JPS6222947B2 - - Google Patents

Info

Publication number
JPS6222947B2
JPS6222947B2 JP58006334A JP633483A JPS6222947B2 JP S6222947 B2 JPS6222947 B2 JP S6222947B2 JP 58006334 A JP58006334 A JP 58006334A JP 633483 A JP633483 A JP 633483A JP S6222947 B2 JPS6222947 B2 JP S6222947B2
Authority
JP
Japan
Prior art keywords
thermal expansion
coefficient
ferrite
tio
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58006334A
Other languages
Japanese (ja)
Other versions
JPS59131572A (en
Inventor
Osamu Yamashita
Kenichi Uechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58006334A priority Critical patent/JPS59131572A/en
Publication of JPS59131572A publication Critical patent/JPS59131572A/en
Publication of JPS6222947B2 publication Critical patent/JPS6222947B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気ヘツドの構造部品に用いる非
磁性材料に係り、Mn−Znフエライトと同等の熱
膨張係数を有し、かつ高い機械的強度と良好な加
工性を有する磁気ヘツド用磁器組成物に関する。 磁気ヘツドは、磁性材料からなるコアと非磁性
材料からなる構造部品とをガラス溶着して組立て
られており、特にデジタル用磁気ヘツドには磁性
材料としてはNi−Znフエライトより高い透磁率
を有するMn−Znフエライトに置換されつつあ
り、非磁性構造部品材料にはTiO2−CaO−MgO
−ZrO2系磁器が使用されている。 一般に用いられるTiO2−CaO−MgO−ZrO2
磁器は、非常に加工性が悪く、欠けや罅が発生し
易い問題があつた。 すなわち、この構造部品材料は磁気ヘツドを構
成するため、極めて精密な加工を必要とし、研削
抵抗が小さく加工性のよいことが要求され、ま
た、磁気ヘツドに組立た際の記録媒体に対する耐
摩耗性の向上と共に上記の研削抵抗を下げ、さら
に結晶組織も緻密にする必要がある。 一方、高透磁率(μ>10000)であるMn−Zn
フエライトはその熱膨張係数が103〜106×10-7
℃であり、これより作製したコアと、上記磁器か
らなる構造部品とをガラス溶着する際に、両者間
の熱膨張係数が異なると、歪を生じ、磁気特性の
劣化が起こるだけでなく、ひび、剥離等を生じて
磁気ヘツドの組立上大きな問題となつている。 従つて、コア材と非磁性構造部品との熱膨張係
数を同等にする必要があるが、コア材のMn−Zn
フエライトの熱膨張係数は要求される電磁気特性
によつて定まる組成により固定されるため、非磁
性構造部品材料のそれを、Mn−Znフエライトの
熱膨張係数になるよう調整する必要がある。 しかし、上記の磁気ヘツドの組立上の問題を防
止するためには、熱膨張係数の差を2×10-7/℃
以下に抑えなければならず、上述した組成の
TiO2−CaO−MgO−ZrO2系磁器では不可能であ
る。 この発明は、上述の問題点に鑑み、Mn−Znフ
エライトと同等の熱膨張係数を有し、かつ加工性
が良好で、高い機械的強度を有するTiO2−BaO
系磁器を提案するものである。 すなわち、この発明は、 TiO267.0wt%〜72wt%、BaO28wt%〜33wt%
からなり、TiO2、BaOの合計を100として、 ZrO27wt%〜10wt%を含有し、 熱膨張係数103〜106×10-7/℃を有することを
特徴とする磁気ヘツド用磁器組成物である。 この発明による磁器組成物の成分を限定した理
由は以下の通りである。 TiO267.0wt%未満、BaOが33wt%を超える含
有では、熱膨張係数が106×10-7/℃を超えてし
まい、TiO2が72wt%を超え、BaOが28wt%未満
の含有であると、熱膨張係数が103×10-7/℃未
満となり、Mn−Znフエライトとのガラス溶着の
相手材料として不適であり、加工性も一段と悪化
する。従つて高透磁率用のMn−Znフエライトの
熱膨張係数103〜106×10-7/℃と同じ熱膨張係数
を保持させるため、TiO267.0〜72wt%、BaO28
〜33wt%の含有とする。 ZrO2は耐熱衝撃性を改善し、抗折力の強度向
上のために添加するものであるが、その含有が
TiO2、BaOの合計を100として、7wt%未満では
熱衝撃に弱く又抗折力も弱くなり、また10wt%
を超える含有ではZrO2のみの相が生成し、耐熱
衝撃の効果が低下し、加工性も著しく低下するた
め、7〜10wt%の添加とする。また、7〜10wt
%であると、200℃からの急冷を施しても割れ
ず、耐熱衝撃性に強い材料となる。 また、磁器組成物の熱膨張係数を、103〜106×
10-7/℃に限定するのは、前述した如くMn−Zn
フエライトコアの熱膨張係数と同等とし、フエラ
イトコアとガラス溶着する際の前記問題を解消す
るためである。なお、上記熱膨張係数を有する
Mn−Znフエライトの組成の一例を示すと、
MnO23〜40モル%、ZnO5〜27モル%、Fe2O350
〜60モル%の組成物、あるいはこれにCaOと
SiO2、ZrO2、TiO2、V2O3のうち少なくとも一種
を添加した組成物である。 以下に、この発明を実施例に基づいて説明す
る。 市販されているTiO2、BaCO3、ZrO2を用い
て、第1表に示すこの発明による組成比ならびに
この発明の範囲外の組成比となるよう秤量し、ボ
ールミルで混合し、乾燥した後、空気中で900
℃、2時間の仮焼を行つた。さらに仮焼した原料
を再びボールミルで平均粒度1.5μmになるま
で、微粉砕し、次に結合剤としてポリビニルアル
コールを1.5wt%加えて造粒した。造粒後に、
2000Kg/cm2の成形圧で40×20×20mmの寸法に成形
し、空気中で1200℃、2時間の焼結を行つた。 得られた磁器について、密度、熱膨張係数、ビ
ツカース硬度等の特性を調べ、第2表に測定結果
を示している。また、表中の加工性は、同一の加
工機を使用しその主軸モータの電力増加量をワツ
ト単位で表わし評価している。なお、第1表、第
2表の試料No.12〜15は、この発明の実施例であ
り、その他の試料は比較例及び従来例である。 第2表から明らかな如く、試料No.1〜3の比
較例は抗折力が弱く、またビツカース硬度が低
く、孔が増え、緻密性に欠け、これ以外の比較例
は熱膨張係数がMn−Znフエライトの熱膨張係数
103〜106×10-7/℃に合致しない。 これに対しこの発明の実施例は、TiO2−BaO
系においてZrO2を含有することにより、熱膨張
係数を103〜106×10-7/℃の間にコントロールす
ることができ、加工性が良好な材料が得られた。 また、この発明による組成比とすることによ
り、従来の焼結温度より低温にて焼結可能なた
め、緻密化され、結晶粒径が小さくなり、しかも
孔が少なく加工性の良好なる磁器が得られる。従
つて、耐摩耗性にすぐれるため、記録媒体が摺動
する磁気ヘツド構造部品用材料に最適であること
がわかる。
The present invention relates to a non-magnetic material used for structural parts of a magnetic head, and relates to a ceramic composition for a magnetic head that has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, and has high mechanical strength and good workability. . A magnetic head is assembled by glass welding a core made of a magnetic material and a structural part made of a non-magnetic material.In particular, magnetic heads for digital devices use Mn, which has a higher magnetic permeability than Ni-Zn ferrite, as the magnetic material. −Zn is being replaced by ferrite, and TiO 2 −CaO−MgO is used as a material for non-magnetic structural parts.
−ZrO 2 series porcelain is used. The commonly used TiO 2 -CaO-MgO-ZrO 2 porcelain has a problem that it has very poor workability and is prone to chipping and cracking. In other words, since this structural component material constitutes the magnetic head, it requires extremely precise machining, requires low grinding resistance and good workability, and also requires high wear resistance for the recording medium when assembled into the magnetic head. It is necessary to improve the grinding resistance, lower the grinding resistance, and further refine the crystal structure. On the other hand, Mn−Zn with high magnetic permeability (μ>10000)
Ferrite has a coefficient of thermal expansion of 103 to 106×10 -7 /
℃, and when glass welding the core made from this and the structural component made of the above-mentioned porcelain, if the thermal expansion coefficients between the two differ, distortion will occur, deterioration of magnetic properties, and cracks. , peeling, etc. occur, which poses a major problem in assembling the magnetic head. Therefore, it is necessary to make the thermal expansion coefficients of the core material and non-magnetic structural parts the same, but the core material's Mn-Zn
Since the coefficient of thermal expansion of ferrite is fixed by the composition determined by the required electromagnetic properties, it is necessary to adjust the coefficient of thermal expansion of the non-magnetic structural component material to match the coefficient of thermal expansion of Mn--Zn ferrite. However, in order to prevent the above problems in assembling the magnetic head, the difference in thermal expansion coefficient must be reduced to 2×10 -7 /°C.
The above composition must be kept below.
This is not possible with TiO 2 −CaO−MgO−ZrO 2 based porcelain. In view of the above-mentioned problems, this invention has developed TiO 2 -BaO, which has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, good workability, and high mechanical strength.
We are proposing a new type of porcelain. That is, this invention provides TiO2 67.0wt%~72wt%, BaO28wt%~33wt%
A ceramic composition for a magnetic head, comprising 7wt% to 10wt% of ZrO2 , with the total of TiO2 and BaO being 100, and having a coefficient of thermal expansion of 103 to 106×10 -7 /°C. be. The reasons for limiting the components of the porcelain composition according to the present invention are as follows. If the content is less than 67.0wt% TiO 2 and more than 33wt% BaO, the thermal expansion coefficient will exceed 106 × 10 -7 /℃, and if the content is more than 72wt% TiO 2 and less than 28wt% BaO. , the coefficient of thermal expansion is less than 103×10 -7 /°C, making it unsuitable as a partner material for glass welding with Mn-Zn ferrite, and the processability also deteriorates further. Therefore, in order to maintain the same thermal expansion coefficient as that of Mn-Zn ferrite for high magnetic permeability, 103 to 106 × 10 -7 /℃, TiO2 67.0 to 72wt% and BaO28
The content should be ~33wt%. ZrO 2 is added to improve thermal shock resistance and increase transverse rupture strength.
If the total of TiO 2 and BaO is 100, if it is less than 7wt%, it will be weak against thermal shock and the transverse rupture strength will be weak, and if it is less than 10wt%
If the content exceeds 100%, a phase consisting only of ZrO 2 will be formed, and the effect of thermal shock resistance will be reduced, and the workability will also be significantly reduced. Also, 7~10wt
%, the material will not crack even if rapidly cooled from 200°C and will have strong thermal shock resistance. In addition, the coefficient of thermal expansion of the porcelain composition is 103 to 106×
10 -7 /℃ is limited to Mn-Zn as mentioned above.
This is to make the coefficient of thermal expansion equal to that of the ferrite core and to solve the above-mentioned problem when welding the ferrite core to the glass. In addition, it has the above thermal expansion coefficient.
An example of the composition of Mn-Zn ferrite is:
MnO23~40 mol%, ZnO5~27 mol%, Fe2O3 50
~60 mol% composition or this with CaO
This is a composition to which at least one of SiO 2 , ZrO 2 , TiO 2 , and V 2 O 3 is added. The present invention will be explained below based on examples. Using commercially available TiO 2 , BaCO 3 , and ZrO 2 , the composition ratios according to the present invention shown in Table 1 and the composition ratios outside the scope of the present invention were weighed, mixed in a ball mill, and dried. 900 in the air
Calcination was performed at ℃ for 2 hours. Furthermore, the calcined raw material was again finely ground in a ball mill until the average particle size was 1.5 μm, and then 1.5 wt % of polyvinyl alcohol was added as a binder and granulated. After granulation,
It was molded into a size of 40 x 20 x 20 mm under a molding pressure of 2000 Kg/cm 2 and sintered in air at 1200°C for 2 hours. The obtained porcelain was examined for properties such as density, coefficient of thermal expansion, and Vickers hardness, and the measurement results are shown in Table 2. Furthermore, the workability in the table is evaluated by using the same processing machine and expressing the increase in power of the spindle motor in watts. Note that samples Nos. 12 to 15 in Tables 1 and 2 are examples of the present invention, and the other samples are comparative examples and conventional examples. As is clear from Table 2, the comparative examples of Sample Nos. 1 to 3 have weak transverse rupture strength, low Vickers hardness, increased pores, and lack of compactness, and the other comparative examples have a thermal expansion coefficient of Mn. -Thermal expansion coefficient of Zn ferrite
Does not match 103~106×10 -7 /°C. On the other hand, in the embodiment of the present invention, TiO 2 −BaO
By containing ZrO 2 in the system, the coefficient of thermal expansion could be controlled between 103 and 106×10 −7 /°C, and a material with good workability was obtained. Furthermore, by using the composition ratio according to the present invention, it is possible to sinter at a lower temperature than the conventional sintering temperature, resulting in porcelain that is densified, has a small crystal grain size, has few pores, and has good workability. It will be done. Therefore, it can be seen that it has excellent wear resistance and is therefore most suitable as a material for magnetic head structural parts on which the recording medium slides.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 TiO267.0wt%〜72wt%、BaO28wt%〜33wt
%からなり、TiO2、BaOの合計を100として、 ZrO27wt%〜10wt%を含有し、 熱膨張係数103〜106×10-7/℃を有することを
特徴とする磁気ヘツド用磁器組成物。
[Claims] 1 TiO 2 67.0wt% to 72wt%, BaO28wt% to 33wt
%, containing ZrO 2 7wt% to 10wt%, taking the total of TiO 2 and BaO as 100, and having a thermal expansion coefficient of 103 to 106×10 -7 /°C. .
JP58006334A 1983-01-17 1983-01-17 Ceramic composition for magnetic head Granted JPS59131572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006334A JPS59131572A (en) 1983-01-17 1983-01-17 Ceramic composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006334A JPS59131572A (en) 1983-01-17 1983-01-17 Ceramic composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS59131572A JPS59131572A (en) 1984-07-28
JPS6222947B2 true JPS6222947B2 (en) 1987-05-20

Family

ID=11635463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006334A Granted JPS59131572A (en) 1983-01-17 1983-01-17 Ceramic composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS59131572A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171117U (en) * 1983-05-02 1984-11-15 元旦ビユーティ工業株式会社 Vertical roof mounting structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CERAMIC BULLETIN *

Also Published As

Publication number Publication date
JPS59131572A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
JPS6222947B2 (en)
JPS6222946B2 (en)
JPS6021940B2 (en) Non-magnetic ceramics for magnetic heads
JPS6154745B2 (en)
JPS6250434B2 (en)
JPS6224386B2 (en)
JPS6224384B2 (en)
JPS62292672A (en) Ceramic composition for magnetic head
JPS5888166A (en) Magnetic head ceramic composition
JPS643828B2 (en)
JPS6158427B2 (en)
JPS6222948B2 (en)
JPS59190264A (en) Ceramic composition for magnetic head
JPS6158429B2 (en)
JPS5845166A (en) Ceramic composition for magnetic head
JPH0469103B2 (en)
JPS6158426B2 (en)
JPH02243562A (en) Nonmagnetic ceramic material for magnetic head
JPS58143427A (en) Ceramic blank body for magnetic head retainer
JP3078302B2 (en) Non-magnetic ceramic composition
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPS6029669B2 (en) Non-magnetic ceramics for magnetic heads
JPH059056A (en) Ceramic substrate for magnetic head
JPH0664930B2 (en) Porcelain composition for magnetic head
JPH02283654A (en) Ceramic composition for magnetic head