来、R−Fe−B系の磁石の製造には次の3通りの方
法が報告されている。
Conventionally, the following three methods have been reported for manufacturing R-Fe-B magnets.

(1)  粉末冶金法に基づく焼結法(参考文献1)(
2)  アモルファス合金t−製造するに用いる急冷薄
帯製造装置で、厚さ30μms度の急冷薄片?作り、そ
の薄片を樹脂結合法で磁石にする(参考文献2)。
(1) Sintering method based on powder metallurgy (Reference 1) (
2) The quenched thin strip manufacturing equipment used to produce amorphous alloy T-chilled thin strips with a thickness of 30 μms? The thin pieces are made into magnets using a resin bonding method (Reference 2).

(3)  (2)の方法で使用した同じ薄片を、2段階
のホットプレス法で機械的配向処理を行う方法(参考文
献2)。
(3) A method in which the same flakes used in method (2) are mechanically oriented using a two-step hot press method (Reference Document 2).

参考文献I  M、 Sagawa 、 S、Fuji
mura、 N−TogawaH,Yamamo t 
Oand YoMa t8 uur!L : J、Ap
pl、Ph7B。
References IM, Sagawa, S, Fuji
Mura, N-TogawaH, Yamamoto
Oand YoMa t8 uur! L: J, Ap
pl, Ph7B.

Vol、  55(6入  1 5Maroh  1 
984.  P2O83参考文献2  RoW、Lee
 ; Appl、Phys、 Lett、 Tom。
Vol, 55 (6 pieces 1 5 Maroh 1
984. P2O83 Reference 2 RoW, Lee
; Appl, Phys, Lett, Tom.

46(8)、−、15April 1985. P79
0文献に添って上記の従来技術全説明する。まず(りの
焼結法では、溶解・g遺により合金インゴツト1−作製
し、粉砕されて3μmくらいの粒径を有する磁石粉にさ
nる。磁石粉は成形助剤となるバインダーと混練され、
磁場中でプレス成形されて、成形体ができあがる。成形
体はアルゴン中で1100℃前後の温度で1時間焼結さ
れ、その後室温まで急冷される。焼結後、600℃前後
の温度で熱処理すると保磁力はさらに向上する。
46(8),-, 15April 1985. P79
The above-mentioned prior art will be fully explained with reference to the above literature. First, in the sintering method, an alloy ingot is prepared by melting and gating, and is crushed into magnet powder having a particle size of about 3 μm.The magnet powder is kneaded with a binder that serves as a forming aid. ,
A molded body is completed by press molding in a magnetic field. The compact is sintered in argon at a temperature around 1100° C. for 1 hour and then rapidly cooled to room temperature. After sintering, the coercive force is further improved by heat treatment at a temperature of around 600°C.

(2)は、まず急冷薄帯製造装置の最適な回転数でR−
JPa−B合金の急冷薄帯を作る。得られた薄帯は厚さ
30μmのリボン収金しており、直径が1000A以下
の多結晶が集合している。薄帯は脆くて割れやすく、結
晶粒は等方的に分布しているので磁気的にも等方性であ
る、この薄帯全適度な粒度にして、樹脂と混練してプレ
ス成形すれば7ton/cj程度の圧力で、約85体積
%の充填が可能となる。
(2) First, R-
A quenched ribbon of JPa-B alloy is made. The obtained ribbon is a ribbon with a thickness of 30 μm, and polycrystals with a diameter of 1000 A or less are aggregated. The ribbon is brittle and easily cracked, and since the crystal grains are distributed isotropically, it is also magnetically isotropic.If this ribbon is made to an appropriate particle size, kneaded with resin, and press-molded, it can weigh up to 7 tons. At a pressure of about /cj, filling of about 85% by volume is possible.

(3)の製造方法は、始めにリボン状の急冷薄帯あるい
は薄帯の片を、真空中あるいは不活性雰囲気中で約70
0℃で予備加熱し之グラファイトあるいは他の耐熱用の
プレス型に入れる。該リボンが所望の温度に到達し九と
き一軸の圧力が加えられる。温度、時間は特足しないが
、充分な血性が出る条件としてT=ニア25±250℃
、圧力はP〜1.4ton/−程度が適している。この
段階では磁石はわずかにプレス方向に配向しているとは
いえ、全体的には等方性である。次のホットプレスは、
大面積を有する型で行なわれる。最も一般的にFi70
0℃で[17tonで数秒間プレスする。すると試料は
最初の厚みの1/2になりプレス方向と平行に磁化容易
軸が配向してきて、合金は異方性化する。
In the manufacturing method (3), first, a ribbon-like quenched ribbon or piece of ribbon is heated in a vacuum or in an inert atmosphere for about 70 minutes.
Preheat to 0°C and place in graphite or other heat-resistant press molds. When the ribbon reaches the desired temperature, uniaxial pressure is applied. Temperature and time are not particularly important, but T = near 25 ± 250℃ as a condition for sufficient bloodiness to occur.
A suitable pressure is about P~1.4 ton/-. At this stage, although the magnet is slightly oriented in the pressing direction, it is generally isotropic. The next hot press is
It is carried out in a mold with a large area. Most commonly Fi70
Press at 0° C. and 17 tons for several seconds. Then, the sample becomes 1/2 of its original thickness, the axis of easy magnetization becomes oriented parallel to the pressing direction, and the alloy becomes anisotropic.

これらの工程は、二段階ホットプレス法(two−st
age hot−press procsduro)と
呼ばれている、この方法により緻密で異方性を有するR
−Fe−B磁石が製造できる。なお、最初のメルトスピ
ニング法で作られるリボン薄帯の結晶粒は、それが最大
の保磁力を示す時の粒径よりも小さめにしておき、後に
ホットプレス中に結晶粒の粗大化が生じて最適の粒径に
なるようにしておく。
These steps are performed using a two-step hot press method (two-st hot press method).
This method, called hot-press process, produces dense and anisotropic R.
-Fe-B magnets can be manufactured. It should be noted that the crystal grains of the ribbon produced by the initial melt spinning method are made smaller than the grain size at which they exhibit their maximum coercive force, so that coarsening of the crystal grains occurs later during hot pressing. Make sure the particle size is optimal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来技術で、R−Fe−B系の磁赤は一応作製
できるのであるが、これらの技術を利用しt製造方法は
次のような欠点を有している。(1)の焼結法は、合金
全粉末にするのが必須でめるが、R−Fe−B系合金は
たいへん酸素に対して活性であるので、粉末化すると余
計酸化が激しくなり、焼結体中の酸素濃度はどうしても
高くなってしまう。
Although R--Fe--B magnetic reds can be manufactured using the above-mentioned conventional techniques, methods for producing t using these techniques have the following drawbacks. In the sintering method (1), it is essential to make the entire alloy into powder, but since R-Fe-B alloys are very active against oxygen, oxidation becomes even more intense when powdered. The oxygen concentration in the solids inevitably becomes high.

また粉末?I−成形するときに、例えばステアリン酸亜
鉛のような成形助剤を使用しなければならず、これは焼
結工程で前もって取り除かれるのであるが、数割は磁石
体の中に炭素の形で残ってしまう。
Powder again? I-When forming, a forming aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process, but some percentage remains in the form of carbon in the magnet body. It will remain.

この炭素は著しくR−Fe−Bの磁気性能全低下させる
。成形助剤を加えてプレス成形した後の成形体はグリー
ン体と君われる。これはたいへん脆く、ハンドリングが
難しい。従って焼結炉にきれいに並べて入れるのには、
相当の手間がかかることも大きな欠点である。これらの
欠点があるので一般的に言ってR−Pe−B系の焼結磁
石の製造には、高価な設備が必要になるばかりでなく、
生産効率が悪く、磁石の製造費が高くなってしまう。従
って、R−Fe−B系磁石の原料費の安さ會充分に引き
出せる製造法とは言い難い。
This carbon significantly reduces the total magnetic performance of R-Fe-B. The molded body after press molding with the addition of a molding aid is called a green body. This is very fragile and difficult to handle. Therefore, in order to arrange them neatly in the sintering furnace,
Another major disadvantage is that it requires considerable effort. Because of these drawbacks, generally speaking, manufacturing R-Pe-B sintered magnets not only requires expensive equipment;
Production efficiency is poor and the manufacturing cost of the magnet increases. Therefore, it cannot be said that this is a manufacturing method that can fully take advantage of the low raw material costs of R-Fe-B magnets.

(2)と(3)の製造法は、前記メルトスピニング装置
を使う。この装置1/Lは現在では、之いへん生産性が
悪くしかも高価である。(2)では原理的に等方性であ
るので低エネルギー積であり、ヒステリシスループの角
形性もよくないので温度特性に対しても、使用する面に
おいても不利である、(3)の方法は、ホットプレスを
2段階に使うというユニークな方法であるが、実際に量
産上湯えるとたいへん非効率になることはやめないであ
ろう。
The manufacturing methods (2) and (3) use the melt spinning apparatus described above. This device 1/L is currently very unproductive and expensive. Method (2) is isotropic in principle, so the energy product is low, and the squareness of the hysteresis loop is not good, so it is disadvantageous both in terms of temperature characteristics and in terms of use.Method (3) is Although this method uses a hot press in two stages, it is a unique method, but if it is actually used for mass production, it will be very inefficient.

本発明によるR−Fe−B系磁石の製造方法はこれらの
欠点を解決するものであり、その目的とするところは、
低コストでしかも高性能な磁石を提供するところにある
The method of manufacturing an R-Fe-B magnet according to the present invention solves these drawbacks, and its purpose is to:
Our goal is to provide low-cost, high-performance magnets.

〔問題全解決するための手段〕[Means to solve all problems]

本発明の永久磁石は、希土類−鉄系永久磁石に関するも
のであり、具体的にはRが8〜25原子%、Bが2〜8
m子%、Ni−15光残部が鉄及びその他の製造上不可
避な不純物から取る合金全溶解し、その鋳造マクロ組織
が柱状晶となるように鋳造した後、該鋳造インボッ)全
500℃以上の温度で熱処理することにより、磁気的に
硬化させることを特徴とする。
The permanent magnet of the present invention relates to a rare earth-iron permanent magnet, and specifically, R is 8 to 25 atomic % and B is 2 to 8 atomic %.
After the alloy is completely melted and the cast macrostructure becomes columnar crystals, the Ni-15 light residue is taken from iron and other impurities that are unavoidable in manufacturing. It is characterized by being magnetically hardened by heat treatment at high temperatures.

前記のように現在の希土類−鉄系永久磁石の製造方法で
ちる焼結法・急冷法は、それぞれ粉砕による粉末管理の
困難さ、生産性の悪さといった大きな欠点を有している
。本発明者らは、これらの欠点を改良するため、バルク
の状態で保磁力を得ることができるような合金の研究に
着手し、前記のような組成においてバルク状態での保磁
力の獲得が可能であり、このとき鋳造組織が柱状晶とな
るようにすると、保磁力が得やすく、かつ柱状晶の異方
性を利用することによシ異方性磁石となるので、等軸晶
を用いるよりも、より高性能な永久磁石が得られること
七発明した。この方法では、鋳造インボッ)k粉砕する
必要がないので、焼結法はどの厳密な雰囲気管理を行な
う必要はなく、設備費が大きく低減される。さらに熱間
加工による異方化も急冷法によって展遺されたもとと異
なプ、2段階ではなく1段階でよく、バルクのまま加工
できるのでプレスだけでなく、スタンプ・押し出し等も
可能で形状任意性及び生産性は著しく高まる。同系統の
研究には、三保広晃他、(日本金属学会、昭和60年度
秋期講演会、講演番号(544) )があるが同研究は
本発明と組成域金具にするのみならず、マクロ組織によ
る性能変化については一切、言及しておらず、性能的に
も本発明に大きく劣っている。また磁気的に硬化せしめ
た後求める形状會得る几めの二次加工も、本来の場合は
従来のサマリウムコバルト系希土類磁石に比して曲げ強
さ・圧縮強さ等が大きいので非常にやりやすい。
As mentioned above, the current methods of manufacturing rare earth-iron permanent magnets, such as the sintering method and the quenching method, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity. In order to improve these drawbacks, the present inventors began research on alloys that can obtain coercive force in the bulk state, and found that it is possible to obtain coercive force in the bulk state with the above composition. At this time, if the casting structure is columnar crystals, it is easier to obtain coercive force, and by utilizing the anisotropy of columnar crystals, an anisotropic magnet can be obtained, so it is better than using equiaxed crystals. He also invented seven things that made it possible to obtain permanent magnets with higher performance. Since this method does not require pulverization of the casting ingot, the sintering method does not require any strict atmosphere control, and equipment costs are greatly reduced. Furthermore, the anisotropy caused by hot processing is different from the original one developed by the quenching method, and only one step is required instead of two, and since the bulk can be processed, not only pressing but also stamping and extrusion are possible, allowing for arbitrary shapes. and productivity increases significantly. Similar research has been carried out by Hiroaki Miho et al. (Japan Institute of Metals, 1985 Autumn Lecture, lecture number (544)), which not only developed the present invention and composition range metal fittings, but also developed macrostructures. There is no mention of any changes in performance, and the performance is also significantly inferior to the present invention. Furthermore, after magnetically hardening, it is very easy to carry out detailed secondary processing to obtain the desired shape, as it has greater bending strength and compressive strength than conventional samarium cobalt rare earth magnets.

従来のR−Fe−B系磁石の組成は、参考文献1に代表
されるようにs Ftts Fe、、 Blが最適組成
とされていた。この組成はR−Fe−B系磁石の主相R
,re、、B化合vlJt原子百分率で表わした組成R
t r、v F ea!、4”14に比してR@B両元
素に富む側に移行している。
The optimal composition of conventional R-Fe-B magnets is sFttsFe, Bl, as typified by Reference 1. This composition is the main phase R of the R-Fe-B magnet.
, re, , B compound vlJt Composition R expressed in atomic percentage
t r, v F ea! , 4"14, it has shifted to the side rich in both R@B elements.

これは保磁力七得るためには、主相のみでなくRu1h
相・Br1ch相と呼ばれる非磁性相が必要であるとい
う点から説明されている。ところが本発明による組成で
は、これと逆にBが少ない側に移行したところにピーク
値が存在する。この組成域では、焼結法によると、保磁
力が激減するので、これまであまり問題にされていなか
つ友。しかし鋳造法によると本組成域でのみ高保磁力が
得られ、通常のBに富む側では十分な保磁力が得られな
い。
This means that in order to obtain coercive force 7, not only the main phase but also Ru1h
This is explained from the point that a non-magnetic phase called Br1ch phase is required. However, in the composition according to the present invention, on the contrary, a peak value exists where the B content shifts to the side where there is less B. In this composition range, the coercive force decreases dramatically when using the sintering method, so this has not been much of a problem until now. However, according to the casting method, a high coercive force can be obtained only in this composition range, and a sufficient coercive force cannot be obtained in the normal B-rich side.

このことは保磁力機構になんらかの変化が起ったことに
よると考えられる。
This is considered to be due to some change in the coercive force mechanism.

永久磁石材料に柱状晶を用いることはアルニコ磁石?初
め、希±118rrB石系のサマリウム−コバルト磁石
でも行なわれており、本発明者のひとりはすでに198
1年、樹脂結合型サマリウムコバルト磁石への応用とし
て発表している。(τ、Shimoda他、Proce
edings of the fifth jncer
hationalWorkshap on Rare 
marth−Cobalt PermanentMag
nets 、 、1981. P595 )本発明にお
いても鋳造状態で柱状晶を得ることは高性能磁石化を重
要点となっている。すなわち、熱処理によって保磁力を
得る過程が拡散によるものであり、サマリウスコバルト
と同様、柱状晶による方が保磁力が得やすい。さらに本
来磁石は、柱状晶に垂直な面に磁化容易軸が配向する性
質があるので、柱状晶金利用すれば面内異方性磁石を作
成することができる。
Is using columnar crystals as a permanent magnet material an alnico magnet? Initially, this was done with rare ±118rrB samarium-cobalt magnets, and one of the present inventors has already reported that 198rrB.
In 2011, the application to resin-bonded samarium-cobalt magnets was announced. (τ, Shimoda et al., Proce
edings of the fifth jncer
HationalWorkshap on Rare
marth-Cobalt PermanentMag
nets, , 1981. P595) In the present invention as well, obtaining columnar crystals in a cast state is an important point for producing a high-performance magnet. That is, the process of obtaining coercive force through heat treatment is due to diffusion, and like Samarius cobalt, it is easier to obtain coercive force with columnar crystals. Furthermore, since magnets originally have a property in which the axis of easy magnetization is oriented in a plane perpendicular to the columnar crystals, it is possible to create in-plane anisotropic magnets by using columnar crystal gold.

本発明におけるニッケル(N1)の添加は、上記の柱状
晶生成と密接な関係を有している。一般にR−Fe−B
系磁石へのN1添加は、若干のキュリ一点上昇効果はあ
るものの、磁気特性そのものには悪影響がめるとされて
いた。(Zhang Maocai他Proceedi
ngs of the 8th工hternation
aIWorkshop on Rare−ICarth
 Magnets 、 1985. P541 )とこ
ろが本来磁石の場合は、逆に3原子%程Vまでの添加は
保磁力の増大上もたらす。なぜならニッケルは本来磁石
合金に対する柱状晶化剤としての効果があるからである
The addition of nickel (N1) in the present invention has a close relationship with the formation of columnar crystals described above. Generally R-Fe-B
Although the addition of N1 to the system magnet has the effect of slightly raising the Curie by one point, it was believed that it had a negative impact on the magnetic properties themselves. (Zhang Maocai et al.
ngs of the 8th construction
aIWorkshop on Rare-ICarth
Magnets, 1985. P541) However, in the case of a magnet, on the contrary, addition of up to about 3 atomic % of V increases the coercive force. This is because nickel originally has an effect as a columnar crystallizing agent for magnetic alloys.

ニッケルの柱状晶化効果は鋼の場合にはよく知られてい
る。一般に柱状晶化を促進する元素は、2元系状態図で
考えれば1g相線と固相線の間隔が狭い元素である。つ
まシ平衡する液相の溶質濃度atと固相濃度C8の比で
あられされる溶質分配係数Ko=C8/czが1より小
さい静置の場合は1− Koが、またに0が1より大き
い溶質の場合には1−17に、で示される数字が小さい
ものほど、柱状晶形成に有利となる。鋼に対するニッケ
ルの場合、1−Koの値がcL2程度とがなり小さく、
柱状晶形成に有利な元素である。水系は最高性能勿有す
る組成域では約80 at%の鉄を含むので、ある程度
この考え方が適用できると考えられる。本来磁石の保磁
力機構は、鋳造時の偏析F8元素の拡散によっており、
柱状晶の方が拡散速度が速い。このことから、通常の焼
結R−Fe−BQ石では見られなかった添加による柱状
晶形成効果が磁気特性に好影響をも念らしたと考えられ
る。
The columnar crystallization effect of nickel is well known in the case of steel. In general, elements that promote columnar crystallization are elements in which the interval between the 1g phase line and the solidus line is narrow when considered in a binary phase diagram. The solute distribution coefficient Ko = C8/cz, which is determined by the ratio of the solute concentration at of the liquid phase in equilibrium to the solid phase concentration C8, is less than 1 when left standing, and 1 - Ko, and 0 is greater than 1. In the case of solutes, the smaller the number shown in 1-17, the more advantageous it is to forming columnar crystals. In the case of nickel compared to steel, the value of 1-Ko is small, about cL2,
It is an element that is advantageous for forming columnar crystals. Since aqueous systems contain about 80 at% iron in the composition range where they have the highest performance, it is thought that this concept can be applied to some extent. Originally, the coercive force mechanism of a magnet is due to the diffusion of the segregated F8 element during casting.
Columnar crystals have a faster diffusion rate. From this, it is considered that the effect of forming columnar crystals due to the addition, which was not observed in ordinary sintered R-Fe-BQ stones, also had a favorable effect on the magnetic properties.

以下、本発明による永久磁石の組成限定理由を説明する
。希土類としては、 Y*LaaOe@Pr*Nd55
m*Fu*Ga5Tb*Dy@Ho@ZueTm*Yb
5Luが候補として挙げられ、これらのうちのIT’!
!、!するいは1種以上を組み合わせて用いられる。最
も高い磁気特性はPrで得られる。従って実用的にはP
r・Pr−Nd合金・Ce−Pr−Nd合金等が用いら
れる。
The reasons for limiting the composition of the permanent magnet according to the present invention will be explained below. As a rare earth, Y*LaaOe@Pr*Nd55
m*Fu*Ga5Tb*Dy@Ho@ZueTm*Yb
5Lu was mentioned as a candidate, and of these, IT'!
! ,! Alternatively, one or more types may be used in combination. The highest magnetic properties are obtained with Pr. Therefore, practically P
r.Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are used.

ま之少遺の添加元素、例えば重希土元素のD7・τb等
やAtaMosSi等は保磁力の向上に有効である。R
−Fe−B系磁石の主相はR2Fel4Bである。
Additive elements such as heavy rare earth elements such as D7·τb and AtaMosSi are effective in improving the coercive force. R
The main phase of the -Fe-B magnet is R2Fel4B.

従ってRが8原子%未満では、もはや上記化合物を形成
せず、α−鉄と同一構造の立方晶m織となるため高出気
特性は得られない。−万Rが25原子%を越えると非磁
性のRrich相が多くなり磁気特性は著しく低下する
。よって只の範囲は、8〜25原子%が適当である。
Therefore, if R is less than 8 at %, the above-mentioned compound is no longer formed and a cubic m weave having the same structure as α-iron is formed, so that high air output characteristics cannot be obtained. - If R exceeds 25 atomic %, the nonmagnetic Rrich phase will increase and the magnetic properties will be significantly degraded. Therefore, a suitable range is 8 to 25 atom %.

Bは、R,Fe、4B相全形成するための必須元素であ
り、2原子%未溝では菱面体のR−Fe系になるため高
保磁力は望めない、しかし従来の焼結法【よる磁石のよ
うに8原子%以上も添加すると、逆に鋳造状態での保磁
力は得られなくなってしまう。
B is an essential element for forming all the R, Fe, and 4B phases, and if 2 atomic % is not grooved, it becomes a rhombohedral R-Fe system, so high coercive force cannot be expected. If 8 at % or more is added as in the case of 8 atomic % or more, on the contrary, the coercive force in the cast state cannot be obtained.

従ってBの量は2〜8原子%が範囲として適している。Therefore, a suitable range for the amount of B is 2 to 8 at%.

N1は前記したように、3at56程度の少量添加では
無添加のものよシも柱状晶形成効果により保磁力1Hc
は大きくなるが、それ以上添加するとiHcは低下して
くる。15atX以上添加するとフェライト磁石以下の
磁気特性しか有さなくなるので本来磁石の存在意義がな
くなってしまう。
As mentioned above, when N1 is added in a small amount of about 3at56, the coercive force becomes 1Hc due to the effect of forming columnar crystals compared to the one without addition.
increases, but if more is added, iHc decreases. If more than 15 atX is added, the magnet will have magnetic properties inferior to those of a ferrite magnet, and the purpose of the magnet's existence will be lost.

従ってN1の量は〜15at96が範囲として適してい
る。
Therefore, a suitable range for the amount of N1 is ~15at96.

〔実施例1〕 本発明による裂造工程図全第1図に示す。まず所望の組
成の合金を誘導炉で溶解し、鉄錆型に鋳造し、柱状晶全
形成せしめる。次に面内異方性磁石とする念めに柱状晶
に垂直な面が測定方向となるように2次加工して、サン
プルを作成する。さらに熱処理全施し磁気的に硬化させ
る。本実施例では代表組成としてPrI、 Pe4M 
N i14 B、組成を取りあげ、1000℃で熱処理
したときの熱処理時間による保磁力1Hcの変化を、組
成Prl 5 Peg 1 E4と比較してとらえた。
[Example 1] A complete diagram of the fabrication process according to the present invention is shown in FIG. First, an alloy with a desired composition is melted in an induction furnace and cast into a steel mold to completely form columnar crystals. Next, in order to create an in-plane anisotropic magnet, a sample is prepared by performing secondary processing so that the plane perpendicular to the columnar crystals is in the measurement direction. Furthermore, it is completely heat treated and hardened magnetically. In this example, PrI, Pe4M are representative compositions.
Taking up the composition of N i14 B, the changes in coercive force 1Hc depending on the heat treatment time when heat treated at 1000° C. were compared with the composition Prl 5 Peg 1 E4.

第2因に示すように、 Ni入り組成の方が短時間でi
Hcが増加し、最大値も大きい。なお本実例では熱間加
工は行なわなかった。
As shown in the second factor, the Ni-containing composition achieves i in a shorter time.
Hc increases and the maximum value is also large. Note that hot working was not performed in this example.

〔実施例2〕 第1表のような組成を溶解し、第1図に示す方法で磁石
を作成した。ただし本実施例では鋳造は一方凝固による
連続鋳造(加熱鋳型使用〕を行ない。引き続き熱間加工
としてアルゴン雰囲気ホットプレスでのすえ込み加工t
−800℃で行なった後アニール11000℃X24時
間施し、切断・研削により10m%、0■の大きな仕上
げ、磁気特性全測定した。この時、加熱鋳造には20m
%、0■の大きなのものを用い友。
[Example 2] A magnet was prepared by melting the composition shown in Table 1 and using the method shown in FIG. However, in this example, continuous casting by solidification (using a heated mold) is performed on the one hand.Swaging process in an argon atmosphere hot press is then performed as hot processing.
After this was carried out at -800°C, it was annealed at 11,000°C for 24 hours, and was finished by cutting and grinding to a size of 10m% and 0mm, and all magnetic properties were measured. At this time, 20 m is required for hot casting.
%, use a large one with 0 ■.

第−表 得られた結果を第2表に示す。Table - Table The results obtained are shown in Table 2.

第   2   表 〔発明の効果〕 以上述べ念ように本発明によれば、従来の焼結法では保
磁力1Hcの得にくかつ次組成域で、しかもバルク状態
で保磁力金得ることができ、製造工程も著しく単純化す
ることができる。
Table 2 [Effects of the Invention] As mentioned above, according to the present invention, it is difficult to obtain a coercive force of 1Hc using conventional sintering methods, and it is possible to obtain coercive force gold in the following composition range, and in a bulk state. The manufacturing process can also be significantly simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の希土類−鉄系磁石の製造工程図。 W、2図は、FroffFθyg、5 Nit、s B
4合金とPrl5 Fe111 B。 合金の熱処理による保磁力変化の図。 以上
FIG. 1 is a manufacturing process diagram of the rare earth-iron magnet of the present invention. W, Figure 2 is FroffFθyg, 5 Nit, s B
4 alloy and Prl5 Fe111 B. Diagram of coercive force change due to alloy heat treatment. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分率においてR8〜25%(但しRはYを
含む希土類元素の少なくとも1種)、B2〜8%、N1
0〜15%、及び残部が鉄及びその他の製造上不可避な
不純物からなる合金を溶解しその鋳造マクロ組織が柱状
晶となるように鋳造した後、該鋳造インゴットを500
℃以上の温度で熱処理することにより磁気的に硬化させ
ることを特徴とする希土類−鉄系永久磁石。
(1) In terms of atomic percentage, R8 to 25% (R is at least one rare earth element including Y), B2 to 8%, N1
After melting an alloy consisting of 0 to 15% and the balance consisting of iron and other impurities unavoidable in manufacturing and casting the cast so that the cast macrostructure becomes a columnar crystal, the cast ingot is
A rare earth-iron permanent magnet characterized by being magnetically hardened by heat treatment at a temperature of ℃ or higher.
(2)鋳造インゴットを500℃以上の温度で熱間加工
することにより、結晶粒の結晶軸を特定の方向に配向さ
せ、該鋳造インゴットを磁気的に異方化することを特徴
とする特許請求の範囲第1項記載の希土類−鉄系永久磁
石。
(2) A patent claim characterized in that by hot working a cast ingot at a temperature of 500°C or higher, the crystal axes of crystal grains are oriented in a specific direction, thereby making the cast ingot magnetically anisotropic. A rare earth-iron permanent magnet according to item 1.
JP61088746A 1986-04-17 1986-04-17 Rare earth-iron permanent magnet Pending JPS62244104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61088746A JPS62244104A (en) 1986-04-17 1986-04-17 Rare earth-iron permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61088746A JPS62244104A (en) 1986-04-17 1986-04-17 Rare earth-iron permanent magnet

Publications (1)

Publication Number Publication Date
JPS62244104A true JPS62244104A (en) 1987-10-24

Family

ID=13951473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61088746A Pending JPS62244104A (en) 1986-04-17 1986-04-17 Rare earth-iron permanent magnet

Country Status (1)

Country Link
JP (1) JPS62244104A (en)

Similar Documents

Publication Publication Date Title
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
JPH01171209A (en) Manufacture of permanent magnet
JPS62244104A (en) Rare earth-iron permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH04143221A (en) Production of permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH01175207A (en) Manufacture of permanent magnet
JPS63285909A (en) Permanent magnet and manufacture thereof
JPH023203A (en) Permanent magnet and its manufacture
JPH07135120A (en) Manufacture of rare earth-iron based permanent magnet
JPH0684628A (en) Radial anisotropic rare earth-iron based permanent magnet
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS62262404A (en) Manufacture of rare earth-iron permanent magnet
JPH01161802A (en) Manufacture of permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH023209A (en) Permanent magnet and its manufacture
JPH07166304A (en) Alloy for permanent magnet
JPH0418704A (en) Manufacture of permanent magnet
JPS63285910A (en) Permanent magnet and manufacture thereof
JPH0422105A (en) Method of manufacturing permanent magnet
JPS63286514A (en) Manufacture of permanent magnet