JPS6224384B2 - - Google Patents

Info

Publication number
JPS6224384B2
JPS6224384B2 JP57121810A JP12181082A JPS6224384B2 JP S6224384 B2 JPS6224384 B2 JP S6224384B2 JP 57121810 A JP57121810 A JP 57121810A JP 12181082 A JP12181082 A JP 12181082A JP S6224384 B2 JPS6224384 B2 JP S6224384B2
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
tio
zro
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57121810A
Other languages
Japanese (ja)
Other versions
JPS5913668A (en
Inventor
Osamu Yamashita
Kenichi Uechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57121810A priority Critical patent/JPS5913668A/en
Publication of JPS5913668A publication Critical patent/JPS5913668A/en
Publication of JPS6224384B2 publication Critical patent/JPS6224384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、磁気ヘツドの構造部品に用いる非
磁性材料に係り、Ni―Znフエライトと同等の熱
膨張係数を有し、かつ高い機械的強度と良好な加
工性を有する磁気ヘツド用磁器組成物に関する。 背景技術 磁気ヘツドは、磁性材料からなるコアと非磁性
材料からなる構造部品とをガラス溶着して組立て
られており、特にデジタル用磁気ヘツドには磁性
材料として高周波特性及び耐摩耗性のすぐれた
Ni―Znフエライトが主に使用され、構造部品材
料にはTiO2―BaO―ZrO2系磁器が使用されてい
る。 一般に用いられるTiO2―BaO―ZrO2系磁器
は、組成がTiO274〜78wt%、BaO18〜23wt%、
ZrO24〜7wt%であり、その熱膨張係数は96〜100
×10-7/℃である。 ところが、Ni―Znフエライトはその熱膨張係
数が、90〜94×10-7/℃であり、これより作製し
たコアと、上記磁器からなる構造部品とをガラス
溶着する際に、両者間の熱膨張係数が異なるた
め、歪を生じ、磁気特性の劣化が起こるだけでな
く、ひび、剥離等を生じて磁気ヘツドの組立上大
きな問題となつている。 従つて、コア材と非磁性構造部品との熱膨張係
数を同等にする必要があるが、コア材のNi―Zn
フエライトの熱膨張係数は要求される電磁気特性
によつて定まる組成により固定されるため、非磁
性構造部品材料のそれを、Ni―Znフエライトの
熱膨張係数になるよう調整する必要がある。 しかし、上記の磁気ヘツドの組立上の問題を防
止するためには、熱膨張係数の差を2×10-7/℃
以下に抑えなければならず、上述した組成の
TiO2―BaO―ZrO2系磁器では不可能である。 一般に、TiO2―BaO―ZrO2系磁器の組成が、
上記の如く高い熱膨張係数をもつ組成に固定され
る理由は以下の通りである。 TiO2―BaO―ZrO2系磁器のうち、熱膨張係数
に関係する成分であるTiO2を増加させて、Ni―
Znフエライトの熱膨張係数(90〜94×10-7/℃)
に合致する組成領域にすると、加工性が一段と劣
化し、さらに従来の焼結温度1250℃よりも50℃以
上高い焼結温度となり焼結体内部が還元されて黒
色化する。 また、磁気ヘツド用構造部品は、非常に精密な
加工を必要とするため、加工性の良いすなわち研
削抵抗の小さい材料でなければならない。従つ
て、上記磁器において、TiO2の増量による加工
性の劣化は、磁気ヘツド用非磁性構造部品材料と
して致命的な欠陥となるためである。 発明の目的 この発明は、上述の問題点に鑑み、Ni―Znフ
エライトと同等の熱膨張係数を有し、かつ、加工
性が良好で、高い機械的強度を有するTiO2
BaO―ZrO2系磁器を提案するものである。 発明の構成と効果 この発明は、 TiO280wt%〜90wt%、BaO 6.0wt%〜14.5wt
%、ZrO23wt%〜4wt%、SiO2 1.0wt%〜2.0wt
%、かつ、ZrO2+SiO2 5.0wt%〜6.0wt%からな
り、熱膨張係数90〜94×10-7/℃を有することを
要旨とする磁気ヘツド用磁器組成物である。 この発明は、TiO2―BaO―ZrO2系磁器におい
て、TiO2の含有量を従来組成の含有量より増加
させることにより、熱膨張係数をNi―Znフエラ
イトと同じ90〜94×10-7/℃の範囲に精度よく調
節すると共に、SiO2を含有させることにより加
工性を改善し、同時に焼結温度を従来組成のもの
より50℃程度低下させることにより、焼結体内部
の色も均一に黄色化したものである。 この発明による上記組成とすることによつて、
比較的低温度での焼結により高密度化することが
でき、結晶粒径の微細化が進み、孔が少なく欠陥
の少ない磁器となると共に、加工性及び耐摩耗性
を向上させることができる。 成分限定理由 この発明による磁器組成物の成分を限定した理
由は以下のとおりである。 TiO280wt%未満、BaOが14.5wt%を超える含
有では、熱膨張係数が94×10-7/℃を超えてしま
い、TiO2が90wt%を超え、BaOが6.0wt%未満の
含有であると、熱膨張係数が90×10-7/℃未満と
なる。従つてNi―Znフエライトの熱膨張係数90
〜94×10-7/℃と同じ熱膨張係数を保持させるた
め、TiO280wt%〜90wt%、BaO 6.0wt%〜
14.5wt%の含有とする。 ZrO2は耐熱衝撃性を改善するために添加する
ものであるが、その含有が3wt%未満では熱衝撃
に弱くなり、また4wt%を超える含有ではZrO2
みの層が生成し、耐熱衝撃の効果が低下するた
め、3wt%〜4wt%の含有とする。 また、ZrO2の含有量が3wt%〜4wt%である
と、200℃からの急冷を施しても割れず、耐熱衝
撃性に強い材料となる。 SiO2は加工性を改善するため添加するが、
1.0wt%未満ではビツカース硬度が高くなり、加
工性の劣化を招来し、また2.0wt%を超えると加
工性は改善されるが気孔率が高くなり、緻密性に
欠けるため、1.0wt%〜2.0wt%の含有とする。 また、ZrO2とSiO2の和が、5.0wt%未満では緻
密性に欠け、しかも焼結体内部の色にムラが発生
するため好ましくなく、また、6.0wt%を超える
と、ZrO2層が生成し、しかも気孔率が高くなる
ので、5.0wt%〜6.0wt%とする。 また、磁器組成物の熱膨張係数を、90〜94×
10-7/℃に限定するのは、前述した如くNi―Znフ
エライトコアの熱膨張係数と同等とし、フエライ
トコアとガラス溶着する際の前記問題を解消する
ためである。なお、上記熱膨張係数を有するNi
―Znフエライトの組成の一例を示すと、NiO10〜
12wt%、ZnO20〜24wt%、Fe2O364〜68wt%の
組成物である。 実施例 以下に、この発明を実施例に基づいて説明す
る。 市販されているTiO2,BaCO3及びZrO2を用い
て、第1表に示すこの発明による組成比ならびに
この発明の範囲外の組成比となるよう秤量し、ボ
ールミルで混合し、乾燥した後、空気中で1000
℃、2時間の仮焼を行つた。 さらに仮焼した原料に、市販のSiO2を第1表
に示す組成比となるよう添加し、ボールミルで平
均粒度1.0μmになるまで、微粉砕し、次に結合
剤としてポリビニルアルコールを1.5wt%加えて
造粒した。造粒後に、2000Kg/cm2の成形圧で40×
20×20mmの寸法に成形し、空気中で1200℃、2時
間の焼結を行つた。 得られた磁器について、密度、熱膨張係数、ビ
ツカース硬度等の特性を調べ、第2表に測定結果
を示している。また、表中の加工性は、同一の加
工機を使用しその主軸モータの電力増加量をワツ
ト単位で表わし評価している。 なお、第1表、第2表の試料No.8,10,11は、
この発明の実施例であり、その他の試料は比較例
である。 第2表から明らかな如く、試料No.1〜3の比較
例はビツカース硬度が高く加工性が悪く、試料内
部が黒色化し、試料No.12,13はビツカース硬度が
下がると同時に結晶組織上気孔が増え、緻密性に
欠け、これ以外の比較例は熱膨張係数がNi―Zn
フエライトの熱膨張係数90〜94×10-7/℃に合致
しない。 これに対しこの発明の実施例は、TiO2―BaO
―ZrO2系において、TiO2を増加し、SiO21.0wt%
〜2.0wt%、かつZrO2とSiO2の和が5.0wt%〜
6.0wt%を含有することにより、熱膨張係数を90
〜94×10-7/℃の間にコントロールすることがで
き、加工性が良好となり、しかも試料内部の色も
黄色で均一な材料が得られた。 また、この発明による組成比とすることによ
り、従来の焼結温度より低温にて焼結可能なた
め、緻密化され、結晶粒径が小さくなり、しかも
孔が少なく加工性の良好なる磁器が得られる。従
つて、耐摩耗性にすぐれるため、記録媒体が摺動
する磁気ヘツド構造部品用材料に最適であること
がわかる。
Field of Application This invention relates to non-magnetic materials used for structural parts of magnetic heads, and porcelain for magnetic heads which has a coefficient of thermal expansion equivalent to that of Ni-Zn ferrite, high mechanical strength and good workability. Regarding the composition. BACKGROUND TECHNOLOGY A magnetic head is assembled by glass welding a core made of a magnetic material and a structural part made of a non-magnetic material.In particular, magnetic heads for digital use use a magnetic material with excellent high frequency characteristics and wear resistance.
Ni-Zn ferrite is mainly used, and TiO 2 -BaO-ZrO 2 porcelain is used as the structural component material. The commonly used TiO 2 -BaO-ZrO 2 type porcelain has a composition of 74 to 78 wt% TiO 2 , 18 to 23 wt% BaO,
ZrO2 is 4~7wt% and its thermal expansion coefficient is 96~100
×10 -7 /°C. However, Ni-Zn ferrite has a thermal expansion coefficient of 90 to 94 x 10 -7 /℃, and when glass welding a core made from Ni-Zn ferrite to the above-mentioned structural component made of porcelain, the thermal expansion coefficient between the two is The difference in expansion coefficients not only causes distortion and deterioration of magnetic properties, but also causes cracks, peeling, etc., which poses a major problem in assembling the magnetic head. Therefore, it is necessary to make the thermal expansion coefficients of the core material and non-magnetic structural parts the same, but the core material's Ni-Zn
Since the coefficient of thermal expansion of ferrite is fixed by the composition determined by the required electromagnetic properties, it is necessary to adjust the coefficient of thermal expansion of the non-magnetic structural component material to match the coefficient of thermal expansion of Ni--Zn ferrite. However, in order to prevent the above problems in assembling the magnetic head, the difference in thermal expansion coefficient must be reduced to 2×10 -7 /°C.
The above composition must be kept below.
This is not possible with TiO 2 -BaO-ZrO 2 based porcelain. Generally, the composition of TiO 2 -BaO-ZrO 2- based porcelain is
The reason why the composition is fixed to have a high coefficient of thermal expansion as described above is as follows. Ni- _ _
Thermal expansion coefficient of Zn ferrite (90 to 94×10 -7 /℃)
If the composition range is set to match the above, the workability will further deteriorate, and the sintering temperature will be 50°C or more higher than the conventional sintering temperature of 1250°C, reducing the inside of the sintered body and turning it black. Furthermore, since the structural parts for the magnetic head require very precise machining, they must be made of materials with good machinability, that is, with low grinding resistance. Therefore, in the above-mentioned porcelain, deterioration in workability due to an increase in the amount of TiO 2 becomes a fatal defect as a material for non-magnetic structural parts for magnetic heads. Purpose of the Invention In view of the above-mentioned problems, the present invention provides TiO 2 - which has a coefficient of thermal expansion equivalent to that of Ni--Zn ferrite, has good workability, and has high mechanical strength.
We propose BaO-ZrO 2- based porcelain. Structure and effects of the invention This invention provides TiO 2 80wt% to 90wt%, BaO 6.0wt% to 14.5wt
%, ZrO2 3wt%~4wt%, SiO2 1.0wt%~2.0wt
% and 5.0 to 6.0 wt% of ZrO 2 +SiO 2 , and has a coefficient of thermal expansion of 90 to 94×10 -7 /°C. This invention improves the coefficient of thermal expansion of TiO 2 -BaO-ZrO 2 porcelain by increasing the TiO 2 content compared to the content of conventional compositions, which is the same as that of Ni-Zn ferrite, 90 to 94 x 10 -7 / In addition to accurately adjusting the temperature within the temperature range, the inclusion of SiO 2 improves processability, and at the same time, by lowering the sintering temperature by approximately 50°C compared to conventional compositions, the color inside the sintered body is made uniform. It is yellowish. By having the above composition according to the present invention,
By sintering at a relatively low temperature, it is possible to increase the density, and the crystal grain size becomes finer, resulting in a porcelain with fewer pores and fewer defects, as well as improved workability and wear resistance. Reasons for limiting the components The reasons for limiting the components of the porcelain composition according to the present invention are as follows. If the content is less than 80 wt% TiO 2 and more than 14.5 wt% BaO, the thermal expansion coefficient will exceed 94 × 10 -7 /℃, and if the content is more than 90 wt% TiO 2 and less than 6.0 wt% BaO. , the coefficient of thermal expansion is less than 90×10 -7 /°C. Therefore, the thermal expansion coefficient of Ni-Zn ferrite is 90
To maintain the same thermal expansion coefficient as ~94×10 -7 /℃, TiO 2 80wt% ~ 90wt%, BaO 6.0wt% ~
The content is 14.5wt%. ZrO 2 is added to improve thermal shock resistance, but if its content is less than 3wt%, it becomes vulnerable to thermal shock, and if it is more than 4wt%, a layer consisting only of ZrO 2 is formed, which deteriorates thermal shock resistance. Since the effect decreases, the content should be 3wt% to 4wt%. Moreover, when the content of ZrO 2 is 3wt% to 4wt%, the material will not crack even if rapidly cooled from 200°C, and will have strong thermal shock resistance. SiO 2 is added to improve processability, but
If it is less than 1.0wt%, the Bitkers hardness will increase, leading to deterioration of workability, and if it exceeds 2.0wt%, workability will be improved, but the porosity will increase and density will be lacking, so 1.0wt% to 2.0wt% The content is wt%. Furthermore, if the sum of ZrO 2 and SiO 2 is less than 5.0wt%, it will lack density and cause uneven color inside the sintered body, which is undesirable.If it exceeds 6.0wt%, the ZrO 2 layer will become The content is set at 5.0wt% to 6.0wt% since the porosity is high. In addition, the coefficient of thermal expansion of the porcelain composition is 90 to 94×
The reason why it is limited to 10 -7 /°C is to make it equal to the thermal expansion coefficient of the Ni--Zn ferrite core as described above, and to solve the above-mentioned problem when welding the ferrite core to the glass. In addition, Ni having the above thermal expansion coefficient
- An example of the composition of Zn ferrite is NiO10~
The composition is 12 wt%, ZnO 20-24 wt%, and Fe2O3 64-68 wt%. EXAMPLES The present invention will be described below based on examples. Using commercially available TiO 2 , BaCO 3 and ZrO 2 , the composition ratio according to the present invention as shown in Table 1 and the composition ratio outside the range of the present invention were weighed, mixed in a ball mill, and dried. 1000 in the air
Calcination was performed at ℃ for 2 hours. Furthermore, commercially available SiO 2 was added to the calcined raw material so as to have the composition ratio shown in Table 1, and the mixture was finely ground in a ball mill until the average particle size was 1.0 μm. Next, 1.5 wt% of polyvinyl alcohol was added as a binder. In addition, it was granulated. After granulation, 40× molding pressure of 2000Kg/cm 2
It was molded into a size of 20 x 20 mm and sintered in air at 1200°C for 2 hours. The obtained porcelain was examined for properties such as density, coefficient of thermal expansion, and Vickers hardness, and the measurement results are shown in Table 2. Furthermore, the workability in the table is evaluated by using the same processing machine and expressing the increase in power of the spindle motor in watts. In addition, sample Nos. 8, 10, and 11 in Tables 1 and 2 are as follows:
This is an example of this invention, and the other samples are comparative examples. As is clear from Table 2, the comparative examples of Samples Nos. 1 to 3 have high Vickers hardness, poor workability, and the inside of the sample turns black, while Samples Nos. 12 and 13 have lower Vickers hardness and pores in the crystal structure. The thermal expansion coefficient of other comparative examples is Ni-Zn.
It does not match the thermal expansion coefficient of ferrite, 90 to 94×10 -7 /°C. On the other hand, in the embodiment of the present invention, TiO 2 -BaO
-In ZrO 2 system, increase TiO 2 and SiO 2 1.0wt%
~2.0wt%, and the sum of ZrO 2 and SiO2 is 5.0wt% ~
By containing 6.0wt%, the coefficient of thermal expansion is 90
It was possible to control the temperature between ~94×10 -7 /°C, and the workability was good, and the interior of the sample was yellow and a uniform material was obtained. Furthermore, by using the composition ratio according to the present invention, it is possible to sinter at a lower temperature than the conventional sintering temperature, resulting in porcelain that is densified, has a small crystal grain size, and has few pores and good workability. It will be done. Therefore, it can be seen that it has excellent wear resistance and is therefore most suitable as a material for magnetic head structural parts on which the recording medium slides.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 TiO280wt%〜90wt%、BaO 6.0wt%〜
14.5wt%、ZrO23wt%〜4wt%、SiO2 1.0wt%〜
2.0wt%、かつ、ZrO2+SiO25.0wt%〜6.0wt%か
らなり、熱膨張係数90〜94×10-7/℃を有するこ
とを特徴とする磁気ヘツド用磁器組成物。
1 TiO 2 80wt% ~ 90wt%, BaO 6.0wt% ~
14.5wt%, ZrO2 3wt%~4wt%, SiO2 1.0wt%~
A ceramic composition for a magnetic head, comprising 2.0 wt% and 5.0 wt% to 6.0 wt% of ZrO 2 +SiO 2 and having a coefficient of thermal expansion of 90 to 94×10 -7 /°C.
JP57121810A 1982-07-13 1982-07-13 Ceramic composition for magnetic head Granted JPS5913668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121810A JPS5913668A (en) 1982-07-13 1982-07-13 Ceramic composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121810A JPS5913668A (en) 1982-07-13 1982-07-13 Ceramic composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS5913668A JPS5913668A (en) 1984-01-24
JPS6224384B2 true JPS6224384B2 (en) 1987-05-28

Family

ID=14820485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121810A Granted JPS5913668A (en) 1982-07-13 1982-07-13 Ceramic composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS5913668A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680380B2 (en) * 1986-01-20 1994-10-12 大阪瓦斯株式会社 Absorption type air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191272A (en) * 1981-05-22 1982-11-25 Hitachi Metals Ltd Non-magnetic ceramics for magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191272A (en) * 1981-05-22 1982-11-25 Hitachi Metals Ltd Non-magnetic ceramics for magnetic head

Also Published As

Publication number Publication date
JPS5913668A (en) 1984-01-24

Similar Documents

Publication Publication Date Title
EP2141136B1 (en) Ni-zn-cu ferrite powder, green sheet and method of making a sintered ni-zn-cu ferrite body
JPS6224384B2 (en)
JPS6250434B2 (en)
JPS6224386B2 (en)
JPS6222946B2 (en)
JPS6029670B2 (en) Porcelain composition for magnetic head
JPS6222947B2 (en)
JPS643828B2 (en)
JPS6222948B2 (en)
JPS6224387B2 (en)
JPS6158429B2 (en)
JPS6158427B2 (en)
JPS6154745B2 (en)
JPS6158426B2 (en)
JPS5845166A (en) Ceramic composition for magnetic head
JPS62292672A (en) Ceramic composition for magnetic head
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPH0664930B2 (en) Porcelain composition for magnetic head
JPS6158428B2 (en)
JPS6029669B2 (en) Non-magnetic ceramics for magnetic heads
JPS6286510A (en) Magnetic head
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPS62137709A (en) Nonmagnetic ceramics for magnetic head
JPH02283654A (en) Ceramic composition for magnetic head
JPH059056A (en) Ceramic substrate for magnetic head