JPS6154745B2 - - Google Patents

Info

Publication number
JPS6154745B2
JPS6154745B2 JP57212535A JP21253582A JPS6154745B2 JP S6154745 B2 JPS6154745 B2 JP S6154745B2 JP 57212535 A JP57212535 A JP 57212535A JP 21253582 A JP21253582 A JP 21253582A JP S6154745 B2 JPS6154745 B2 JP S6154745B2
Authority
JP
Japan
Prior art keywords
thermal expansion
tio
coefficient
ferrite
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57212535A
Other languages
Japanese (ja)
Other versions
JPS59102869A (en
Inventor
Osamu Yamashita
Kenichi Uechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP57212535A priority Critical patent/JPS59102869A/en
Publication of JPS59102869A publication Critical patent/JPS59102869A/en
Publication of JPS6154745B2 publication Critical patent/JPS6154745B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 この発明は、磁気ヘツドの構造部品に用いる非
磁性材料に係り、Mn−Znフエライトと同等の熱
膨張係数を有し、かつ高い機械的強度と良好な加
工性を有する磁気ヘツド用磁器組成物に関する。
Detailed Description of the Invention The present invention relates to a non-magnetic material used for structural parts of a magnetic head, which has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, and has high mechanical strength and good workability. The present invention relates to a porcelain composition for a magnetic head.

磁気ヘツドは、磁性材料からなるコアと非磁性
材料からなる構造部品とをガラス溶着して組立て
られており、特にデジタル用磁気ヘツドには磁性
材料としてはNi−Znフエライトより高い透磁率
を有するMn−Znフエライトに置換されつつあ
り、非磁性構造部品材料にはTiO2−CaO−MgO
−ZrO2系磁器が使用されている。
A magnetic head is assembled by glass welding a core made of a magnetic material and a structural part made of a non-magnetic material.In particular, magnetic heads for digital devices use Mn, which has a higher magnetic permeability than Ni-Zn ferrite, as the magnetic material. −Zn is being replaced by ferrite, and TiO 2 −CaO−MgO is used as a material for non-magnetic structural parts.
−ZrO 2 series porcelain is used.

一般に用いられるTiO2−CaO−MgO−ZrO2
磁器は、非常に加工性が悪く、欠けや罅が発生し
易い問題があつた。
The commonly used TiO 2 -CaO-MgO-ZrO 2 porcelain has a problem that it has very poor workability and is prone to chipping and cracking.

すなわち、この構造部品材料は磁気ヘツドを構
成するため、極めて精密な加工を必要とし、研削
抵抗が小さく加工性のよいことが要求され、ま
た、磁気ヘツドに組立た際の記録媒体に対する耐
摩耗性の向上と共に上記の研削抵抗を下げ、さら
に結晶組織も緻密にする必要がある。
In other words, since this structural component material constitutes the magnetic head, it requires extremely precise machining, requires low grinding resistance and good workability, and also requires high wear resistance for the recording medium when assembled into the magnetic head. It is necessary to improve the grinding resistance, lower the grinding resistance, and further refine the crystal structure.

一方、Mn−Znフエライトはその熱膨張係数
が、103〜110×10−/℃であり、これより作製
したコアと、上記磁器からなる構造部品とをガラ
ス溶着する際に、両者間の熱膨張係数が異なる
と、歪を生じ、磁気特性の劣化が起こるだけでな
く、ひび、剥離等を生じて磁気ヘツドの組立上大
きな問題となつている。
On the other hand, Mn-Zn ferrite has a coefficient of thermal expansion of 103 to 110 x 10-7 /°C, and when the core made from this and the above-mentioned structural component made of porcelain are glass-welded, the heat between them is Different expansion coefficients not only cause distortion and deterioration of magnetic properties, but also cause cracks, peeling, etc., posing a major problem in assembling the magnetic head.

従つて、コア材と非磁性構造部品との熱膨張係
数を同等にする必要があるが、コア材のMn−Zn
フエライトの熱膨張係数は要求される電磁気特性
によつて定まる組成により固定されるため、非磁
性構造部品材料のそれを、Mn−Znフエライトの
熱膨張係数になるよう調整する必要がある。
Therefore, it is necessary to make the thermal expansion coefficients of the core material and non-magnetic structural parts the same, but the core material's Mn-Zn
Since the coefficient of thermal expansion of ferrite is fixed by the composition determined by the required electromagnetic properties, it is necessary to adjust the coefficient of thermal expansion of the non-magnetic structural component material to match the coefficient of thermal expansion of Mn--Zn ferrite.

しかし、上記の磁気ヘツドの組立上の問題を防
止するためには、熱膨張係数の差を2×10-7/℃
以下に抑えなければならず、上述した組成の
TiO2−CaO−MgO−ZrO2系磁器では不可能であ
る。
However, in order to prevent the above problems in assembling the magnetic head, the difference in thermal expansion coefficient must be reduced to 2×10 -7 /°C.
The above composition must be kept below.
This is not possible with TiO 2 −CaO−MgO−ZrO 2 based porcelain.

この発明は、上述の問題点に鑑み、Mn−Znフ
エライトと同等の熱膨張係数を有し、かつ加工性
が良好で、高い機械的強度を有するTiO2−BaO
系磁器を提案するものである。
In view of the above-mentioned problems, this invention has developed TiO 2 -BaO, which has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, good workability, and high mechanical strength.
We are proposing a new type of porcelain.

すなわち、この発明は、TiO260〜72wt%、
BaO28〜40wt%からなり、TiO2、BaOの合計を
100重量部とし、ZrO22〜4wt%、SiO20.5〜2.0wt
%を添加し、熱膨張係数103〜110×10-7/℃を有
することを要旨とする磁気ヘツド用磁器組成物で
ある。
That is, this invention contains TiO 2 60-72wt%,
Consisting of BaO28~40wt%, the total of TiO 2 and BaO
100 parts by weight, ZrO2 2 ~4wt%, SiO2 0.5~2.0wt
% and has a coefficient of thermal expansion of 103 to 110×10 -7 /°C.

この発明による磁器組成物の成分を限定した理
由は以下のとおりである。
The reasons for limiting the components of the porcelain composition according to the present invention are as follows.

TiO260wt%未満、BaOが40wt%を超える含有
では、熱膨張係数が110×10-7/℃を超えてしま
い、TiO2が72wt%を超え、BaOが28wt%未満の
含有であると、熱膨張係数が103×10-7/℃未満
となり、Mn−Znフエライトとのガラス溶着の相
手材料として不適であり、加工性も一段と悪化す
る。従つてMn−Znフエライトの熱膨張係数103
〜110×10-7/℃と同じ熱膨張係数を保持させる
ため、TiO260〜72wt%、BaO28〜40wt%の含有
とする。
If the content is less than 60 wt% of TiO 2 and more than 40 wt% of BaO, the thermal expansion coefficient will exceed 110 × 10 -7 /℃, and if the content is more than 72 wt% of TiO 2 and less than 28 wt% of BaO, The coefficient of thermal expansion is less than 103×10 -7 /°C, making it unsuitable as a partner material for glass welding with Mn-Zn ferrite, and the processability is further deteriorated. Therefore, the thermal expansion coefficient of Mn−Zn ferrite is 103
In order to maintain the same coefficient of thermal expansion as ~110×10 -7 /°C, the content is 60 to 72 wt% of TiO 2 and 28 to 40 wt% of BaO.

ZrO2は耐熱衝撃性を改善するために添加する
ものであるが、その含有がTiO2、BaOの合計を
100重量部として、2wt%未満では熱衝撃に弱く
なり、また4wt%を超える含有ではZrO2のみの相
が生成し、耐熱衝撃の効果が低下するため、
TiO2、BaOの合計を100重量部として、ZrO2を2
〜4wt%の添加とする。また、ZrO2の含有量が
TiO2、BaOの合計を100重量部として、ZrO2を2
〜4wt%であると、200℃からの急冷を施しても
割れず、耐熱衝撃性に強い材料となる。
ZrO 2 is added to improve thermal shock resistance, but its content increases the total of TiO 2 and BaO.
If the content is less than 2wt% (as 100 parts by weight), it becomes weak against thermal shock, and if the content exceeds 4wt%, a phase consisting only of ZrO2 will be formed, reducing the thermal shock resistance effect.
The total of TiO 2 and BaO is 100 parts by weight, and 2 parts of ZrO 2 are added.
Addition of ~4wt%. In addition, the content of ZrO 2
The total of TiO 2 and BaO is 100 parts by weight, and 2 parts of ZrO 2 are added.
When the content is ~4wt%, the material will not crack even if rapidly cooled from 200°C, and will have strong thermal shock resistance.

SiO2の添加は、磁器の焼結温度を下げる働き
があり、結晶の微細化を計ることができるため、
耐摩耗性が高くかつ緻密で孔の小ない材料が得ら
れるが、TiO2、BaOの合計を100重量部として、
2.0wt%を越える添加は逆に結晶内に孔を発生さ
せ、また、0.5wt%未満では焼結温度が高くなり
結晶内に孔が発生するため、TiO2、BaOの合計
を100重量部として、0.5〜2.0wt%の添加とす
る。
The addition of SiO 2 has the effect of lowering the sintering temperature of porcelain, making it possible to refine the crystals.
A highly abrasion resistant, dense material with few pores can be obtained, but if the total of TiO 2 and BaO is 100 parts by weight,
Addition of more than 2.0wt% will conversely generate pores in the crystal, and addition of less than 0.5wt% will increase the sintering temperature and create pores in the crystal. , 0.5 to 2.0 wt%.

また、磁器組成物の熱膨張係数を、103〜110×
10-7/℃に限定するのは、前述した如くMn−Zn
フエライトコアの熱膨張係数と同等とし、フエラ
イトコアとガラス溶着する際の前記問題を解消す
るためである。なお、上記熱膨張係数を有する
Mn−Znフエライトの組成の一例を示すと、
MnO23〜40モル%、ZnO5〜27モル%、Fe2O350
〜60モル%の組成物、あるいはこれにCaOと
SiO2、ZrO2、TiO2、VOのうち少なくとも一種を
添加した組成物である。
In addition, the thermal expansion coefficient of the porcelain composition is 103 to 110×
10 -7 /℃ is limited to Mn-Zn as mentioned above.
This is to make the coefficient of thermal expansion equal to that of the ferrite core and to solve the above-mentioned problem when welding the ferrite core to the glass. In addition, it has the above thermal expansion coefficient.
An example of the composition of Mn-Zn ferrite is:
MnO23~40 mol%, ZnO5~27 mol%, Fe2O3 50
~60 mol% composition or this with CaO
This is a composition to which at least one of SiO 2 , ZrO 2 , TiO 2 , and VO is added.

以下に、この発明を実施例に基づいて説明す
る。
The present invention will be explained below based on examples.

市販されているTiO2、BaCO3、ZrO2及びSiO2
を用いて、第1表に示すこの発明による組成比な
らびにこの発明の範囲外の組成比となるよう秤量
し、ボールミルで混合し、乾燥した後、空気中で
900℃、2時間の仮焼を行つた。さらに仮焼した
原料を再びボールミルで平均粒度1.5μmになる
まで、微粉砕し、次に結合剤としてポリビニルア
ルコールを1.5wt%加えて造粒した。造粒後に、
2000Kg/cm2の成形圧で40×20×20mmの寸法に成形
し、空気中で1200℃、2時間の焼結を行つた。
Commercially available TiO2 , BaCO3 , ZrO2 and SiO2
The composition ratio according to the present invention as shown in Table 1 and the composition ratio outside the range of the present invention are weighed using
Calcining was performed at 900°C for 2 hours. Furthermore, the calcined raw material was again finely ground in a ball mill until the average particle size was 1.5 μm, and then 1.5 wt % of polyvinyl alcohol was added as a binder and granulated. After granulation,
It was molded into a size of 40 x 20 x 20 mm under a molding pressure of 2000 Kg/cm 2 and sintered in air at 1200°C for 2 hours.

得られた磁器について、密度、熱膨張係数、ビ
ツカース硬度等の特性を調べ、第2表に測定結果
を示している。また、表中の加工性は、同一の加
工機を使用しその主軸モータの電力増加量をワツ
ト単位で表わし評価している。なお、第1表、第
2表の試料No.18〜21は、この発明の実施例であ
り、その他の試料は比較例及び従来例である。
The obtained porcelain was examined for properties such as density, coefficient of thermal expansion, and Vickers hardness, and the measurement results are shown in Table 2. Furthermore, the workability in the table is evaluated by using the same processing machine and expressing the increase in power of the spindle motor in watts. Note that samples Nos. 18 to 21 in Tables 1 and 2 are examples of the present invention, and the other samples are comparative examples and conventional examples.

第2表から明らかな如く、試料No.1〜4、11
〜14の比較例はビツカース硬度が低く抗折力が弱
く、孔が増え、緻密性に欠け、これ以外の比較例
は熱膨張係数がMn−Znフエライトの熱膨張係数
103〜110×10-7/℃に合致しない。
As is clear from Table 2, samples No. 1 to 4, 11
Comparative examples ~14 have low Bitkers hardness, weak transverse rupture strength, increased pores, and lack of compactness; other comparative examples have thermal expansion coefficients that are similar to those of Mn-Zn ferrite.
Does not match 103~110×10 -7 /℃.

これに対しこの発明の実施例は、TiO2−BaO
系100重量部に対してZrO2を2〜4wt%添加し、
SiO20.5〜2.0wt%を含有することにより、熱膨張
係数を103〜110×10-7/℃の間にコントロールす
ることができ、加工性が良好な材料が得られた。
On the other hand, in the embodiment of the present invention, TiO 2 −BaO
Adding 2 to 4 wt% of ZrO 2 to 100 parts by weight of the system,
By containing 0.5 to 2.0 wt% of SiO 2 , the thermal expansion coefficient could be controlled between 10 3 and 110×10 −7 /° C., and a material with good workability was obtained.

また、この発明による組成比とすることによ
り、従来の焼結温度より低温にて焼結可能なた
め、緻密化され、結晶粒径が小さくなり、しかも
孔が少なく加工性の良好なる磁器が得られる。従
つて、耐摩耗性にすぐれるため、記録媒体が摺動
する磁気ヘツド構造部品用材料に最適であること
がわかる。
Furthermore, by using the composition ratio according to the present invention, it is possible to sinter at a lower temperature than the conventional sintering temperature, resulting in porcelain that is densified, has a small crystal grain size, and has few pores and good workability. It will be done. Therefore, it can be seen that it has excellent wear resistance and is therefore most suitable as a material for magnetic head structural parts on which the recording medium slides.

Claims (1)

【特許請求の範囲】[Claims] 1 TiO260〜72wt%、BaO28〜40wt%からな
り、TiO2、BaOの合計を100重量部とし、ZrO22
〜4wt%、SiO20.5〜2.0wt%を添加し、熱膨張係
数103〜110×10-7/℃を有することを特徴とする
磁気ヘツド用磁器組成物。
1 Consists of 60 to 72 wt% TiO 2 and 28 to 40 wt% BaO, with the total of TiO 2 and BaO being 100 parts by weight, and ZrO 2 2
4 wt%, SiO 2 0.5 to 2.0 wt%, and has a thermal expansion coefficient of 103 to 110×10 -7 /°C.
JP57212535A 1982-12-02 1982-12-02 Ceramic composition for magnetic head Granted JPS59102869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212535A JPS59102869A (en) 1982-12-02 1982-12-02 Ceramic composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212535A JPS59102869A (en) 1982-12-02 1982-12-02 Ceramic composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS59102869A JPS59102869A (en) 1984-06-14
JPS6154745B2 true JPS6154745B2 (en) 1986-11-25

Family

ID=16624278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212535A Granted JPS59102869A (en) 1982-12-02 1982-12-02 Ceramic composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS59102869A (en)

Also Published As

Publication number Publication date
JPS59102869A (en) 1984-06-14

Similar Documents

Publication Publication Date Title
JPS6154745B2 (en)
JPS6222946B2 (en)
JPS6222947B2 (en)
JPS6224386B2 (en)
JPS6250434B2 (en)
JPS6224384B2 (en)
JPS6222948B2 (en)
JPS5845166A (en) Ceramic composition for magnetic head
JPS6158429B2 (en)
JPS6029670B2 (en) Porcelain composition for magnetic head
JPS59190264A (en) Ceramic composition for magnetic head
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPS6158427B2 (en)
JPS62292672A (en) Ceramic composition for magnetic head
JPS643828B2 (en)
JPH0469103B2 (en)
JPH0122229B2 (en)
JPS58143427A (en) Ceramic blank body for magnetic head retainer
JPS6158426B2 (en)
JP3078302B2 (en) Non-magnetic ceramic composition
JPH07108811B2 (en) Non-magnetic ceramic material for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPH06316462A (en) Structural nonmagnetic ceramic material
JPH02283654A (en) Ceramic composition for magnetic head
JPS6029669B2 (en) Non-magnetic ceramics for magnetic heads