JP2832863B2 - Non-magnetic ceramics for magnetic heads - Google Patents

Non-magnetic ceramics for magnetic heads

Info

Publication number
JP2832863B2
JP2832863B2 JP2172682A JP17268290A JP2832863B2 JP 2832863 B2 JP2832863 B2 JP 2832863B2 JP 2172682 A JP2172682 A JP 2172682A JP 17268290 A JP17268290 A JP 17268290A JP 2832863 B2 JP2832863 B2 JP 2832863B2
Authority
JP
Japan
Prior art keywords
magnetic
thermal expansion
ceramics
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2172682A
Other languages
Japanese (ja)
Other versions
JPH0465349A (en
Inventor
兵喜 星
幸雄 長山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKIN KK
Original Assignee
TOOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKIN KK filed Critical TOOKIN KK
Priority to JP2172682A priority Critical patent/JP2832863B2/en
Publication of JPH0465349A publication Critical patent/JPH0465349A/en
Application granted granted Critical
Publication of JP2832863B2 publication Critical patent/JP2832863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の技術分野] 本発明は,磁気ヘッド用非磁性セラミックスに関し,
さらに詳しくはコンピュータの周辺装置であるフロッピ
ーディスク装置あるいはハードディスク装置,さらには
ビデオテープレコーダ等の磁気ヘッドに用いられる非磁
性セラミックスに関するものである。
Description: TECHNICAL FIELD The present invention relates to a non-magnetic ceramic for a magnetic head,
More specifically, the present invention relates to a non-magnetic ceramic used for a magnetic head such as a floppy disk device or a hard disk device, which is a peripheral device of a computer, and a video tape recorder.

[従来の技術] 一般にフロッピーディスク装置やオーディオ・ビジュ
アル装置等に用いられている磁気ヘッドは磁性材料であ
るフェライトと非磁性材料のセラミックスをガラスボン
ディングして構成されている。また,薄膜磁気ヘッドの
場合には,磁性あるいは非磁性セラミックス基板上へ磁
性薄膜を蒸着あるいは,スパッタリングにより生成し作
製される。さらには,金属磁性膜を非磁性セラミックス
基板で狭み込んだ積層型ヘッドの開発も着々となされて
いる。
2. Description of the Related Art Generally, a magnetic head used in a floppy disk device, an audio-visual device, or the like is configured by glass bonding of ferrite, which is a magnetic material, and ceramic, which is a nonmagnetic material. In the case of a thin-film magnetic head, a magnetic thin film is formed on a magnetic or non-magnetic ceramic substrate by vapor deposition or sputtering. Furthermore, the development of a multilayer head in which a metal magnetic film is narrowed by a non-magnetic ceramic substrate has been steadily developed.

近年,デジタル磁気ヘッドは記録媒体の高密度記録化
への技術推移に伴って,より小型化,高密度記録化,高
品質化が要求されてきている。
2. Description of the Related Art In recent years, digital magnetic heads have been required to be smaller, have higher recording density, and have higher quality in accordance with technological changes to higher density recording of recording media.

そのためフェライトは記録媒体の特性に適用すべく,
大きな飽和磁束密度を有することが要求されてきてい
る。すなわちフェライトにおいて高飽和磁束密度の磁気
特性を持つには,必然的に熱膨張係数の大きくなる組成
領域にて製造せざるを得ない。又,薄膜ヘッドの場合,
高飽和磁束密度で,高熱膨張係数(130〜140×10-7/
℃)と大きなパーマロイ又はセンダスト等の金属磁性薄
膜をセラミックス基板上へ生成して製造される。
Therefore, ferrite should be applied to the characteristics of recording media.
It is required to have a large saturation magnetic flux density. That is, in order for ferrite to have high saturation magnetic flux density magnetic properties, it must be manufactured in a composition region where the coefficient of thermal expansion is necessarily large. In the case of a thin film head,
High saturation magnetic flux density, high thermal expansion coefficient (130-140 × 10 -7 /
° C) and a metal magnetic thin film such as Permalloy or Sendust is formed on a ceramic substrate.

ところで,これら異種材料を接着あるいは蒸着,スパ
ッタリングにて構成し製造する場合においては,構成材
料の熱膨張係数を近いものとし,かつ,接合時に発生す
る歪を最小のものとすることが必要条件となる。
By the way, in the case where these dissimilar materials are manufactured by bonding, vapor deposition, or sputtering, the necessary conditions are to make the thermal expansion coefficients of the constituent materials close to each other and to minimize the distortion generated during joining. Become.

従来,この様な磁性体と一体で構成される非磁性セラ
ミックスは,CaTiO3系,BaTiO3系,Znフェライト系,Al2O3
−TiL系セラミックスが使用されていた。しかしなが
ら,これらセラミックスの熱膨張係数は,75〜120×10-7
/℃の値を示すことから,130×10-7/℃以上の熱膨張係数
を有するセラミックスを製造するには非常に困難であ
る。
Conventionally, nonmagnetic ceramics that are integrally formed with such a magnetic material are CaTiO 3 , BaTiO 3 , Zn ferrite, Al 2 O 3
-TiL ceramics were used. However, the thermal expansion coefficient of these ceramics is 75-120 × 10 -7
It is very difficult to produce ceramics with a coefficient of thermal expansion of more than 130 × 10 -7 / ° C.

また,一般に磁気ヘッド用磁性セラミックスには, 1)高密度で気孔が少ないこと。 In general, magnetic ceramics for magnetic heads are: 1) High density and few pores.

2)耐摩耗特性に優れていること。2) Excellent wear resistance.

3)加工性に優れていること。3) Excellent workability.

4)熱膨張係数が磁性体のそれと近似であること。4) The coefficient of thermal expansion is close to that of a magnetic material.

5)低効率が大きいこと。5) Large low efficiency.

6)物理的,化学的に安定であること。6) Be physically and chemically stable.

等が要求される。Etc. are required.

[問題点を解決するための手段] 本発明は,上記の問題点に鑑みて熱膨張係数(α)の
大きな磁性体に適応すべく熱膨張係数が大きく,摩耗特
性が良く,かつ加工性の良い磁気ヘッド用非磁性セラミ
ックを提供するものである。
[Means for Solving the Problems] In view of the above problems, the present invention has a large thermal expansion coefficient, a good wear characteristic, and good workability in order to adapt to a magnetic material having a large thermal expansion coefficient (α). It is intended to provide a good non-magnetic ceramic for a magnetic head.

本発明は,熱膨張係数の大きな酸化物MgOとNiOが全率
固溶し,安定均一成分を作ることに着眼し,熱膨張係数
を組成比でコントロールするとともに,機械的強度と加
工性にすぐれた高密度非磁性セラミックスを容易に製造
するものである。
The present invention focuses on the fact that the oxides MgO and NiO, which have a large thermal expansion coefficient, form a solid solution and form a stable uniform component. The thermal expansion coefficient is controlled by the composition ratio, and the mechanical strength and workability are excellent. High-density non-magnetic ceramics can be easily manufactured.

本発明者は,まず本発明の磁気ヘッド用非磁性セラミ
ックス材の主成分であるMgOとNiOの成分比の検討を行っ
た結果,熱膨張係数α≧130×10-7/℃は,MgO成分が80モ
ル%以下で得られることがわかった。しかし,MgO成分が
20モル%より少ない(即ち,NiOが80モル%を越える)と
透磁率が1を越え非磁性セラミックスとしては不適当で
あることもわかった。MgO20〜80モル%でα≧130×10-7
/℃を可能とするが1400℃の焼結温度では緻密化が不十
分で気孔率が大きくなり,また硬度も低く,磁気ヘッド
用セラミックス材としては不適当である。
The present inventor first examined the composition ratio of MgO and NiO, which are the main components of the nonmagnetic ceramic material for a magnetic head of the present invention, and found that the coefficient of thermal expansion α ≧ 130 × 10 -7 / ° C Was obtained at 80 mol% or less. However, the MgO component
It was also found that when the content was less than 20 mol% (that is, the content of NiO exceeded 80 mol%), the magnetic permeability exceeded 1 and was unsuitable as a nonmagnetic ceramic. Α ≧ 130 × 10 -7 at 20 to 80 mol% MgO
Although sintering temperatures of 1400 ° C are possible, densification is insufficient at 1400 ° C, resulting in high porosity and low hardness, making it unsuitable as a ceramic material for magnetic heads.

本発明者らは,これらの問題点をTiO2を添加し,か
つ,Pr6O11,Tm2O3,Yb2O3,Lu2O3の一種又は二種以上添加
することにより改善できることを見い出した。即ち,TiO
2を添加することにより硬度を増加させ,焼結促進効果
及び結晶の微細化に効果のあるPr6O11,Tm2O3,Yb2O3,Lu2
O3を添加することにより気孔率を改善するものである。
The present inventors have found that these problems can be improved by adding TiO 2 and adding one or more of Pr 6 O 11 , Tm 2 O 3 , Yb 2 O 3 and Lu 2 O 3. I found That is, TiO
The addition of 2 increases the hardness and increases the sintering promotion effect and the crystal refinement effect of Pr 6 O 11 , Tm 2 O 3 , Yb 2 O 3 , Lu 2
The porosity is improved by adding O 3 .

前記範囲においてTiO2は0.1重量部より少ない場合は
硬度が低く,5重量部を越えると熱膨張係数が小さくな
る。Pr6O11,Tm2O3,Yb2O3,Lu2O3の一種又は二種以上が0.
1重量部より少ない場合,10重量部を越えた場合は気孔率
が大きくなる。
In the above range, when TiO 2 is less than 0.1 part by weight, the hardness is low, and when it exceeds 5 parts by weight, the thermal expansion coefficient is small. One or more of Pr 6 O 11 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 is 0.
When the amount is less than 1 part by weight and when it exceeds 10 parts by weight, the porosity increases.

[実施例] 以下,この発明の実施例について説明する。[Example] Hereinafter, an example of the present invention will be described.

まず,市販の原料であるMzO,TiO2,Pr6O11,Tm2O3,Yb2O
3,Lu2O3を表−1に示す組成比となる様に秤量し,分散
媒にアルコールを用いてボールミルにて混合した。そし
て,乾燥後,空気中にて1200℃の温度で2時間仮焼し,
再びボールミルにて粉砕した。この粉砕後の粉末の平均
粒径は約1.2μmであった。また,バインダーを1%添
加し,造粒を行い,2ton/cm2の圧力にて成形し,空気中
にて1400℃,3時間の焼結を行った。次に相対密度97%以
上の密度を有する焼結体をアルミナルツボ内に設置し,
温度1300℃,圧力1000kg/cm2,保持時間2時間の条件に
てArガス雰囲気にて熱間静水圧プレス(HIP)処理を行
った。
First, a commercially available raw material MzO, TiO 2, Pr 6 O 11, Tm 2 O 3, Yb 2 O
3 , Lu 2 O 3 was weighed so as to have a composition ratio shown in Table 1, and mixed with a ball mill using alcohol as a dispersion medium. After drying, it is calcined in air at 1200 ° C for 2 hours.
It was pulverized again by a ball mill. The average particle size of the pulverized powder was about 1.2 μm. Further, 1% of a binder was added, granulation was carried out, molding was performed under a pressure of 2 ton / cm 2 , and sintering was performed at 1400 ° C. for 3 hours in the air. Next, a sintered body having a relative density of 97% or more is placed in an alumina crucible,
Hot isostatic pressing (HIP) was performed in an Ar gas atmosphere at a temperature of 1300 ° C., a pressure of 1000 kg / cm 2 , and a holding time of 2 hours.

以上の工程より得られた各試料より熱膨張係数(100
℃〜400℃),ビッカース硬度(500g荷重),抵抗強度
平均粒径,気孔率,透磁率を測定した。尚透磁率はφ10
×φ6×2mmのトロイダルコアを周波数1kHzにて測定し
た。
The coefficient of thermal expansion (100
(° C to 400 ° C), Vickers hardness (500g load), average particle size of resistance strength, porosity, and magnetic permeability. The permeability is φ10
A toroidal core of × φ6 × 2 mm was measured at a frequency of 1 kHz.

試料No.1〜7の本発明例と試料No.8〜13の比較例から
明らかな様に,MgOが80モル%を越える(No.13)と熱膨
張係数が低下し,MgOが20モル%より少ない(No.12)と
透磁率が大きくなる。また,TiO2が0.1重量部より少ない
場合(No.11)は,硬度の低下5.0重量部を越えた場合
(No.9)は,熱膨張係数の低下となる。さらに,Pr6O11,
Tm2O3,Yb2O3,Lu2O3の一種又は二種以上が0.1重量部より
少ない場合(No.8,10)は,気孔率が大きく,平均粒径
も大きく,それら伴い硬度,抵抗強度も低下している。
10.0重量部を越えた場合(No.13)は,気孔率が大きい
ことが分った。
As is evident from the inventive examples of Samples Nos. 1 to 7 and the comparative examples of Samples Nos. 8 to 13, when MgO exceeds 80 mol% (No. 13), the coefficient of thermal expansion decreases and MgO becomes less than 20 mol%. % (No. 12), the magnetic permeability increases. When the TiO 2 content is less than 0.1 part by weight (No. 11), when the decrease in hardness exceeds 5.0 parts by weight (No. 9), the thermal expansion coefficient decreases. Furthermore, Pr 6 O 11 ,
When one or more of Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 are less than 0.1 part by weight (Nos. 8 and 10), the porosity is large, the average particle size is large, and the hardness is accordingly increased. , The resistance strength is also reduced.
When it exceeded 10.0 parts by weight (No. 13), it was found that the porosity was large.

以上,本発明の通り,MgO20〜80モル%残部NiOより成
る主成分100重量部に対し,TiO20.1〜0.5重量部添加し,
かつPr6O11,Tm2O3,Yb2O3,Lu2O3の一種又は二種以上を0.
1〜10重量部添加することにより,熱膨張係数α>130×
10-7/℃を有し,微細組織で機械特性に優れた高密度非
磁性セラミックスが得られた。
As described above, according to the present invention, 0.1 to 0.5 parts by weight of TiO 2 was added to 100 parts by weight of the main component composed of 20 to 80 mol% of MgO and the balance of NiO.
And one or more of Pr 6 O 11 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 .
By adding 1 to 10 parts by weight, thermal expansion coefficient α> 130 ×
A high-density non-magnetic ceramic with a microstructure of 10 -7 / ° C and excellent mechanical properties was obtained.

[発明の効果] 以上の結果から,明らかな様に,本発明によれば従来
製造困難であった熱膨張係数α>130×10-7/℃を有する
高密度非磁性セラミックスを容易に製造することが可能
となる。
[Effects of the Invention] As is clear from the above results, according to the present invention, high-density non-magnetic ceramics having a thermal expansion coefficient α> 130 × 10 −7 / ° C., which has been difficult to manufacture conventionally, can be easily manufactured. It becomes possible.

即ち,高飽和磁束密度を有するMnZnフェライト,さら
には,パーマロイ,センダスト等の金属磁性薄膜の接合
に最適な材料となり,信頼性の高い磁気ヘッドを製造す
ることができた。
In other words, it became an optimal material for joining MnZn ferrite having a high saturation magnetic flux density, and a metal magnetic thin film such as permalloy or sendust, and a highly reliable magnetic head could be manufactured.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】MgO20〜80モル%を含み,残部NiOより成る
主成分100重量部に対し,TiO2を0.1〜5重量部含有し,
かつ,Pr6O11,Tm2O3,Yb2O3,Lu2O3のうち少くとも1種を
0.1〜10重量部含有することを特徴とする磁気ヘッド用
非磁性セラミックス。
(1) containing 0.1 to 5 parts by weight of TiO 2 with respect to 100 parts by weight of a main component composed of NiO, containing 20 to 80 mol% of MgO;
And at least one of Pr 6 O 11 , Tm 2 O 3 , Yb 2 O 3 and Lu 2 O 3
Non-magnetic ceramics for magnetic heads, characterized by containing 0.1 to 10 parts by weight.
JP2172682A 1990-07-02 1990-07-02 Non-magnetic ceramics for magnetic heads Expired - Fee Related JP2832863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2172682A JP2832863B2 (en) 1990-07-02 1990-07-02 Non-magnetic ceramics for magnetic heads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2172682A JP2832863B2 (en) 1990-07-02 1990-07-02 Non-magnetic ceramics for magnetic heads

Publications (2)

Publication Number Publication Date
JPH0465349A JPH0465349A (en) 1992-03-02
JP2832863B2 true JP2832863B2 (en) 1998-12-09

Family

ID=15946412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2172682A Expired - Fee Related JP2832863B2 (en) 1990-07-02 1990-07-02 Non-magnetic ceramics for magnetic heads

Country Status (1)

Country Link
JP (1) JP2832863B2 (en)

Also Published As

Publication number Publication date
JPH0465349A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
JPS62250506A (en) Substrate material
JPS61158862A (en) Magnetic head slider material
US5302560A (en) Process for the production of magnetic head sliders
JP2832863B2 (en) Non-magnetic ceramics for magnetic heads
US5432016A (en) Magnetic head slider material
JPH0798687B2 (en) Non-magnetic ceramics for magnetic heads
JPH05319895A (en) Nonmagnetic ceramics for magnetic head
JP3825079B2 (en) Manufacturing method of non-magnetic ceramics
JPS61117804A (en) Mn-zn system soft ferrite and manufacture thereof
JP3152740B2 (en) Non-magnetic ceramics
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPH0329739B2 (en)
JP3309040B2 (en) Non-magnetic ceramics and method for producing the same
JPH0122229B2 (en)
US5404259A (en) Magnetic head having high wear resistance and non-magnetic substrate used in the magnetic head
JPS6259069B2 (en)
JPH0612611A (en) Nonmagnetic ceramics for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPH0373043B2 (en)
JP3085619B2 (en) Non-magnetic ceramics
JP2001261433A (en) Nonmagnetic ceramics
JPS59213670A (en) Ceramic composition for magnetic head
JPH0797262A (en) Nonmagnetic ceramics for magnetic heads
JPH1079308A (en) Hematite material for magnetic head and manufacture thereof
JP2000327421A (en) Non-magnetic ceramic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees