JPS62137709A - Nonmagnetic ceramics for magnetic head - Google Patents

Nonmagnetic ceramics for magnetic head

Info

Publication number
JPS62137709A
JPS62137709A JP60276954A JP27695485A JPS62137709A JP S62137709 A JPS62137709 A JP S62137709A JP 60276954 A JP60276954 A JP 60276954A JP 27695485 A JP27695485 A JP 27695485A JP S62137709 A JPS62137709 A JP S62137709A
Authority
JP
Japan
Prior art keywords
ceramics
nio
mno
tio2
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60276954A
Other languages
Japanese (ja)
Other versions
JPH0329739B2 (en
Inventor
Yukio Nagayama
長山 幸雄
Heiki Hoshi
星 兵喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP60276954A priority Critical patent/JPS62137709A/en
Publication of JPS62137709A publication Critical patent/JPS62137709A/en
Publication of JPH0329739B2 publication Critical patent/JPH0329739B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To easily produce high-density nonmagnetic ceramics having alpha>=130X10<-7>% deg.C coefft. of thermal expansion by incorporating NiO, MgO, TiO2, and MnO therein. CONSTITUTION:This ceramics contains 100pts.wt. essential component consisting of 10-70mol% MgO, 20-80mol% NiO, 1-5mol% TiO2, and 5-20mol% MnO. The content of NiO is obtd. at >=20mol% in order to obtain alpha>=130X10<-7>% deg.C. However, sintering is extremely difficult and the ceramics having high porosity is obtd. at 1,400 deg.C sintering temp. if the component ratio of MgO is >=60mol%. The hardness is low and the ceramics having high reliability in the wear charac teristic is not obtainable if the component ratio of NiO is >=70mol%. Magnetic permeability exhibits the value over 2 and such value is inadequate as the nonmagnetic ceramics if the component of NiO exceeds 80mol%. These problems can be improved by simultaneously adding TiO2 and MnO to the ceramics. More specifically, the hardness is improved by compounding TiO2 therewith and the porosity is improved by compounding MnO having the effect of acceler ating the sintering therewith.

Description

【発明の詳細な説明】 〈産業上の技術分野〉 本発明はコンピュータの周辺装置であるフロッピーディ
スク装置あるいはハードディスク装置の悪気ヘッドに用
いられるスライダーとして使用される非磁性セラミック
スに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Technical Field> The present invention relates to non-magnetic ceramics used as a slider for a magnetic head of a floppy disk device or a hard disk device, which are peripheral devices of computers.

〈従来の技術〉 一般にコンピュータ、 VTRp又はオーディオ関係の
磁気ヘッドは磁性材料であるフェライトと非磁性材料の
セラミックスをガラスデンディングして構成されている
。また薄膜型磁気ヘッドの場合には磁性あるいは非磁性
セラミックス基板上へ磁性薄膜を蒸着あるいはスパッタ
リングして成膜し作製される。
<Prior Art> Magnetic heads for computers, VTRs, or audio devices are generally constructed by glass-dending ferrite, which is a magnetic material, and ceramic, which is a non-magnetic material. In the case of a thin film magnetic head, a magnetic thin film is formed on a magnetic or nonmagnetic ceramic substrate by vapor deposition or sputtering.

近年デジタル磁気ヘッドは記録媒体の高密度記録化への
技術推移に伴なって、より小型化、高密度記録化、高品
質化が要求されて来ている。そのため、フェライトは記
録媒体の特性に適用すべく大きな飽和磁束密度を有する
ことが要求されて来ている。すなわちフェライトにおい
て高飽和磁束密度の磁気特性を持つためには必然的に熱
膨張係数の大きくなる組成領域にて製造せざるを得ない
In recent years, digital magnetic heads have been required to be smaller, have higher recording density, and have higher quality as the technology advances toward higher density recording of recording media. Therefore, ferrite is required to have a large saturation magnetic flux density in order to suit the characteristics of recording media. In other words, in order for ferrite to have magnetic properties with a high saturation magnetic flux density, it must be manufactured in a composition range that has a large coefficient of thermal expansion.

又、薄膜ヘッドの場合、高飽和磁束密度を有し高透磁率
の磁気特性を持つ熱膨張係数が130〜140X10 
 %Cと大きなパーマロイ又はセンダストの金属薄膜を
セラミック基板上へ成膜して製造される。これら異種類
の材料を接着あるいは蒸着。
In addition, in the case of a thin film head, the thermal expansion coefficient is 130 to 140 x 10, which has high saturation magnetic flux density and high magnetic permeability.
It is manufactured by depositing a permalloy or sendust metal thin film with a large %C on a ceramic substrate. These different types of materials are bonded or vapor-deposited.

ス・にツタ−にて構成し製造する場合構成材料の熱膨張
係数を近似なものとし、接合時に発生する歪を最小のも
のとすることが必要条件となる。
In the case of constructing and manufacturing with vines, it is necessary to approximate the coefficient of thermal expansion of the constituent materials and to minimize the strain generated during bonding.

従来、前述の磁性体と1体で構成される非磁性セラミッ
クスはCaTiO3系セラミックスあるいはBaTiO
3系セラミックスが使用されている。しかしながらこれ
らセラミックスの熱膨張係数は80〜120X10”−
7チ℃の値を示し、130X10−7%℃以上の熱膨張
係数を示すセラミックスを製造するのは非常に困難な状
態である。
Conventionally, non-magnetic ceramics that are integrated with the above-mentioned magnetic material have been CaTiO3 ceramics or BaTiO3 ceramics.
Type 3 ceramics are used. However, the coefficient of thermal expansion of these ceramics is 80~120X10''-
It is extremely difficult to produce ceramics that exhibit a coefficient of thermal expansion of 130 x 10-7% or more.

一般に磁気ヘッド用非母性セラミックスには下記のこと
が要求される。
Generally, the following requirements are required for non-matrix ceramics for magnetic heads.

1)高密度で気孔が少ないこと。1) High density and few pores.

2)耐摩耗特性に優れていること。2) Excellent wear resistance properties.

3)加工性に優れていること。3) Excellent workability.

4)熱膨張係数が磁性体と近似であること。4) The coefficient of thermal expansion is similar to that of a magnetic material.

5)抵抗率が大きいこと。5) High resistivity.

6)物理的、化学的処理に安定であること。6) Stable to physical and chemical treatments.

く問題点を解決するだめの手段〉 本発明は上記の問題点に鑑みて熱膨張係数(α)の大き
なぢ性体に適応すべく熱膨張係数が太きく。
Means for Solving the Problems> In view of the above problems, the present invention has a large coefficient of thermal expansion (α) in order to adapt to a dielectric material having a large coefficient of thermal expansion (α).

摩耗特性が良く、かつ加工性の良い磁気ヘッド用非磁性
セラミックスを提供するものである。本発明者らは熱膨
張係数の大きな酸化物MgOとNiOが全率固溶し、安
定均一成分を作ることに着眼し。
The present invention provides nonmagnetic ceramics for magnetic heads that have good wear characteristics and good workability. The present inventors focused on the fact that the oxides MgO and NiO, which have large coefficients of thermal expansion, are completely dissolved in solid solution to form a stable and uniform component.

熱膨張係数を組成比でコントロールするとともに機械的
強度と加工性にすぐれた高密度の非磁性セラミックスを
容易に製造するものである。
The purpose is to easily produce high-density non-magnetic ceramics whose thermal expansion coefficient is controlled by the composition ratio and which has excellent mechanical strength and workability.

く問題点を解決するだめの手段と作用〉第1図はNiO
とMgOの2成分を混合した時の100℃〜400℃の
熱膨張係数αの値を示したものである。α≧130X1
0  %℃を得るためにはNiO含有量が20mo11
以上で得られることがわかる。しかしながらMgOが6
0 mo1%以上の成分比では非常に焼結が困難となり
1400℃の焼結温度では気孔率の高いセラミックスと
なる。又、 NiOが70mo1%以上の成分比では硬
度が低くなり摩耗特性に信頼性の大きいセラミックスが
得られない。
Fig. 1 shows NiO
This figure shows the value of the coefficient of thermal expansion α between 100°C and 400°C when two components, MgO and MgO, are mixed. α≧130X1
In order to obtain 0%℃, the NiO content must be 20mol11
It can be seen that the above results can be obtained. However, MgO is 6
If the component ratio is 0 mo1% or more, sintering becomes extremely difficult, and a sintering temperature of 1400° C. results in a ceramic with high porosity. Furthermore, if the NiO content is 70 mo1% or more, the hardness will be low and a ceramic with highly reliable wear characteristics cannot be obtained.

さらにNiO成分が80 mai1%を越えると透磁率
が2を越える値を示し非磁性セラミックスとして不適当
である。本発明者らはこれらの問題点をTiO2とMn
Oを同時に添加することによシ改善出来ることを見いだ
した。すなわちT 102を配合し硬度を増加させ、さ
らには焼結促進効果を有するMnOを配合し気孔率を改
善するものである。
Furthermore, if the NiO content exceeds 80 mai1%, the magnetic permeability will exceed 2, making it unsuitable as a non-magnetic ceramic. The present inventors solved these problems by using TiO2 and Mn.
It has been found that this can be improved by adding O at the same time. That is, T102 is added to increase the hardness, and MnO, which has a sintering accelerating effect, is added to improve the porosity.

第2図にNiOが40 mol % e MgOが60
 mai1%配合してなる母相にT iO2を配合した
時のビッカース硬度HV (荷重500g)と熱膨張係
数(α)の値を示した。同様に第3図にMnOを配合し
た時の関係を示した。TiO2はHvの改善には著るし
い効果をもつが、含有量が増加するにつれαの値を大き
く低下させてしまう。α値を130X10  %℃以上
にするためにはT iO2の含有量は5 mai1%が
限界である。
Figure 2 shows that NiO is 40 mol % e MgO is 60 mol %
The values of Vickers hardness HV (load 500 g) and thermal expansion coefficient (α) when TiO2 is blended into the matrix containing 1% mai are shown. Similarly, FIG. 3 shows the relationship when MnO is mixed. TiO2 has a remarkable effect on improving Hv, but as its content increases, it greatly reduces the value of α. In order to make the α value 130×10%° C. or higher, the limit for the content of TiO2 is 5 mai1%.

又、 MnOの含有量は5 mo1%より少ない場合。Also, when the MnO content is less than 5 mo1%.

焼結促進効果があまり現われず、 10 mol %を
越すと粒界に析出しHvを低下してしまい好ましくない
。さらに副成分として添加するCaO及びY2O3は結
晶粒を微細化するとともに気孔率の改善に効果がある。
The effect of accelerating sintering is not so pronounced, and if it exceeds 10 mol %, it precipitates at the grain boundaries and lowers Hv, which is not preferable. Furthermore, CaO and Y2O3 added as subcomponents are effective in making crystal grains finer and improving porosity.

〈実施例〉 (1)  市販の原料である81021029g09T
iO22を表−1に示す組成比となる様に秤量し2分散
媒にアルコールを用いゴールミルにて混合し乾燥させた
後、空気中にて1200℃の温度で2時間仮焼を行った
。仮焼粉末はボールミルにて粉砕され、平均粒子径は1
.2μmとなる。濾過乾燥後バインダーを1重−Ii1
t%添加し、ライカイ機にて造粒を行いその後2 t/
αの圧力にて成形し、空気中にて1400℃の温度で3
時間焼成を行った。相対密度97係以上の密度を有する
焼結体はアルミナ・ルツボ内に積置され温度1300℃
、圧力1000に97cm  、保持時間2時間の条件
にてArガス雰囲気にて熱間静水圧プレス(HIP )
処理を行った。得られた試料の材料特性を表−1に示す
。表−1によりNiOの含有量が増加するに従い熱膨張
係数α値は増大する。又I TiO□、 MnOを同時
配合することによシ。
<Example> (1) Commercially available raw material 81021029g09T
iO22 was weighed to have the composition ratio shown in Table 1, mixed in a gall mill using alcohol as a dispersion medium, dried, and then calcined in air at a temperature of 1200°C for 2 hours. The calcined powder is pulverized in a ball mill, and the average particle size is 1
.. It becomes 2 μm. After filtration and drying, apply the binder once - Ii1
t% was added, granulated using a Raikai machine, and then 2 t/
Molded at a pressure of α and heated to a temperature of 1400°C in air for 3
Time firing was performed. The sintered body having a relative density of 97 or higher is placed in an alumina crucible and heated to a temperature of 1300°C.
, hot isostatic pressing (HIP) in an Ar gas atmosphere under the conditions of 97 cm at a pressure of 1000 and a holding time of 2 hours.
processed. Table 1 shows the material properties of the obtained samples. As shown in Table 1, as the content of NiO increases, the coefficient of thermal expansion α value increases. Also, by simultaneously blending ITiO□ and MnO.

硬度、気孔率とも改善されることが判明した。透磁率は
10φ×6φ×2訪のトロイダルコアを周波数1 kH
z 、巻数25回の条件にて調べたが、 NiO80m
ol %以下の組成比ではμi<2となり非磁性特注を
示す。組成比において、 NiOを20〜80mo1%
 、 MgOを10〜70molチの範囲でαを130
〜15 ll X 10  % ℃まで容易にコントロ
ールすることが出来る。さらにTiO2とMnOを同時
に配合させることにより、ビッカース硬度の高い、抵抗
力の大きい機械特性のすぐれた高密度非磁性セラミック
スを容易に得られた。
It was found that both hardness and porosity were improved. The magnetic permeability is a 10φ x 6φ x 2 toroidal core at a frequency of 1 kHz.
z, the number of turns was 25, but NiO80m
When the composition ratio is less than ol %, μi<2, indicating non-magnetic customization. In terms of composition ratio, NiO is 20 to 80 mo1%
, α is 130 with MgO in the range of 10 to 70 mol.
It can be easily controlled up to ~15 ll x 10% °C. Furthermore, by simultaneously blending TiO2 and MnO, it was possible to easily obtain a high-density nonmagnetic ceramic with high Vickers hardness, high resistance, and excellent mechanical properties.

〈実施例〉 (2)表−1の試料A−4の組成比を有する粉末にCa
CO3をCaOにて1,2wt%になるよう秤量し添加
するとともに、同様にY2O3を1.5,10wt%添
加し表−2に示す組成比とした。
<Example> (2) Ca was added to the powder having the composition ratio of sample A-4 in Table-1.
CO3 was weighed and added to give a concentration of 1.2 wt% in terms of CaO, and 1.5.10 wt% of Y2O3 was similarly added to give the composition ratio shown in Table 2.

実施例−1と同様な製造条件にて試料を作製し。A sample was produced under the same manufacturing conditions as in Example-1.

特性を調べ2表−2に示す。CaO、Y2O6とも粒径
抑制効果をもち、微細結晶粒組織のセラミックスを得る
ために有効であることが判明した。
The characteristics were investigated and shown in Table 2. It has been found that both CaO and Y2O6 have a grain size suppressing effect and are effective for obtaining ceramics with a fine grain structure.

しかし、 CaOの添加量が1wt%を越えると結晶粒
の強度が弱くなる傾向にありビッカース硬度が低下し好
ましくない。またY2O5が5wtチを越えた場合気孔
率が増加し、鏡面加工性に問題が生じてくる。従ってC
aOをO〜1 wt% e Y2O5を1〜5wt%添
加することにより、微細な結晶粒組織をもち、ビッカー
ス硬度ならびに抵抗力に優れた機械特性の良好な高苫度
非磁性セラミックが得られた。
However, if the amount of CaO added exceeds 1 wt%, the strength of the crystal grains tends to become weaker and the Vickers hardness decreases, which is not preferable. Furthermore, if Y2O5 exceeds 5wt, the porosity will increase and problems will arise in mirror finishability. Therefore C
By adding O~1 wt% of aO and 1~5 wt% of Y2O5, a high-tolerance nonmagnetic ceramic with a fine grain structure, excellent Vickers hardness and resistance, and good mechanical properties was obtained. .

〈発明の効果〉 以上の結果から明らかなように2本発明によれば、従来
製造困難であった熱膨張係数α≧130×10−7% 
℃を有す高密度非磁性セラミックスを容易に製造するこ
とが出来た。すなわち、高飽和磁束密度を有するMn−
Znフェライト、さらにはパーマロイ、センダスト等の
金属薄膜の接合に最適な材料となシ、高信頼の高い磁気
ヘッドを製造することが出来た。
<Effects of the Invention> As is clear from the above results, according to the present invention, the thermal expansion coefficient α≧130×10−7%, which was conventionally difficult to manufacture.
It was possible to easily produce high-density nonmagnetic ceramics with a temperature of . That is, Mn- has a high saturation magnetic flux density.
It is an optimal material for bonding thin metal films such as Zn ferrite, permalloy, and sendust, and a highly reliable magnetic head could be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はNiO−MgO成分比と熱膨張係数を示すグラ
フ、第2図はT s O2含有量と硬度並に熱膨張係n
O 数との関係を示すグラフ、第3図は一手含有量と硬度並
に熱膨張係数の関係を示すグラフである。 第1図
Figure 1 is a graph showing the NiO-MgO component ratio and thermal expansion coefficient, and Figure 2 is a graph showing the TsO2 content, hardness, and thermal expansion coefficient n.
FIG. 3 is a graph showing the relationship between the O2 content and the hardness as well as the coefficient of thermal expansion. Figure 1

Claims (1)

【特許請求の範囲】 1)MgO10〜70モル%、NiO20〜80モル%
、TiO_21〜5モル%、MnO5〜20モル%より
なる主成分100重量部を含有することを特徴とする磁
気ヘッド用非磁性セラミックス。 2)特許請求の範囲第1項記載の主成分にさらにCuO
1wt%以下、Y_2O_3を5wt%以下の一種又は
両者を含有することを特徴とする磁気ヘッド用非磁性セ
ラミックス。
[Claims] 1) MgO 10-70 mol%, NiO 20-80 mol%
, TiO_21 to 5 mol %, and MnO_ 5 to 20 mol %, as main components, 100 parts by weight. 2) CuO is further added to the main component described in claim 1.
A non-magnetic ceramic for a magnetic head, characterized in that it contains 1 wt% or less of Y_2O_3 or both of 5 wt% or less.
JP60276954A 1985-12-11 1985-12-11 Nonmagnetic ceramics for magnetic head Granted JPS62137709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276954A JPS62137709A (en) 1985-12-11 1985-12-11 Nonmagnetic ceramics for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276954A JPS62137709A (en) 1985-12-11 1985-12-11 Nonmagnetic ceramics for magnetic head

Publications (2)

Publication Number Publication Date
JPS62137709A true JPS62137709A (en) 1987-06-20
JPH0329739B2 JPH0329739B2 (en) 1991-04-25

Family

ID=17576725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276954A Granted JPS62137709A (en) 1985-12-11 1985-12-11 Nonmagnetic ceramics for magnetic head

Country Status (1)

Country Link
JP (1) JPS62137709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430308A (en) * 1990-05-25 1992-02-03 Hitachi Ltd Magnetic head and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430308A (en) * 1990-05-25 1992-02-03 Hitachi Ltd Magnetic head and its manufacture

Also Published As

Publication number Publication date
JPH0329739B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
JPS62137709A (en) Nonmagnetic ceramics for magnetic head
JP2832863B2 (en) Non-magnetic ceramics for magnetic heads
JP3152740B2 (en) Non-magnetic ceramics
KR0143068B1 (en) A method of oxide magnetized material
JPS61117804A (en) Mn-zn system soft ferrite and manufacture thereof
JPH0122229B2 (en)
JPS6016860A (en) Magnetic composition for magnetic head
JPH02311356A (en) Magnetic ceramics for magnetic head
JPS6224386B2 (en)
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPS63134558A (en) Non-magnetic ceramics for magnetic head
JPS6259069B2 (en)
JPS59213670A (en) Ceramic composition for magnetic head
JPH05319895A (en) Nonmagnetic ceramics for magnetic head
JPS6286510A (en) Magnetic head
JPS61117805A (en) Mn-zn system soft ferrite and manufacture thereof
JP2001261433A (en) Nonmagnetic ceramics
JPH0612611A (en) Nonmagnetic ceramics for magnetic head
JPS6158427B2 (en)
JPH0459263B2 (en)
JPS59190261A (en) Ceramic composition for magnetic head
JPH0459650A (en) Nonmagnetic ceramic composition
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPS6224387B2 (en)