JPS6158429B2 - - Google Patents

Info

Publication number
JPS6158429B2
JPS6158429B2 JP58086229A JP8622983A JPS6158429B2 JP S6158429 B2 JPS6158429 B2 JP S6158429B2 JP 58086229 A JP58086229 A JP 58086229A JP 8622983 A JP8622983 A JP 8622983A JP S6158429 B2 JPS6158429 B2 JP S6158429B2
Authority
JP
Japan
Prior art keywords
thermal expansion
tio
magnetic
ferrite
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58086229A
Other languages
Japanese (ja)
Other versions
JPS59213670A (en
Inventor
Osamu Yamashita
Kenichi Uechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58086229A priority Critical patent/JPS59213670A/en
Publication of JPS59213670A publication Critical patent/JPS59213670A/en
Publication of JPS6158429B2 publication Critical patent/JPS6158429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、磁気ヘツドの構造部品に用いる非
磁性材料に係り、コンピユータ等の各種磁気ヘツ
ド、特にフロツピーデイスク用フエライト磁気ヘ
ツドの構成に不可欠のスライダーあるいはスペー
サーに使用する磁気ヘツド用磁器組成物に関す
る。 一般に磁気ヘツドは、Mn―Znフエライト、Ni
―Znフエライトの磁性材料からなるコアと非磁
性材料からなる構造部品とをガラス溶着して組立
てられており、特にデジタル用磁気ヘツドには磁
性材料として、高周波特性及び耐摩耗性のすぐれ
たNi―Znフエライトに変えて高透磁率のMn―Zn
フエライトが使用され、非磁性構造部品材料には
熱膨張係数が同等のTiO2―CaO系磁器が使用さ
れている。 すなわち、コア材と、非磁性構造部品との熱膨
張係数が異なると、これらをガラス溶着する際
に、歪を生じ、磁気特性の劣化が起こるだけでな
く、ひび、剥離等を生じて磁気ヘツドの組立上大
きな問題となつている。 さらに、この非磁性構造部品材料に気孔が多く
存在すると、磁気ヘツドと記録媒体との接触走行
時に、記録媒体にコーテイングされた磁性粉が上
記気孔に付着したり、チツピングを生じて磁気ヘ
ツドや記録媒体を損傷するため、気孔率の低い高
密度化された非磁性磁器組成物が切望されてい
る。 従来のTiO2―CaO系磁器組成物は、CaO・
TiO2とTiO2の2相混合組織の範囲内において、
CaO・TiO2の量とともに熱膨張係数が直線的に
大きくなることが知られており、上述したコア材
のMn―Znフエライトの熱膨張係数は要求される
電磁気特性によつて定まる組成により固定される
が、105〜120×10-7/℃であるため、非磁性構造
部品材料の熱膨張係数をフエライトの方に合わせ
る必要があり、熱膨張係数の差を2×10-7/℃以
下に抑えるべく、TiO250〜75wt%、CaO25〜
50wt%の組成からなる磁器組成物が使用されて
いた。 一方、磁器組成物の気孔を低減する方法とし
て、上記組成の磁器組成物に、Al2O3、SiO2
MgO、SrO、CdO、ZrO2等の焼結補助材を少な
くとも1種以上で4wt%以下添加し、焼結密度を
改善する方法が知られているが、大気中焼結では
1〜3%の気孔が残存し、とくにZrO2の添加量
が2wt%以下の場合は、成形体の寸法が40mm×20
mm×20mmと大きくなると通常の焼結法では焼結体
の内部が還元されて黒色化する問題があつた。 また、気孔率を低減する方法として、熱間静水
圧プレス処理が知られており、極めて有効ではあ
るが、この処理が通常アルゴン雰囲気中で行なわ
れるため、被処理材表面が還元されて黒色化する
問題があり、酸素雰囲気中で再び熱処理を施して
も、完全に脱色することが困難で材料内部まで均
一に回復させることができなかつた。 この発明は、上記の問題点に鑑み、Mn―Znフ
エライトと同等の熱膨張係数を有し、結晶組織が
非常に緻密であり、熱間静水圧プレス処理を施す
ことなく、通常の焼結処理で熱間静水圧プレス処
理と同等の0.2%以下の気孔率を有するTiO2
CaO系磁器組成物を提案するものである。 すなわち、この発明は、TiO250wt%〜75wt
%、CaO25wt%〜50wt%からなり、TiO2、CaO
の合計を100として、ZrO28wt%を越え15wt%以
下、及びMgO3wt%〜8.5wt%を含有し、
CaTiO3、TiO2、ZrTiO4、MgTiO3の4相からな
り、気孔率0.2%以下に高密度化したことを要旨
とする磁気ヘツド用磁器組成物である。 この発明による磁器組成物は、CaTiO3
TiO2、ZrTiO4、MgTiO3の4相からなることを
特徴とし、熱間静水圧プレス処理材料の気孔率と
同程度に高密度化できるとともに、熱膨張係数を
105〜120×10-7/℃の範囲に精度よく調整するこ
とができ、ZrO2の含有により従来の焼結温度よ
り低温で焼結できるため、緻密で孔が少なく欠陥
のない材料で耐摩耗性が良く、結晶粒径も十分に
小さく加工性も良い。 この発明による磁器組成物におけるZrO4
を、X線マイクロアナライザーにより観察する
と、ZrO4相はほとんど粒界に生成されており、
同相が増加すると結晶中にZrTiO4相を通じてO2
の流入が可能になると思われ、焼結体内部の黒色
化防止に有効となる。 この発明による磁器組成物の成分を限定した理
由は以下のとおりである。 TiO250wt%未満の含有では、熱膨張係数が120
×10-7/℃を越えてしまい、TiO2が75wt%を超
える含有であると、熱膨張係数が105×10-7/℃
未満となり、Mn―Znフエライトとのガラス溶着
の相手材料として不適であり、Mn―Znフエライ
トの熱膨張係数105〜120×10-7/℃と同じ熱膨張
係数を保持させるため、TiO250wt%〜75wt%の
含有とする。 CaOが50wt%を超える含有では、熱膨張係数
が120×10-7/℃を越えてしまい、CaOが25wt%
未満の含有であると、熱膨張係数105×10-7/℃
未満となり、Mn―Znフエライトとのガラス溶着
の相手材料として不適であり、Mn―Znフエライ
トの熱膨張係数105〜120×10-7/℃と同じ熱膨張
係数を保持させるため、CaO25wt%〜50wt%の
含有とする。 ZrO2はTiO2―CaO系の気孔率を改善するため
に添加するものであるが、その含有がTiO2
CaOの合計を100として、8wt%以下では磁器組
成物焼結体の気孔率が1.0%以上になり、組織が
CaTiO3、TiO2、ZrO2、MgTiO3の4相となり、
焼結体内部は還元されやすくなり黒色化するため
好ましくない。また、15wt%を超える含有では
焼結体の気孔率が0.2%以上となり、加工性も悪
化するためソフトフエライトの相手材料として不
適となるため、8wt%を越え15wt%以下の添加と
する。 MgOは、ZrO2含有のTiO2―CaO系に添加する
ことにより、その焼結温度をさげることができる
ため、結晶の微細化が進み、研削抵抗の小さい材
料となり、かつ結晶粒径の安定化に有効である。
しかし、8.5wt%を越えるMgOの添加は熱膨張係
数を小さくしすぎるため不適であり、また硬度が
高くなりすぎるため好ましくない。3wt%未満の
MgOの添加はTiO2量の増加に伴なつて結晶が成
長し、緻密性がなくなり、熱膨張係数も大きくな
るので好ましくない。従つてMgOは3wt%〜
8.5wt%の含有とする。 以下に、この発明を実施例に基づいて説明す
る。 市販されているTiO2、CaCO3、ZrO2、MgOを
用いて、第1表に示す如く、焼結後の組成がこの
発明による組成比(No.1〜6)ならびにこの発明
の範囲外の組成比(No.7〜9)となるよう秤量
し、ボールミルで混合し、乾燥した後、空気中で
900℃、2時間の仮焼を行つた。さらに仮焼した
原料を再びボールミルで平均粒度1.3μmになる
まで、微粉砕し、次に結合剤としてポリビニルア
ルコール1.5wt%加えて造粒した。造粒後に、
2000Kg/cm2の成形圧で40×20×20mmの寸法に成形
し、空気中で1200℃、2時間の焼結を行つた。 得られた磁器について、密度、熱膨張係数、ビ
ツカース硬度等の特性を調べ、第2表に測定結果
を示している。また、表中の加工性は、同一の加
工機を使用しその主軸モータの電力増加量をワツ
ト単位で表わし評価している。 第1表、第2表から明らかな如く、試料No.7〜
9の比較例はその熱膨張係数がMn―Znフエライ
トの熱膨張係数105〜120×10-7/℃に合致するが
気孔率が悪いのに対し、この発明の実施例(試料
No.1〜6)は、熱膨張係数を105〜120×10-7/℃
の間にコントロールすることができ、機械的強
度、加工性等もすぐれた特性を示しており、特
に、熱間静水圧プレス処理した材料と同等に緻密
化され、結晶粒径が小さくなり、孔が少なく加工
性の良好なる磁器が得られているため、耐摩耗性
にすぐれ、記録媒体が摺動する磁気ヘツド構造部
品用材料に最適であることがわかる。
The present invention relates to non-magnetic materials used for structural parts of magnetic heads, and more particularly to a ceramic composition for magnetic heads used for sliders or spacers essential to the construction of various magnetic heads such as computers, particularly ferrite magnetic heads for floppy disks. . Generally, magnetic heads are made of Mn-Zn ferrite, Ni
-A core made of Zn ferrite magnetic material and structural parts made of non-magnetic material are assembled by glass welding.Ni- High permeability Mn-Zn instead of Zn ferrite
Ferrite is used, and TiO 2 -CaO-based porcelain with the same coefficient of thermal expansion is used as the non-magnetic structural component material. In other words, if the core material and non-magnetic structural components have different coefficients of thermal expansion, distortion will occur when they are welded to glass, which will not only cause deterioration of magnetic properties, but also cause cracks, peeling, etc., and damage the magnetic head. This has become a major problem in assembly. Furthermore, if there are many pores in this non-magnetic structural component material, when the magnetic head and the recording medium come into contact with each other, the magnetic powder coated on the recording medium may adhere to the pores or cause chipping, which may cause the magnetic head or recording medium to run in contact with each other. Due to media damage, densified non-magnetic porcelain compositions with low porosity are desired. Conventional TiO 2 -CaO based porcelain compositions
Within the range of the two-phase mixed structure of TiO 2 and TiO 2 ,
It is known that the coefficient of thermal expansion increases linearly with the amount of CaO/TiO 2 , and the coefficient of thermal expansion of the Mn-Zn ferrite core material mentioned above is fixed by the composition determined by the required electromagnetic properties. However, since it is 105 to 120×10 -7 /℃, it is necessary to match the thermal expansion coefficient of the non-magnetic structural component material to that of ferrite, and the difference in thermal expansion coefficient should be kept below 2×10 -7 /℃. To suppress TiO2 50~75wt%, CaO25~
A porcelain composition with a composition of 50 wt% was used. On the other hand, as a method for reducing pores in a ceramic composition, Al 2 O 3 , SiO 2 ,
A known method is to improve the sintered density by adding at least one kind of sintering auxiliary material such as MgO, SrO, CdO, or ZrO 2 up to 4wt%. If pores remain, especially if the amount of ZrO 2 added is less than 2wt%, the size of the molded product may be 40mm x 20mm.
When the size is as large as mm x 20 mm, the problem with normal sintering methods is that the inside of the sintered body is reduced and becomes black. In addition, hot isostatic pressing is a known method for reducing porosity, and although it is extremely effective, since this treatment is usually performed in an argon atmosphere, the surface of the treated material is reduced and becomes black. Even if heat treatment is performed again in an oxygen atmosphere, it is difficult to completely decolorize the material, and it is not possible to uniformly restore the color to the inside of the material. In view of the above problems, this invention has a coefficient of thermal expansion equivalent to that of Mn-Zn ferrite, a very dense crystal structure, and can be processed by normal sintering without hot isostatic pressing. TiO2 with a porosity of less than 0.2%, which is equivalent to hot isostatic pressing treatment.
We propose a CaO-based porcelain composition. That is, this invention can contain TiO 2 50wt% ~ 75wt%
%, CaO25wt%~50wt%, TiO2 , CaO
Contains ZrO2 exceeding 8wt% and 15wt% or less, and MgO3wt% to 8.5wt%, with the total of 100,
This ceramic composition for magnetic heads consists of four phases: CaTiO 3 , TiO 2 , ZrTiO 4 and MgTiO 3 and has a high density with a porosity of 0.2% or less. The porcelain composition according to the present invention includes CaTiO 3 ,
It is characterized by being composed of four phases: TiO 2 , ZrTiO 4 , and MgTiO 3 , and can be made as dense as the porosity of hot isostatically pressed materials, while also having a low coefficient of thermal expansion.
It can be precisely adjusted in the range of 105 to 120 × 10 -7 /℃, and because it contains ZrO 2 , it can be sintered at a lower temperature than conventional sintering temperatures, making it a dense, defect-free material with few pores and wear resistance. It has good properties, has a sufficiently small crystal grain size, and has good workability. When the ZrO 4 phase in the porcelain composition according to the present invention was observed using an X-ray microanalyzer, it was found that most of the ZrO 4 phase was generated at grain boundaries.
As the in-phase increases, O 2 through the ZrTiO 4 phase in the crystal
It is thought that this allows for the inflow of the sintered body, which is effective in preventing blackening inside the sintered body. The reasons for limiting the components of the porcelain composition according to the present invention are as follows. When TiO2 content is less than 50wt%, the thermal expansion coefficient is 120
×10 -7 /℃, and if the TiO 2 content exceeds 75wt%, the thermal expansion coefficient will be 105 × 10 -7 /℃.
TiO2 is less than 50wt%, making it unsuitable as a partner material for glass welding with Mn-Zn ferrite.In order to maintain the same thermal expansion coefficient as Mn-Zn ferrite, which has a coefficient of thermal expansion of 105 to 120×10 -7 /℃, TiO 2 50wt% is used. The content should be ~75wt%. If the CaO content exceeds 50wt%, the thermal expansion coefficient will exceed 120×10 -7 /℃, and the CaO content will exceed 25wt%.
If the content is less than 105 × 10 -7 /℃, the thermal expansion coefficient
CaO25wt%~50wt is less than 50wt%, making it unsuitable as a partner material for glass welding with Mn-Zn ferrite. % content. ZrO 2 is added to improve the porosity of the TiO 2 -CaO system;
If the total amount of CaO is 100, if it is less than 8wt%, the porosity of the sintered ceramic composition will be more than 1.0%, and the structure will be
There are four phases: CaTiO 3 , TiO 2 , ZrO 2 , and MgTiO 3 ,
The inside of the sintered body is unfavorable because it is easily reduced and turns black. In addition, if the content exceeds 15 wt%, the porosity of the sintered body will be 0.2% or more, and the workability will deteriorate, making it unsuitable as a mating material for soft ferrite. Therefore, the addition should be more than 8 wt% and less than 15 wt%. By adding MgO to the ZrO 2 -containing TiO 2 -CaO system, the sintering temperature can be lowered, resulting in finer crystals, resulting in a material with less grinding resistance and stabilizing the crystal grain size. It is effective for
However, addition of MgO in excess of 8.5 wt% is unsuitable because it makes the coefficient of thermal expansion too small, and it is also undesirable because the hardness becomes too high. Less than 3wt%
Addition of MgO is not preferable because as the amount of TiO 2 increases, crystals grow, compactness is lost, and the coefficient of thermal expansion increases. Therefore, MgO is 3wt% ~
The content is 8.5wt%. The present invention will be explained below based on examples. Using commercially available TiO 2 , CaCO 3 , ZrO 2 , and MgO, as shown in Table 1, the composition after sintering is the composition ratio according to the present invention (No. 1 to 6) and the composition ratio outside the scope of the present invention. Weigh out the composition ratio (No. 7 to 9), mix in a ball mill, dry, and then mix in the air.
Calcining was performed at 900°C for 2 hours. Furthermore, the calcined raw material was again finely ground in a ball mill until the average particle size was 1.3 μm, and then 1.5 wt % of polyvinyl alcohol was added as a binder and granulated. After granulation,
It was molded into a size of 40 x 20 x 20 mm under a molding pressure of 2000 Kg/cm 2 and sintered in air at 1200°C for 2 hours. The obtained porcelain was examined for properties such as density, coefficient of thermal expansion, and Vickers hardness, and the measurement results are shown in Table 2. Furthermore, the workability in the table is evaluated by using the same processing machine and expressing the increase in power of the spindle motor in watts. As is clear from Tables 1 and 2, Sample No. 7~
Comparative Example No. 9 has a thermal expansion coefficient that matches that of Mn-Zn ferrite, 105 to 120×10 -7 /°C, but has poor porosity;
No. 1 to 6) have a thermal expansion coefficient of 105 to 120×10 -7 /℃
It exhibits excellent properties such as mechanical strength and workability, and in particular, it is densified to the same degree as materials treated with hot isostatic pressing, the crystal grain size is small, and pores are reduced. Since the obtained porcelain has low porosity and good workability, it has excellent wear resistance and is found to be optimal as a material for magnetic head structural parts on which the recording medium slides.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 TiO250wt%〜75wt%、CaO25wt%〜50wt%
からなり、TiO2、CaOの合計を100として、
ZrO28wt%を越え15wt%以下、及びMgO3wt%〜
8.5wt%を含有し、気孔率0.2%以下に高密度化し
たことを特徴とする磁気ヘツド用磁器組成物。
1 TiO2 50wt%~75wt%, CaO25wt%~50wt%
and the total of TiO 2 and CaO is 100,
ZrO2 more than 8wt% and less than 15wt%, and MgO3wt%~
A porcelain composition for a magnetic head, characterized by containing 8.5 wt% and having a high density with a porosity of 0.2% or less.
JP58086229A 1983-05-16 1983-05-16 Ceramic composition for magnetic head Granted JPS59213670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086229A JPS59213670A (en) 1983-05-16 1983-05-16 Ceramic composition for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086229A JPS59213670A (en) 1983-05-16 1983-05-16 Ceramic composition for magnetic head

Publications (2)

Publication Number Publication Date
JPS59213670A JPS59213670A (en) 1984-12-03
JPS6158429B2 true JPS6158429B2 (en) 1986-12-11

Family

ID=13880959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086229A Granted JPS59213670A (en) 1983-05-16 1983-05-16 Ceramic composition for magnetic head

Country Status (1)

Country Link
JP (1) JPS59213670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128687A (en) * 1994-10-31 1996-05-21 Natl House Ind Co Ltd Ventilator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128687A (en) * 1994-10-31 1996-05-21 Natl House Ind Co Ltd Ventilator

Also Published As

Publication number Publication date
JPS59213670A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
JPS6158429B2 (en)
JPS6224386B2 (en)
JPS6158427B2 (en)
JPS6224387B2 (en)
JPS6158426B2 (en)
KR970004614B1 (en) Non-magnetic ceramic substrate material of magnetic head
JPS6250434B2 (en)
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPS6222946B2 (en)
JPS643828B2 (en)
JPS6222947B2 (en)
JPS6224384B2 (en)
JPS6222948B2 (en)
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
KR0143068B1 (en) A method of oxide magnetized material
JPS6158428B2 (en)
JPS6154745B2 (en)
JPH0649608B2 (en) Non-magnetic material for thin film magnetic head substrate and manufacturing method thereof
JPH0786022A (en) Ferrite material
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPS6339115A (en) Substrate material for thin film magnetic head
JPS5845166A (en) Ceramic composition for magnetic head
JPH02283654A (en) Ceramic composition for magnetic head
JPS62137709A (en) Nonmagnetic ceramics for magnetic head