JPS6222948B2 - - Google Patents

Info

Publication number
JPS6222948B2
JPS6222948B2 JP58008037A JP803783A JPS6222948B2 JP S6222948 B2 JPS6222948 B2 JP S6222948B2 JP 58008037 A JP58008037 A JP 58008037A JP 803783 A JP803783 A JP 803783A JP S6222948 B2 JPS6222948 B2 JP S6222948B2
Authority
JP
Japan
Prior art keywords
thermal expansion
tio
ferrite
cao
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58008037A
Other languages
Japanese (ja)
Other versions
JPS59137363A (en
Inventor
Osamu Yamashita
Kenichi Uechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58008037A priority Critical patent/JPS59137363A/en
Publication of JPS59137363A publication Critical patent/JPS59137363A/en
Publication of JPS6222948B2 publication Critical patent/JPS6222948B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気ヘツドの構造部品に用いる非
磁性材料に係り、Mn−Znフエライトと同等の熱
膨張係数を有し、かつ高い機械的強度と良好な加
工性を有する磁気ヘツド用磁器組成物に関する。 一般に磁気ヘツドは、Mn−Znフエライト、Ni
−Znフエライトの磁性材料からなるコアと非磁
性材料からなる構造部品とをガラス溶着して組立
てられており、特にデジタル用磁気ヘツドには磁
性材料として、高周波特性及び耐摩耗性のすぐれ
たNi−Znフエライトが使用され、非磁性構造部
品材料にはTiO2−BaO−ZrO2系磁器が使用され
ている。 しかし、今日デジタル用磁気ヘツドの磁性材料
には、Ni−Znフエライトより高い透磁率を有す
るMn−Znフエライトに置換されつつある。従つ
てMn−Znフエライトと熱膨張係数が同等の構造
部品用非磁性材料が必要である。 すなわち、コア材と、非磁性構造部品との熱膨
張係数が異なると、これらをガラス溶着する際
に、歪を生じ、磁気特性の劣化が起こるだけでな
く、ひび、剥離等を生じて磁気ヘツドの組立上大
きな問題となつている。 上述したTiO2−BaO−ZrO2系磁器の熱膨張係
数は95〜100×10-7/℃であり、コア材のMn−Zn
フエライトの熱膨張係数は要求される電磁気特性
によつて定まる組成により固定されるが、105〜
120×10-7/℃であるため、上記磁器は使用不可
能である。従つて、非磁性構造部品材料の熱膨張
係数をフエライトの方に合せる必要があり、熱膨
張係数の差を2×10-7/℃以下に抑えなければな
らない。 さらに、この構造部品材料は磁気ヘツドを構成
するため、極めて精密な加工を必要とし、研削抵
抗が小さく加工性のよいことが要求され、また、
磁気ヘツドに組立た際の記録媒体に対する耐摩耗
性の向上と共に上記の研削抵抗を下げ、さらに結
晶組織も緻密し、かつ、コアとのガラス溶着の
際、熱膨張によるクラツク、剥離等が発生しない
ことが必要である。 この発明は、上述の問題点に鑑み、Mn−Znフ
エライトと同等の熱膨張係数を有し、かつ加工性
が良好で、結晶組織が非常に緻密であり、結晶粒
径の微細化を計つたTiO2−CaO系磁器を提案す
るものである。 すなわち、この発明は、 TiO250〜75wt%、CaO25〜50wt%からなり、 TiO2、CaOの合計を100として、 ZrO24〜8wt%及びMgOを3〜8.5wt%を含有
し、かつZrO2とMgOの総和が7〜13wt%からな
る組成物からなり、熱膨張係数105〜120×10-7
℃を有することを要旨とする磁気ヘツド用磁器組
成物である。 この発明による磁器は、TiO2とCaOとの組成
比を所定範囲で組合せることにより、熱膨張係数
を105〜120×10-7/℃の範囲に精度よく調整する
ことができ、緻密で孔が少なく欠陥のない材料で
耐摩耗性が良く、結晶粒径も十分に小さく加工性
も良い。さらに、TiO2、CaOにZrO2及びMgOを
添加することにより、同様に熱膨張係数の選定が
容易で、かつ緻密で孔の少ない材料となるほか、
結晶の緻密化が進み加工性のすぐれた磁器が得ら
れる。 この発明による磁器組成物の成分を限定した理
由は以下のとおりである。 TiO250wt%未満、CaOが50wt%を超える含有
では、熱膨張係数が120×10-7/℃を超えてしま
い、TiO2が75wt%を超え、CaOが25wt%未満の
含有であると、熱膨張係数が105×10-7/℃未満
となり、Mn−Znフエライトとのガラス溶着の相
手材料として不適であり、強度並びに加工性も一
段と悪化する。 従つて、Mn−Znフエライトの熱膨張係数105
〜120×10-7/℃と同じ熱膨張係数を保持させる
ため、TiO250〜75wt%、CaO25〜50wt%の含有
とする。 ZrO2は、TiO2−CaO系の耐熱衝撃性を改善す
るために添加するものであるが、その含有が
TiO2、CaOの合計を100として、4wt%未満では
熱衝撃に弱くなり、また8wt%を超える含有では
ZrO2のみの相が生成し、耐熱衝撃の効果が低下
するため、4〜8wt%の添加とする。また、ZrO2
の含有量が4〜8wt%であると、400℃からの急
冷を施しても割れず、耐熱衝撃性に強い材料とな
る。 MgOは、ZrO2含有のTiO2−CaO系に添加する
ことにより、その焼結温度を下げることができる
ため、結晶の微細化が進み研削抵抗の小さい材料
となり、かつ緻密で孔の少ない材料が得られる。
しかし、8.5wt%を越えるMgOの添加は、熱膨張
係数を小さくしすぎるため不適であり、硬度も高
くなりすぎ好ましくない。また、3wt%未満で
は、TiO2量の増加に伴なつて結晶が成長し、緻
密性がなくなり、熱膨張係数も大きくなるので好
ましくない。従つてMgOは3〜8.5wt%の含有と
する。 この発明の磁器組成物において、ZrO2とMgO
の総和は7〜13wt%が最適であるが、その総和
が7wt%未満では抗析力が弱くなり、また13wt%
を越えるとビツカース硬度が高くなりすぎるので
好ましくない。 また、磁器組成物の熱膨張係数を、105〜120×
10-7/℃に限定するのは、前述した如くMn−Zn
フエライトコアの熱膨張係数と同等とし、フエラ
イトコアとガラス溶着する際の前記問題を解消す
るためである。なお、上記熱膨張係数を有する
Mn−Znフエライトの組成の一例を示すと、
MnO23〜40モル%、ZnO5〜27モル%、Fe2O350
〜60モル%の組成物、あるいはこれにCaOと
SiO2、ZrO2、TiO2、VOのうち少なくとも一種を
添加した組成物である。 以下に、この発明を実施例に基づいて説明す
る。 市販されているTiO2、CaCO3、ZrO2及びMgO
を用いて、第1表に示すこの発明による組成比
(No.15〜18)ならびにこの発明の範囲外の組成
比(No.1〜14)となるよう秤量し、ボールミル
で混合し、乾燥した後、空気中で900℃、2時間
の仮焼を行つた。さらに仮焼した原料を再びボー
ルミルで平均粒度1.5μmになるまで、微粉砕
し、次に結合剤としてポリビニルアルコールを
1.5wt%加えて造粒した。造粒後に、2000Kg/cm2
の成形圧で40×20×20mmの寸法に成形し、空気中
で1270℃、2時間の焼結を行つた。 得られた磁器について、密度、熱膨張係数、ビ
ツカース硬度等の特性を調べ、第2表に測定結果
を示している。また、表中の加工性は、同一の加
工機を使用しその主軸モータの電力増加量をワツ
ト単位で表わし評価している。 また、耐スポーリング特性の測定方法としては
400℃のハンダ槽中へ試料を5秒間浸漬し、その
後50cmの高さより5mmの鉄板で落下した後の割れ
数を調査したものである。 なお、第1表、第2表から明らかな如く、試料
No.1〜9の比較例はその熱膨張係数がMn−Znフ
エライトの熱膨張係数105〜120×10-7/℃に合致
せず、また試料No.10〜14の比較例は耐熱衝撃性
が弱いのに対し、この発明の実施例(試料No.15
〜18)は、熱膨張係数を105〜120×10-7/℃の間
にコントロールすることができ、機械的強度、加
工性等もすぐれた特性を示しており、しかも緻密
化され、結晶粒径が小さくなり、孔が少なく加工
性の良好なる磁器が得られているため、耐摩耗性
にすぐれ、記録媒体が摺動する磁気ヘツド構造部
品用材料に最適であることがわかる。 この発明において、ZrO2、MgOを含有するた
め、結晶の微細化が計られ、上記の特性に加えて
加工性が良好になつていることがわかる。
The present invention relates to a non-magnetic material used for structural parts of a magnetic head, and relates to a ceramic composition for a magnetic head that has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, and has high mechanical strength and good workability. . Generally, magnetic heads are made of Mn-Zn ferrite, Ni
- It is assembled by glass welding a core made of Zn ferrite magnetic material and structural parts made of non-magnetic material.Ni Zn ferrite is used, and TiO 2 -BaO-ZrO 2 based porcelain is used as the non-magnetic structural component material. However, today, Mn--Zn ferrite, which has a higher magnetic permeability than Ni--Zn ferrite, is being replaced as the magnetic material for digital magnetic heads. Therefore, there is a need for a nonmagnetic material for structural parts that has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite. In other words, if the core material and non-magnetic structural components have different coefficients of thermal expansion, distortion will occur when they are welded to glass, which will not only cause deterioration of magnetic properties, but also cause cracks, peeling, etc., and damage the magnetic head. This has become a major problem in assembly. The thermal expansion coefficient of the TiO 2 −BaO−ZrO 2 ceramic mentioned above is 95 to 100×10 -7 /℃, and the Mn−Zn core material
The coefficient of thermal expansion of ferrite is fixed by the composition determined by the required electromagnetic properties, but from 105 to
Since the temperature is 120×10 -7 /°C, the above porcelain cannot be used. Therefore, it is necessary to match the thermal expansion coefficient of the non-magnetic structural component material to that of ferrite, and the difference in thermal expansion coefficient must be suppressed to 2×10 -7 /°C or less. Furthermore, since this structural component material constitutes the magnetic head, it requires extremely precise machining, and requires low grinding resistance and good workability.
It improves the abrasion resistance of the recording medium when assembled into a magnetic head, lowers the above-mentioned grinding resistance, has a dense crystal structure, and does not cause cracks or peeling due to thermal expansion when glass is welded to the core. It is necessary. In view of the above-mentioned problems, this invention has been developed to have a thermal expansion coefficient equivalent to that of Mn-Zn ferrite, good workability, a very dense crystal structure, and a reduction in crystal grain size. We propose TiO 2 −CaO based porcelain. That is, this invention consists of 50 to 75 wt% of TiO 2 and 25 to 50 wt% of CaO, and contains 4 to 8 wt% of ZrO 2 and 3 to 8.5 wt% of MgO, taking the total of TiO 2 and CaO as 100, and 2 and MgO in a total of 7 to 13 wt%, and has a thermal expansion coefficient of 105 to 120 × 10 -7 /
This is a porcelain composition for a magnetic head having a temperature of . By combining the composition ratio of TiO 2 and CaO within a predetermined range, the porcelain according to this invention can have a thermal expansion coefficient that can be precisely adjusted within the range of 105 to 120 × 10 -7 /°C, and is dense and porous. The material has few defects and has good wear resistance, and the crystal grain size is sufficiently small and has good workability. Furthermore, by adding ZrO 2 and MgO to TiO 2 and CaO, the thermal expansion coefficient can be easily selected, and the material becomes dense and has few pores.
The densification of the crystals progresses, resulting in porcelain with excellent workability. The reasons for limiting the components of the porcelain composition according to the present invention are as follows. If the content is less than 50 wt% of TiO 2 and more than 50 wt% of CaO, the thermal expansion coefficient will exceed 120 × 10 -7 /℃, and if the content is more than 75 wt% of TiO 2 and less than 25 wt% of CaO, The coefficient of thermal expansion is less than 105×10 -7 /°C, making it unsuitable as a partner material for glass welding with Mn-Zn ferrite, and its strength and workability further deteriorate. Therefore, the thermal expansion coefficient of Mn−Zn ferrite is 105
In order to maintain the same thermal expansion coefficient of ~120×10 -7 /°C, the content is 50 to 75 wt% of TiO 2 and 25 to 50 wt% of CaO. ZrO 2 is added to improve the thermal shock resistance of the TiO 2 -CaO system, but its content is
If the total of TiO 2 and CaO is 100, if it is less than 4wt%, it will be susceptible to thermal shock, and if it is more than 8wt%, it will be susceptible to thermal shock.
Since a phase consisting only of ZrO 2 is generated and the thermal shock resistance effect is reduced, it is added in an amount of 4 to 8 wt%. Also, ZrO2
When the content is 4 to 8 wt%, the material will not crack even when rapidly cooled from 400°C and will have strong thermal shock resistance. By adding MgO to the ZrO 2 -containing TiO 2 -CaO system, the sintering temperature can be lowered, resulting in finer crystals and a material with less grinding resistance, as well as a denser material with fewer pores. can get.
However, addition of MgO in excess of 8.5 wt% is unsuitable because the coefficient of thermal expansion becomes too small, and the hardness becomes too high, which is undesirable. Further, if it is less than 3 wt%, crystals will grow as the amount of TiO 2 increases, the density will be lost, and the coefficient of thermal expansion will increase, which is not preferable. Therefore, the content of MgO is 3 to 8.5 wt%. In the porcelain composition of this invention, ZrO 2 and MgO
The optimum total sum is between 7 and 13 wt%, but if the total is less than 7 wt%, the anti-deposition strength will be weak, and if the total is less than 7 wt%,
Exceeding this is not preferable because the Bitkers hardness becomes too high. In addition, the thermal expansion coefficient of the porcelain composition is 105 to 120×
10 -7 /℃ is limited to Mn-Zn as mentioned above.
This is to make the coefficient of thermal expansion equivalent to that of the ferrite core and to solve the above-mentioned problem when welding the ferrite core to the glass. In addition, it has the above thermal expansion coefficient.
An example of the composition of Mn-Zn ferrite is:
MnO23~40 mol%, ZnO5~27 mol%, Fe2O3 50
~60 mol% composition or this with CaO
This is a composition to which at least one of SiO 2 , ZrO 2 , TiO 2 , and VO is added. The present invention will be explained below based on examples. Commercially available TiO 2 , CaCO 3 , ZrO 2 and MgO
were weighed to give the composition ratio according to the present invention (No. 15 to 18) shown in Table 1 and the composition ratio outside the range of this invention (No. 1 to 14), mixed in a ball mill, and dried. Afterwards, it was calcined in air at 900°C for 2 hours. Furthermore, the calcined raw material is finely ground again in a ball mill until the average particle size is 1.5 μm, and then polyvinyl alcohol is added as a binder.
It was granulated by adding 1.5wt%. After granulation, 2000Kg/cm 2
The material was molded into a size of 40 x 20 x 20 mm using a molding pressure of 20 mm, and sintered in air at 1270°C for 2 hours. The obtained porcelain was examined for properties such as density, coefficient of thermal expansion, and Vickers hardness, and the measurement results are shown in Table 2. Furthermore, the workability in the table is evaluated by using the same processing machine and expressing the increase in power of the spindle motor in watts. In addition, as a method for measuring anti-spalling characteristics,
The number of cracks was investigated after a sample was immersed in a solder bath at 400°C for 5 seconds and then dropped from a height of 50cm onto a 5mm iron plate. Furthermore, as is clear from Tables 1 and 2, the sample
Comparative examples No. 1 to 9 have thermal expansion coefficients that do not match the thermal expansion coefficient of Mn-Zn ferrite, 105 to 120 × 10 -7 /℃, and comparative examples No. 10 to 14 have thermal shock resistance. Example of this invention (Sample No. 15)
~18) can control the thermal expansion coefficient between 105 and 120×10 -7 /℃, and exhibits excellent properties such as mechanical strength and workability. Since the porcelain has a small diameter, has few holes, and has good workability, it has excellent wear resistance and is found to be optimal as a material for magnetic head structural parts on which the recording medium slides. It can be seen that in this invention, since ZrO 2 and MgO are contained, the crystals are made finer, and in addition to the above characteristics, the workability is improved.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 TiO250〜75wt%、CaO25〜50wt%からな
り、 TiO2、CaOの合計を100として、 ZrO24〜8wt%及びMgO3〜8.5wt%を含有し、 かつZrO2とMgOの総和が7〜13wt%からな
り、 熱膨張係数105〜120×10-7/℃を有することを
特徴とする磁気ヘツド用磁器組成物。
[Claims] 1 Consisting of 50 to 75 wt% of TiO 2 and 25 to 50 wt% of CaO, and containing 4 to 8 wt% of ZrO 2 and 3 to 8.5 wt% of MgO, taking the total of TiO 2 and CaO as 100, and ZrO 2 and MgO in a total amount of 7 to 13 wt%, and has a coefficient of thermal expansion of 105 to 120×10 -7 /°C.
JP58008037A 1983-01-19 1983-01-19 Ceramic composition for magnetic head Granted JPS59137363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008037A JPS59137363A (en) 1983-01-19 1983-01-19 Ceramic composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008037A JPS59137363A (en) 1983-01-19 1983-01-19 Ceramic composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS59137363A JPS59137363A (en) 1984-08-07
JPS6222948B2 true JPS6222948B2 (en) 1987-05-20

Family

ID=11682135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008037A Granted JPS59137363A (en) 1983-01-19 1983-01-19 Ceramic composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS59137363A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795872A (en) * 1980-12-08 1982-06-14 Hitachi Metals Ltd Non-magnetic ceramic for magnetic head
JPS57149869A (en) * 1981-03-11 1982-09-16 Hitachi Metals Ltd Non-magnetic ceramics for magnetic head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795872A (en) * 1980-12-08 1982-06-14 Hitachi Metals Ltd Non-magnetic ceramic for magnetic head
JPS57149869A (en) * 1981-03-11 1982-09-16 Hitachi Metals Ltd Non-magnetic ceramics for magnetic head

Also Published As

Publication number Publication date
JPS59137363A (en) 1984-08-07

Similar Documents

Publication Publication Date Title
JPS6222948B2 (en)
KR0142702B1 (en) Nonmagnetic ceramic substrate for magnetic head and the manufacturing method
JPS6250434B2 (en)
JPS6222946B2 (en)
JPS5845166A (en) Ceramic composition for magnetic head
JPS6224384B2 (en)
JPS6222947B2 (en)
JPS643828B2 (en)
JPS6224386B2 (en)
JPS6154745B2 (en)
JPS6156185B2 (en)
JPS6158429B2 (en)
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPS59190264A (en) Ceramic composition for magnetic head
JPS6029670B2 (en) Porcelain composition for magnetic head
JPS6158427B2 (en)
JPS62292672A (en) Ceramic composition for magnetic head
JP3078302B2 (en) Non-magnetic ceramic composition
JPS6158426B2 (en)
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPS6286510A (en) Magnetic head
JP2832863B2 (en) Non-magnetic ceramics for magnetic heads
JPH0664930B2 (en) Porcelain composition for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPS6297115A (en) Magnetic head