JPS6222946B2 - - Google Patents

Info

Publication number
JPS6222946B2
JPS6222946B2 JP58006333A JP633383A JPS6222946B2 JP S6222946 B2 JPS6222946 B2 JP S6222946B2 JP 58006333 A JP58006333 A JP 58006333A JP 633383 A JP633383 A JP 633383A JP S6222946 B2 JPS6222946 B2 JP S6222946B2
Authority
JP
Japan
Prior art keywords
thermal expansion
tio
coefficient
ferrite
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58006333A
Other languages
Japanese (ja)
Other versions
JPS59131571A (en
Inventor
Osamu Yamashita
Kenichi Uechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58006333A priority Critical patent/JPS59131571A/en
Publication of JPS59131571A publication Critical patent/JPS59131571A/en
Publication of JPS6222946B2 publication Critical patent/JPS6222946B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気ヘツドの構造部品に用いる非
磁性材料に係り、Mn−Znフエライトと同等の熱
膨張係数を有し、かつ高い機械的強度と良好な加
工性を有する磁気ヘツド用磁器組成物に関する。 磁気ヘツドは、磁性材料からなるコアと非磁性
材料からなる構造部品とをガラス溶着して組立て
られており、特にデジタル用磁気ヘツドには磁性
材料としてはNi−Znフエライトより高い透磁率
を有するMn−Znフエライトに置換されつつあ
り、非磁性造部品材料にはTiO2−CaO−MgO−
ZrO2系磁器が使用されている。 一般に用いられるTiO2−CaO−MgO−ZrO2
磁器は、非常に加工性が悪く、欠けや罅が発生し
易い問題があつた。 すなわち、この構造部品材料は磁気ヘツドを構
成するため、極めて精密な加工を必要とし、研削
抵抗が小さく加工性のよいことが要求され、ま
た、磁気ヘツドに組立た際の記録媒体に対する耐
摩耗性の向上と共に上記の研削抵抗を下げ、さら
に結晶組織も緻密にする必要がある。 一方、高い飽和磁束密度(Bs>5000G)をもつ
Mn−Znフエライトはその熱膨張係数が、107〜
110×10-7/℃であり、これより作製したコア
と、上記磁器からなる構造部品とをガラス溶着す
る際に、両者間の熱膨張係数が異なると、歪を生
じ、磁気特性の劣化が起こるだけでなく、罅、剥
離等を生じて磁気ヘツドの組立上大きな問題とな
つている。 従つて、コア材と非磁性構造部品との熱膨張係
数を同等にする必要があるが、コア材のMn−Zn
フエライトの熱膨張係数は要求される電磁気特性
によつて定まる組成により固定されるため、非磁
性構造部品材料のそれを、Mn−Znフエライトの
熱膨張係数になるよう調整する必要がある。 しかし、上記の磁気ヘツドの組立上の問題を防
止するためには、熱膨張係数の差を2×10-7/℃
以下に抑えなければならず、上述した組成の
TiO2−CaO−MgO−ZrO2系磁器では不可能であ
る。 この発明は、上述の問題点に鑑み、Mn−Znフ
エライトと同等の熱膨張係数を有し、かつ加工性
が良好で、高い機械的強度を有するTiO2−BaO
系磁器を提案するものである。 すなわち、この発明は、 TiO258〜66wt%、BaO34〜42wt%からなり、 TiO2、BaOの合計を100として、ZrO27〜10wt%
を含有し、熱膨張係数107〜110×10-7/℃を有す
ることを要旨とする磁気ヘツド用磁器組成物であ
る。 この発明による磁器組成物の成分を限定した理
由は以下のとおりである。 TiO258wt%未満、BaOが42wt%を超える含有
では、熱膨張係数が110×10-7/℃を超えてしま
い、TiO2が66wt%を超え、BaOが34wt%未満の
含有であると、熱膨張係数が107×10-7/℃未満
となり、Mn−Znフエライトとのガラス溶着の相
手材料として不適であり、加工性も一段と悪化す
る。従つてMn−Znフエライトの熱膨張係数107
〜110×10-7/℃と同じ熱膨張係数を保持させる
ため、TiO258〜66wt%、BaO34〜42wt%の含有
とする。 ZrO2は耐熱衝撃性を改善するために添加する
ものであるが、その含有がTiO2、BaOの合計を
100として、7wt%未満では熱衝撃に弱くなり、
また10wt%を超える含有ではZrO2のみの相が生
成し、耐熱衝撃の効果が低下するため、7〜
10wt%の添加とする。また、ZrO2の含有量が7
〜10wt%であると、200℃からの急冷を施しても
割れず、耐熱衝撃性に強い材料となり、磁気ヘツ
ド組立時のガラス溶着の際のクラツク発生が防止
できる。 また、磁器組成物の熱膨張係数を、107〜110×
10-7/℃に限定するのは、前述した如くMn−Zn
フエライトコアの熱膨張係数と同等とし、フエラ
イトコアとガラス溶着する際の前記問題を解消す
るためである。なお、上記熱膨張係数を有する
Mn−Znフエライトの組成の一例を示すと、
MnO23〜40モル%、ZnO5〜27モル%、Fe2O350
〜60モル%の組成物、あるいはこれにCaOと
SiO2、ZrO2、TiO2、VOのうち少なくとも一種を
添加した組成物である。 以下に、この発明を実施例に基づいて説明す
る。 市販されているTiO2、BaCO3、ZrO2を用い
て、第1表に示すこの発明による組成比ならびに
この発明の範囲外の組成比となるよう秤量し、ボ
ールミルで混合し、乾燥した後、空気中で900
℃、2時間の仮焼を行つた。さらに仮焼した原料
を再びボールミルで平均粒度1.5μmになるま
で、微粉砕し、次に結合剤としてポリビニルアル
コールを1.5wt%加えて造粒した。造粒後に、
2000Kg/cm2の成形圧で40×20×20mmの寸法に成形
し、空気中で1200℃、2時間の焼結を行つた。 得られた磁器について、密度、熱膨張係数、ビ
ツカース硬度等の特性を調べ、第2表に測定結果
を示している。また、表中の加工性は、同一の加
工機を使用しその主軸モータの電力増加量をワツ
ト単位で表わし評価している。なお、第1表、第
2表の試料No.16〜17は、この発明の実施例であ
り、その他の試料は比較例及び従来例である。 第2表から明らかな如く、試料No.1〜6の比
較例は抗折力が弱く、またビツカース硬度が低
く、孔が増え、緻密性に欠け、これ以外の比較例
は熱膨張係数がMn−Znフエライトの熱膨張係数
107〜110×10-7/℃に合致しない。 これに対しこの発明の実施例は、TiO2−BaO
系においてZrO2を含有することにより、熱膨張
係数を107〜110×10-7/℃の間にコントロールす
ることができ、緻密性にすぐれ、加工性が良好な
材料が得られた。 また、この発明による組成比とすることによ
り、従来の焼結温度より低温にて焼結可能なた
め、緻密化され、結晶粒径が小さくなり、しかも
孔が少なく加工性の良好なる磁器が得られる。従
つて、耐摩耗性にすぐれるため、記録媒体が摺動
する磁気ヘツド構造部品用材料に最適であること
がわかる。
The present invention relates to a non-magnetic material used for structural parts of a magnetic head, and relates to a ceramic composition for a magnetic head that has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, and has high mechanical strength and good workability. . A magnetic head is assembled by glass welding a core made of a magnetic material and a structural part made of a non-magnetic material.In particular, magnetic heads for digital devices use Mn, which has a higher magnetic permeability than Ni-Zn ferrite, as the magnetic material. −Zn is being replaced by ferrite, and TiO 2 −CaO−MgO− is used as a non-magnetic component material.
ZrO 2 series porcelain is used. The commonly used TiO 2 -CaO-MgO-ZrO 2 porcelain has a problem that it has very poor workability and is prone to chipping and cracking. In other words, since this structural component material constitutes the magnetic head, it requires extremely precise machining, requires low grinding resistance and good workability, and also requires high wear resistance for the recording medium when assembled into the magnetic head. It is necessary to improve the grinding resistance, lower the grinding resistance, and further refine the crystal structure. On the other hand, it has a high saturation magnetic flux density (Bs>5000G)
Mn−Zn ferrite has a thermal expansion coefficient of 107~
110×10 -7 /℃, and when the core made from this and the structural component made of the above-mentioned porcelain are glass-welded, if the thermal expansion coefficients between the two differ, distortion will occur and the magnetic properties will deteriorate. Not only this, but also cracking, peeling, etc. occur, which poses a major problem in assembling the magnetic head. Therefore, it is necessary to make the thermal expansion coefficients of the core material and non-magnetic structural parts the same, but the core material's Mn-Zn
Since the coefficient of thermal expansion of ferrite is fixed by the composition determined by the required electromagnetic properties, it is necessary to adjust the coefficient of thermal expansion of the non-magnetic structural component material to match the coefficient of thermal expansion of Mn--Zn ferrite. However, in order to prevent the above problems in assembling the magnetic head, the difference in thermal expansion coefficient must be reduced to 2×10 -7 /°C.
The above composition must be kept below.
This is not possible with TiO 2 −CaO−MgO−ZrO 2 based porcelain. In view of the above-mentioned problems, this invention has developed TiO 2 -BaO, which has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, good workability, and high mechanical strength.
We are proposing a new type of porcelain. That is, this invention consists of TiO 2 58 to 66 wt% and BaO 34 to 42 wt%, and ZrO 2 7 to 10 wt%, with the total of TiO 2 and BaO being 100.
This is a ceramic composition for a magnetic head, which contains : The reasons for limiting the components of the porcelain composition according to the present invention are as follows. If the content is less than 58 wt% of TiO 2 and more than 42 wt% of BaO, the thermal expansion coefficient will exceed 110 × 10 -7 /℃, and if the content is more than 66 wt% of TiO 2 and less than 34 wt% of BaO, The coefficient of thermal expansion is less than 107×10 -7 /°C, making it unsuitable as a partner material for glass welding with Mn-Zn ferrite, and processability also deteriorates further. Therefore, the thermal expansion coefficient of Mn−Zn ferrite is 107
In order to maintain the same coefficient of thermal expansion as ~110×10 −7 /°C, the content is 58 to 66 wt% of TiO 2 and 34 to 42 wt% of BaO. ZrO 2 is added to improve thermal shock resistance, but its content increases the total amount of TiO 2 and BaO.
100, less than 7wt% will be susceptible to thermal shock,
In addition, if the content exceeds 10 wt%, a phase consisting only of ZrO 2 will be formed and the thermal shock resistance effect will decrease.
Addition is 10wt%. In addition, the content of ZrO 2 is 7
When the content is ~10 wt%, the material will not crack even if rapidly cooled from 200°C, and will have strong thermal shock resistance, and will prevent cracks from occurring during glass welding during magnetic head assembly. In addition, the thermal expansion coefficient of the porcelain composition is 107 to 110×
10 -7 /℃ is limited to Mn-Zn as mentioned above.
This is to make the coefficient of thermal expansion equal to that of the ferrite core and to solve the above-mentioned problem when welding the ferrite core to the glass. In addition, it has the above thermal expansion coefficient.
An example of the composition of Mn-Zn ferrite is:
MnO23~40 mol%, ZnO5~27 mol%, Fe2O3 50
~60 mol% composition or this with CaO
This is a composition to which at least one of SiO 2 , ZrO 2 , TiO 2 , and VO is added. The present invention will be explained below based on examples. Using commercially available TiO 2 , BaCO 3 , and ZrO 2 , the composition ratios according to the present invention shown in Table 1 and the composition ratios outside the scope of the present invention were weighed, mixed in a ball mill, and dried. 900 in the air
Calcination was performed at ℃ for 2 hours. Furthermore, the calcined raw material was again finely ground in a ball mill until the average particle size was 1.5 μm, and then 1.5 wt % of polyvinyl alcohol was added as a binder and granulated. After granulation,
It was molded into a size of 40 x 20 x 20 mm under a molding pressure of 2000 Kg/cm 2 and sintered in air at 1200°C for 2 hours. The obtained porcelain was examined for properties such as density, coefficient of thermal expansion, and Vickers hardness, and the measurement results are shown in Table 2. Furthermore, the workability in the table is evaluated by using the same processing machine and expressing the increase in power of the spindle motor in watts. Note that samples Nos. 16 to 17 in Tables 1 and 2 are examples of the present invention, and the other samples are comparative examples and conventional examples. As is clear from Table 2, the comparative examples of samples Nos. 1 to 6 have weak transverse rupture strength, low Vickers hardness, increased pores, and lack of compactness, and other comparative examples have a thermal expansion coefficient of Mn. -Thermal expansion coefficient of Zn ferrite
Does not match 107 to 110×10 -7 /°C. On the other hand, in the embodiment of the present invention, TiO 2 −BaO
By containing ZrO 2 in the system, the coefficient of thermal expansion could be controlled between 107 and 110×10 −7 /°C, and a material with excellent density and good workability was obtained. Furthermore, by using the composition ratio according to the present invention, it is possible to sinter at a lower temperature than the conventional sintering temperature, resulting in porcelain that is densified, has a small crystal grain size, has few pores, and has good workability. It will be done. Therefore, it can be seen that it has excellent wear resistance and is therefore most suitable as a material for magnetic head structural parts on which the recording medium slides.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 TiO258〜66wt%、BaO34〜42wt%からな
り、TiO2、BaOの合計を100として、ZrO27〜
10wt%を含有し、熱膨張係数107〜110×10-7
℃を有することを特徴とする磁気ヘツド用磁器組
成物。
1 Consisting of TiO 2 58-66wt% and BaO 34-42wt%, taking the total of TiO 2 and BaO as 100, ZrO 2 7-
Contains 10wt%, thermal expansion coefficient 107~110×10 -7 /
A porcelain composition for a magnetic head, characterized in that it has a temperature of .degree.
JP58006333A 1983-01-17 1983-01-17 Ceramic composition for magnetic head Granted JPS59131571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006333A JPS59131571A (en) 1983-01-17 1983-01-17 Ceramic composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006333A JPS59131571A (en) 1983-01-17 1983-01-17 Ceramic composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS59131571A JPS59131571A (en) 1984-07-28
JPS6222946B2 true JPS6222946B2 (en) 1987-05-20

Family

ID=11635430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006333A Granted JPS59131571A (en) 1983-01-17 1983-01-17 Ceramic composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS59131571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258603U (en) * 1988-10-18 1990-04-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171117U (en) * 1983-05-02 1984-11-15 元旦ビユーティ工業株式会社 Vertical roof mounting structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133209A (en) * 1974-04-10 1975-10-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50133209A (en) * 1974-04-10 1975-10-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258603U (en) * 1988-10-18 1990-04-26

Also Published As

Publication number Publication date
JPS59131571A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
JPS6222946B2 (en)
JPS6222947B2 (en)
JPS6021940B2 (en) Non-magnetic ceramics for magnetic heads
JPS6250434B2 (en)
JPS6154745B2 (en)
JPS6224386B2 (en)
JPS6224384B2 (en)
JPS6029670B2 (en) Porcelain composition for magnetic head
JPS643828B2 (en)
JPS6222948B2 (en)
JPH0469103B2 (en)
JPS62292672A (en) Ceramic composition for magnetic head
JPS5845166A (en) Ceramic composition for magnetic head
JPS59190264A (en) Ceramic composition for magnetic head
JPS6158427B2 (en)
JPS6158429B2 (en)
JPH0345024B2 (en)
JPH0335258B2 (en)
JPS6158426B2 (en)
JP3078302B2 (en) Non-magnetic ceramic composition
JPH02243562A (en) Nonmagnetic ceramic material for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPS6029669B2 (en) Non-magnetic ceramics for magnetic heads
JPH02283654A (en) Ceramic composition for magnetic head
JPH06316459A (en) Structural nonmagnetic ceramics material