JPS62240762A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS62240762A
JPS62240762A JP8459686A JP8459686A JPS62240762A JP S62240762 A JPS62240762 A JP S62240762A JP 8459686 A JP8459686 A JP 8459686A JP 8459686 A JP8459686 A JP 8459686A JP S62240762 A JPS62240762 A JP S62240762A
Authority
JP
Japan
Prior art keywords
resin body
film
synthetic resin
voltage
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8459686A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kageyama
恭行 景山
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8459686A priority Critical patent/JPS62240762A/en
Publication of JPS62240762A publication Critical patent/JPS62240762A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the wear resistance of a synthetic resin body by forming the film consisting of silicon oxide on the body which has been applied with sputtering etching in the low-voltage discharge atmosphere of an inactive element as the pretreatment, and firmly depositing a silicon oxide film on the surface of the synthetic resin body. CONSTITUTION:The synthetic resin body 11 is fixed to a substrate holder 3, the inside of a treating vessel 1 is evacuated, and the pressure in the vessel 1 is regulated by introducing 8 an inert gas such as Ar. A voltage is then impressed on the holder 3 to form electric discharge conditions, the inert gas is struck against the surface of the resin body 11 to cut the high molecular chain of the resin body 11, and a radical is formed. A voltage is then impressed on an SiO2 target 2 to generate sputter discharge between the resin body 11 and the target 2. The alcohol droplets remaining on the resin body 11 is blown off by dry gaseous N2 to clean the surface. The resin body 11 is then fixed to a substrate holder in the treating vessel of a magnetron type sputtering device, and the film of silicon oxide is formed on the surface of the resin body 11 by an ordinary method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、樹脂製品の表面に、硬質の膜を形成する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming a hard film on the surface of a resin product.

〔従来技術〕[Prior art]

従来から2 自動車等の窓には、無機ガラスを多く使用
しているが、最近、無機ガラスに換えて軽量で、且つ加
工性に優れた透明樹脂(樹脂ガラス)を使うことが検討
されている。しかし、樹脂ガラスは、耐17耗性におい
て無機ガラスに劣るという欠点を有している。
Traditionally 2. Inorganic glass has been widely used in the windows of automobiles, etc., but recently, the use of transparent resin (resin glass), which is lightweight and has excellent processability, is being considered in place of inorganic glass. . However, resin glass has the disadvantage that it is inferior to inorganic glass in abrasion resistance.

また5機械要素としての部品、たとえば歯車等。Also, parts as 5 mechanical elements, such as gears.

にも金属に換えて樹脂が、成形性に優れていること等の
理由により使用されつつある。しかし、耐摩耗性等の点
から、その使用には限度がある。
Resins are also being used instead of metals due to their superior moldability. However, there are limits to its use in terms of wear resistance and the like.

樹脂が有する上記の欠点を補うために、樹脂の表面に真
空蒸着法、スパッタリング法、イオンブレーティング法
等により、Sin、等の高硬度無機質膜を形成して、耐
摩耗性を向上させる技術が知られている。それらの一つ
として、膜形成前に。
In order to compensate for the above-mentioned drawbacks of resins, technology has been developed to improve wear resistance by forming a highly hard inorganic film such as Sin on the surface of the resin by vacuum evaporation, sputtering, ion blating, etc. Are known. As one of them, before membrane formation.

基体樹脂表面を、予め、酸素ガス中の放電雰囲気におい
てスパッタエツチングする方法がある(特開昭59−5
0402号)。この方法においては。
There is a method of sputter etching the base resin surface in advance in an oxygen gas discharge atmosphere (Japanese Patent Laid-Open No. 59-5
No. 0402). In this method.

放電電場により加速した酸素粒子を基体樹脂に打ち当て
ることによって、高分子鎖を切断し1反応性の高いラジ
カルを生じさせる。その結果、このラジカルと形成膜と
を強く結合させ、膜を樹脂に強固に付着させようとして
いる。
By bombarding the base resin with oxygen particles accelerated by a discharge electric field, polymer chains are cut to generate highly reactive radicals. As a result, the radicals are strongly bound to the formed film, and the film is firmly attached to the resin.

しかし5上記ラジカルが酸素と結合してしまい。However, the radical 5 above combines with oxygen.

膜の構成元素との結合数が少なくなるためと思われるが
、膜の付着力が充分でなく、基体樹脂の耐摩耗性を保持
できなくなるという問題点があった。
This may be due to a decrease in the number of bonds with the constituent elements of the film, but there was a problem in that the adhesion of the film was insufficient and the wear resistance of the base resin could not be maintained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで3本発明者らは、上記膜の付着力が充分でなく、
その耐摩耗性が向上しないという問題点を解決すること
を目的に検討を進めた。
Therefore, 3 the present inventors discovered that the adhesion of the above film was insufficient,
We proceeded with the study with the aim of solving the problem that the wear resistance did not improve.

発明者らは樹脂の表面に形成する膜の付着力を向上させ
るためには、樹脂表面の高分子構成原子と、膜構成原子
との間に、共有結合等の強固な化学結合を生じせしめる
ことが必要であると考えた。
In order to improve the adhesion of the film formed on the resin surface, the inventors discovered that strong chemical bonds, such as covalent bonds, should be created between the polymer constituent atoms on the resin surface and the film constituent atoms. I thought it was necessary.

これを実現させるためには、膜形成前に、樹脂表面をア
ルゴン(Ar)等の不活性元素中の低圧放電に曝す方法
に着目した。すなわち、減圧下の放電により、エネルギ
ーを得た各種の原子、励起種。
In order to achieve this, we focused on a method in which the resin surface is exposed to low-pressure discharge in an inert element such as argon (Ar) before film formation. In other words, various atoms and excited species obtain energy through discharge under reduced pressure.

イオン等が樹脂の表面に衝突することにより、樹脂の高
分子内の結合手(C−H,C−0,C−C等)を切断し
、ラジカルが生成する。不活性元素により行った場合に
は、ラジカルと結合する元素が少ないので、ラジカルが
消滅する機会は少なくなる。それ故、その後、膜形成を
行うと、膜形成物質とラジカルとの間で、共有結合等の
強固な化学結合形成の機会も増え、膜の付着強度が増す
ものと考えられる。これらのことを種々検討した結果1
本発明を為すに至った。
When ions and the like collide with the surface of the resin, bonds (C-H, C-0, C-C, etc.) in the polymer of the resin are cut, and radicals are generated. When an inert element is used, there are fewer elements that bond with radicals, so there is less opportunity for radicals to disappear. Therefore, when a film is formed thereafter, the chances of forming strong chemical bonds such as covalent bonds increase between the film-forming substance and radicals, and it is thought that the adhesion strength of the film increases. As a result of various studies on these matters 1
The present invention has been accomplished.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は不活性元素の低圧放電雰囲気において合成樹脂
体にスパッタエツチングを施す前処理工程と、該前処理
工程を施した合成樹脂体に酸化珪素からなる膜を形成す
る成膜工程とからなることを特徴とする薄膜形成方法で
ある。
The present invention consists of a pretreatment process in which a synthetic resin body is subjected to sputter etching in a low-pressure discharge atmosphere of an inert element, and a film formation process in which a film made of silicon oxide is formed on the synthetic resin body subjected to the pretreatment process. This is a thin film forming method characterized by the following.

本発明において使用する合成樹脂体は、少なくともその
表面が、アクリル酸基又はメタクリル酸基を有する化合
物、又はそれらの中間体9重合体に光重合開始剤を添加
して光重合させた化合物。
The synthetic resin body used in the present invention is a compound having an acrylic acid group or a methacrylic acid group at least on its surface, or a compound obtained by adding a photopolymerization initiator to an intermediate 9 polymer thereof and photopolymerizing it.

により形成されているものをいう。これらの化合物の具
体的なものは、ポリメタクリル酸メチル。
refers to something that is formed by A specific example of these compounds is polymethyl methacrylate.

ポリ炭素エステル等の樹脂がある。該樹脂は板状等の素
材、歯車等の部品形状のものいずれでもよい。これらの
化合物を基材の表面に層として有するものでもよく、こ
の場合には、この層の厚さは数μm程度あればよく、基
材としては2層の構成樹脂と良好に接着する樹脂体であ
ればよい。
There are resins such as polycarbon ester. The resin may be in the form of a plate-shaped material or a component such as a gear. These compounds may be provided as a layer on the surface of the base material. In this case, the thickness of this layer may be approximately several μm, and the base material may be a resin material that adheres well to the constituent resins of the two layers. That's fine.

以下本発明を第1図に例示したスパッタ装置を使って説
明する。この装置は処理槽1と、この中に設けたSin
、ターゲット2.基板ホルダー3およびシャッター4と
、Sin、ターゲット2と基板ホルダー3には、高周波
電源5から切替スイッチ6を介して、処理槽l内に放電
を生じさせるための高周波電圧を印加できるようになっ
ている。
The present invention will be explained below using the sputtering apparatus illustrated in FIG. This device consists of a processing tank 1 and a sink installed in it.
, target 2. A high frequency voltage can be applied to the substrate holder 3, the shutter 4, the target 2, and the substrate holder 3 from a high frequency power source 5 via a changeover switch 6 to cause discharge in the processing tank l. There is.

一方、処理槽1の排気ロアは、排気ポンプ(図示せず)
に、バリアプルリークバルブ8は、不活性ガス供給源(
図示せず)に、接続されている。
On the other hand, the exhaust lower of the treatment tank 1 is equipped with an exhaust pump (not shown).
In addition, the barrier pull leak valve 8 is connected to an inert gas supply source (
(not shown).

本発明における前処理工程は、まず、基板ホルダー3に
合成樹脂体1)を取りつけ、処理槽1内の空気を排出し
、その後、Ar、ヘリウム(He)、ネオン(Ne)等
の不活性ガスをバリアプルリークバルブ8より導入し、
槽内の圧力を3〜4 X 10−’torr程度に調節
する。
In the pretreatment process of the present invention, first, the synthetic resin body 1) is attached to the substrate holder 3, the air in the treatment tank 1 is exhausted, and then an inert gas such as Ar, helium (He), neon (Ne), etc. is introduced from the barrier pull leak valve 8,
The pressure in the tank is adjusted to about 3 to 4 x 10-'torr.

次いで、切替スイッチ6を、基板ホルダー3に電圧が印
加される側に投入し、数十〜百数十ワットの電力により
放電状態を作る。この状態で、不活性ガスは合成樹脂体
の表面を打撃し1合成樹脂の高分子鎖が切断され、ラジ
カルが生成する。所望の時間処理したのち、電圧印加を
中止する。処理中あるいは、処理後、雰囲気が不活性元
素の雰囲気であるので、生成したラジカルは消滅するこ
となく存在することができる。
Next, the changeover switch 6 is turned on to the side where voltage is applied to the substrate holder 3, and a discharge state is created with a power of several tens to hundreds of watts. In this state, the inert gas hits the surface of the synthetic resin body, severing the polymer chains of the synthetic resin and generating radicals. After processing for a desired time, voltage application is stopped. Since the atmosphere is an inert element atmosphere during or after the treatment, the generated radicals can exist without disappearing.

次に1合成樹脂体に成膜処理を施す。Next, a film forming process is performed on one synthetic resin body.

まず、切替スイッチ6をS i Ozターゲット側へ切
替えて、該ターゲットに電圧を印加し3合成樹脂体とタ
ーゲットの間にスパッタ放電を行わせる。電圧の切替は
、不活性ガスの導入を続けたままで、しかも低圧の状態
において可能な限り素早く行うのがよい。その理由とし
ては、前記ラジカルが消滅しないうちに9本工程を実施
し、SiO□膜との密着力をより高くするためである。
First, the selector switch 6 is switched to the SiOz target side, a voltage is applied to the target, and sputter discharge is caused between the three synthetic resin bodies and the target. It is preferable to switch the voltage as quickly as possible while continuing to introduce the inert gas and at a low pressure. The reason for this is that nine steps are carried out before the radicals disappear, thereby increasing the adhesion to the SiO□ film.

スパッタ放電開始後は、数分間プレスパツタを行うのが
好ましく、その後シャッター4を開いてターゲット物質
であるSiO□をスパッタする。
After the start of sputtering discharge, it is preferable to perform pre-sputtering for several minutes, and then the shutter 4 is opened to sputter the target material, SiO□.

スパッタされ2合成樹脂体表面に到達したS i Oz
は2合成樹脂体の表面に生成したラジカルと結合して順
次堆積し、Sin、の膜となって生長していく。
S i Oz that was sputtered and reached the surface of the 2 synthetic resin body
2 combines with the radicals generated on the surface of the synthetic resin body and is deposited one after another, forming a film of Sin and growing.

所望時間の成膜工程を施した後、電圧印加、および不活
性元素導入を停止し2合成樹脂体を処理槽から取り出す
After performing the film forming process for a desired time, the voltage application and the introduction of the inert element are stopped, and the synthetic resin body 2 is taken out from the treatment tank.

第2図には1合成樹脂体表面に形成された膜の断面を模
式図により例示する。合成樹脂体1)の表面に、5iO
z膜12が、不活性ガス放電処理面を介して形成されて
いる。なお、この合成樹脂体は、樹脂基材1)1の表面
に表面硬化層1)2を形成したものである。
FIG. 2 schematically illustrates a cross section of a film formed on the surface of one synthetic resin body. 5iO on the surface of the synthetic resin body 1)
A Z film 12 is formed over the inert gas discharge treated surface. Note that this synthetic resin body has a hardened surface layer 1) 2 formed on the surface of a resin base material 1) 1.

SiO□膜の厚さとしては、1000〜7000人(オ
ングストローム)の範囲が望ましく、この範囲より薄い
と完全な膜となり’bl、Py−いと合成樹脂体から剥
離しやすく、耐摩耗性が低下する。
The thickness of the SiO□ film is preferably in the range of 1,000 to 7,000 angstroms (angstroms); if it is thinner than this range, it becomes a complete film, and if it is 'bl, Py-, it is likely to peel off from the synthetic resin body and its wear resistance will decrease. .

なお、膜厚の測定は、処理中に、別のガラス基板を用意
し、この表面の一部分に有機物マスクを描き、成膜後に
マスクを除去し、成膜の境界部の段差を表面あらさ計を
用いる等して行うことができる。
To measure the film thickness, prepare another glass substrate during processing, draw an organic mask on a part of the surface, remove the mask after film formation, and measure the step at the boundary of the film using a surface roughness meter. This can be done by using

なお1合成樹脂体が、成膜時の温度上昇により変形、変
質することを防ぐために、ターゲノ]・の裏側に放電を
ターゲット近傍に集中させるための磁石9を取付けて、
いわゆるマグネトロン型スパッタ装置にしてもよい。
In order to prevent the synthetic resin body from deforming or deteriorating due to temperature rise during film formation, a magnet 9 is attached to the back side of the target to concentrate the discharge near the target.
A so-called magnetron type sputtering device may also be used.

成膜した合成樹脂体の耐摩耗性、密着性を調べるために
5テーパー摩耗試験を行った。試験後の合成樹脂体表面
に形成された摩耗痕による曇り値(ヘイズ値)の増加量
を求め、これにより評価した。
A 5-taper abrasion test was conducted to examine the abrasion resistance and adhesion of the formed synthetic resin body. After the test, the amount of increase in haze value (haze value) due to wear marks formed on the surface of the synthetic resin body was determined and evaluated.

テーパー摩耗試験とは1回転テーブルに試験試料を載せ
、この上に、荷重をかけた砥粒入りゴム製の摩耗輪を2
個接触させて転動させるものである。所定の荷重で、所
定の回数だけ転勤させたあと1合成樹脂体のヘイズ値を
測定する。なお、ヘイズ値I)とは、白色光を用いて試
料表面の傷による光散乱の率を次式で算出したものであ
る。
What is a taper wear test? A test sample is placed on a rotary table, and two abrasive-containing rubber wear rings are placed on top of this.
It is made to contact each other and roll. After being transferred a predetermined number of times under a predetermined load, the haze value of one synthetic resin body is measured. Note that the haze value I) is the rate of light scattering due to scratches on the sample surface calculated using white light using the following formula.

但し、T、は合成樹脂体への入射光線量、T2は合成樹
脂透過光線量、T3は測定器における拡散光1.T4は
合成樹脂体の拡散透過光量であり。
However, T is the amount of light incident on the synthetic resin body, T2 is the amount of light transmitted through the synthetic resin, and T3 is the amount of diffused light 1. T4 is the amount of diffused light transmitted through the synthetic resin body.

摩耗輪によりできた摩耗傷が少ないほどヘイズ値Hは低
くなる。すなわち、試験前合成樹脂体のヘイズ値に比較
して、試験後のヘイズ値の増加量(%)が低いほど、S
iO□膜の接着力が強固であるとともに、耐摩耗性が良
好ということができる。
The fewer the wear scars caused by the worn wheels, the lower the haze value H becomes. In other words, the lower the increase (%) in the haze value after the test compared to the haze value of the synthetic resin body before the test, the higher the S
It can be said that the iO□ film has strong adhesive strength and good wear resistance.

第3図には、測定したヘイズ値の増加量とSiO2膜の
17さとの関係を例示する。図中の曲線1は本発明によ
り成膜した場合2曲線2は従来例として酸素によりスパ
ッタエツチングを施したのち成膜した場合である。両画
線を比較すると2本発明により成膜した場合の方が、5
i02膜の全厚さ範囲においてヘイズ値の増加量が小さ
く2強固な接着、高耐摩耗性を有することがわかる。
FIG. 3 illustrates the relationship between the measured increase in haze value and 17 of the SiO2 film. Curve 1 in the figure shows the case where the film was formed according to the present invention, and Curve 2 shows the case where the film was formed after sputter etching with oxygen as a conventional example. Comparing the two lines, the film formed according to the present invention is 5
It can be seen that the increase in haze value is small over the entire thickness range of the i02 film, and it has strong adhesion and high abrasion resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば2合成樹脂体の表面にSiO□膜を成膜
するに先立ち、Ar等の不活性元素により前処理工程を
施すことにより、該Sin、膜を合成樹脂体表面に強固
に付着させることができるとともに1合成樹脂体の耐摩
耗性を向上させることができる。
According to the present invention, prior to forming the SiO□ film on the surface of the synthetic resin body, a pretreatment step is performed using an inert element such as Ar, thereby firmly adhering the SiO□ film to the surface of the synthetic resin body. At the same time, the wear resistance of the synthetic resin body can be improved.

〔実施例〕〔Example〕

以下1本発明の詳細な説明する。 Hereinafter, one aspect of the present invention will be explained in detail.

実施例1゜ 合成樹脂体として1表面硬化したポリメタクリル酸メチ
ル樹脂(PMMA :商品名アクリライトAR)  (
寸法100x100x3龍)を用意した。これらの合成
樹脂体をデシケータ中に保管して、脱水したのち、エタ
ノール又はイソプロパツールを浸した無塵ガーゼにより
数回拭った。さらに2合成樹脂体に残留したアルコール
の液滴を乾燥窒素ガスにより吹き飛ばし、その表面を清
浄にした。
Example 1 Polymethyl methacrylate resin (PMMA: trade name Acrylite AR) with one surface cured as a synthetic resin body (
A size of 100 x 100 x 3 dragons was prepared. These synthetic resin bodies were stored in a desiccator, dehydrated, and then wiped several times with dust-free gauze soaked in ethanol or isopropanol. Furthermore, the alcohol droplets remaining on the synthetic resin body 2 were blown off with dry nitrogen gas to clean the surface.

次に2本発明の前処理工程を施すために1合成樹脂体を
、マグネトロン型スパッタ装置の処理槽内の基板I、ル
ダーに取りつけ、処理槽内の排気を実施した。該排気に
より処理槽内の圧力が1〜2X 10−5torrにな
ったところで、不活性元素としてのArを槽内に導き、
圧力が3.5 X 10−3torrとなるように流量
を調節し、排気を続ける。この状態で、高周波(13,
56MIIZ)電−圧を基板ホルダーに印加した。投入
電力を100Wにして、30分間放電を維持した。その
後、高周波電力投入を一旦停止し、素早く電圧印加切替
スイッチを切替えて、SiO□ターゲットに接続するこ
とにより、再度電力投入を行い、成膜工程を施した。な
お、Arガス流量は、前処理工程から連続してほぼ同じ
圧力に保持した。2分間、プレスパツタしたのち、Si
O□ターゲットと基板ホルダー間に設けたシャッターを
開き1合成樹脂体への5tot成膜を行った。20分間
スパッタ放電を維持したのち、電力投入を停止し、同時
にArの導入も止めた。さらに、約10分間経過したの
ち、処理槽に大気を導入し1合成樹脂体を取り出した。
Next, in order to perform the pretreatment process of the present invention, the synthetic resin body 1 was attached to the substrate I and the router in the processing tank of a magnetron type sputtering device, and the processing tank was evacuated. When the pressure inside the treatment tank reaches 1 to 2X 10-5 torr due to the exhaust, Ar as an inert element is introduced into the tank,
Adjust the flow rate so that the pressure is 3.5 x 10-3 torr and continue evacuation. In this state, high frequency (13,
A voltage of 56 MIIZ) was applied to the substrate holder. The input power was set to 100 W, and discharge was maintained for 30 minutes. Thereafter, the application of high-frequency power was once stopped, and the voltage application changeover switch was quickly changed to connect to the SiO□ target, and power was then applied again to perform the film-forming process. Note that the Ar gas flow rate was maintained at approximately the same pressure continuously from the pretreatment step. After pressing for 2 minutes, Si
A shutter provided between the O□ target and the substrate holder was opened, and 5 tots of film were formed on one synthetic resin body. After maintaining the sputter discharge for 20 minutes, the power supply was stopped, and at the same time, the introduction of Ar was also stopped. Furthermore, after about 10 minutes had passed, the atmosphere was introduced into the treatment tank and one synthetic resin body was taken out.

SiO□膜の厚さは約3000人であった。The thickness of the SiO□ film was approximately 3000 mm.

以上のプロセスを経て成膜した処理済の合成樹脂体にテ
ーパー摩耗試験を施し、SiO□膜の耐摩耗性、密着性
を調査した。その結果、ヘイズ値の増加量は180%で
あり、良好な耐摩耗性を示した。なお、比較例として、
Arを窒素ガス(NZ)。
A taper abrasion test was performed on the treated synthetic resin body formed into a film through the above process, and the abrasion resistance and adhesion of the SiO□ film were investigated. As a result, the increase in haze value was 180%, indicating good wear resistance. As a comparative example,
Ar is replaced by nitrogen gas (NZ).

酸素ガス(0,)に置き換えて前処理工程を行った以外
は2本実施例と同様にして、また、前処理を施さずにS
iO□成膜した合成樹脂体を得た。これらの比較樹脂体
について測定したヘイズ値の増  7加量は、それぞれ
2.9%、3.0%および2.4%であった。
The procedure was the same as in the second example except that the pretreatment step was performed in place of oxygen gas (0,), and S was used without pretreatment.
A synthetic resin body on which an iO□ film was formed was obtained. The increases in haze value measured for these comparative resin bodies were 2.9%, 3.0%, and 2.4%, respectively.

実施例2゜ 実施例1の成膜時間のみを種々変化させて処理を行い、
SiO□膜の厚さが500人、1000人、1700人
、5000人、aooo人および10000人の合成樹
脂体を得た。それぞれのヘイズ値の増加量は3.7%、
2.4%、1.7%、169%、2.9%および3.0
%であった。一方、比較例として、Arを02に置き換
えて前処理を行った以外は1本実施例と同様にして、そ
れぞれと同様の厚さのSin、膜を形成した。それぞれ
のヘイズ値の増加量は4.5%、3.6%、3.6%、
3.0%。
Example 2゜Processing was carried out by varying only the film formation time of Example 1,
Synthetic resin bodies with SiO□ film thicknesses of 500, 1,000, 1,700, 5,000, aooo, and 10,000 were obtained. The increase in each haze value is 3.7%,
2.4%, 1.7%, 169%, 2.9% and 3.0
%Met. On the other hand, as a comparative example, a Sin film having the same thickness as each was formed in the same manner as in this example except that Ar was replaced with 02 and pretreatment was performed. The respective increases in haze value are 4.5%, 3.6%, 3.6%,
3.0%.

5.5%および5.1%であった。They were 5.5% and 5.1%.

実施例3゜ 合成樹脂体として1表面硬化したポリ炭酸エステル樹脂
(PC:商品名レキサンシートMR4000)(寸法:
lOO100X100X3を使用した以外は、実施例1
と同様に処理した。形成されたSiO□膜の厚さは、約
3000人であり、ヘイズ値の増加量は1.4%であっ
た。
Example 3: Polycarbonate ester resin (PC: trade name: Lexan Sheet MR4000) with one surface cured as a synthetic resin body (dimensions:
Example 1 except that lOO100X100X3 was used.
processed in the same way. The thickness of the formed SiO□ film was approximately 3000 mm, and the increase in haze value was 1.4%.

なお、比較例として、ArをN2あるいはOlに置き換
えて前処理したものと、前処理を施さなかったものに、
3000人の厚さの5in2膜を形成した。これらのヘ
イズ値増加量はそれぞれ3゜4%、3.5%および2.
9%であった。
As a comparative example, one was pretreated by replacing Ar with N2 or Ol, and the other was not pretreated.
A 5in2 film with a thickness of 3,000 people was formed. These haze value increases are 3.4%, 3.5%, and 2.5%, respectively.
It was 9%.

これらの実施例および比較例からArの放電中で前処理
を行うと、5iOz膜が合成樹脂体に強固に接着し1合
成樹脂体の耐摩耗性が向上することがわかる。
From these Examples and Comparative Examples, it can be seen that when the pretreatment is performed in Ar discharge, the 5iOz film firmly adheres to the synthetic resin body and the wear resistance of the synthetic resin body is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の説明に使用したスパッタ装置の概略
図、第2図は2本発明により5in2成膜した合成樹脂
体の表面付近の構造を示す概略断面図、第3図は1本発
明により形成したSiO□膜の厚さとヘイズ値の増加量
との関係を例示した線図である。
Fig. 1 is a schematic diagram of the sputtering apparatus used to explain the present invention, Fig. 2 is a schematic sectional view showing the structure near the surface of a synthetic resin body formed into a 5 in 2 film according to the present invention, and Fig. 3 is a schematic diagram of the sputtering apparatus used to explain the present invention. FIG. 3 is a diagram illustrating the relationship between the thickness of the SiO□ film formed according to the invention and the amount of increase in haze value.

Claims (3)

【特許請求の範囲】[Claims] (1)不活性元素の低圧放電雰囲気において合成樹脂体
にスパッタエッチングを施す前処理工程と、該前処理工
程を施した合成樹脂体に酸化珪素からなる膜を形成する
成膜工程とからなることを特徴とする薄膜形成方法。
(1) Consisting of a pretreatment process in which a synthetic resin body is subjected to sputter etching in a low-pressure discharge atmosphere of an inert element, and a film formation process in which a film made of silicon oxide is formed on the synthetic resin body subjected to the pretreatment process. A thin film forming method characterized by:
(2)上記成膜工程は、スパッタリング法により行うこ
とを特徴とする特許請求の範囲第(1)項記載の薄膜形
成方法。
(2) The thin film forming method according to claim (1), wherein the film forming step is performed by a sputtering method.
(3)上記成膜工程は、厚さが1000〜7000Åの
膜を形成することを特徴とする特許請求の範囲第(1)
および(2)項記載の薄膜形成方法。
(3) Claim (1) characterized in that the film forming process forms a film with a thickness of 1000 to 7000 Å.
and the thin film forming method described in (2).
JP8459686A 1986-04-11 1986-04-11 Formation of thin film Pending JPS62240762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8459686A JPS62240762A (en) 1986-04-11 1986-04-11 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8459686A JPS62240762A (en) 1986-04-11 1986-04-11 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS62240762A true JPS62240762A (en) 1987-10-21

Family

ID=13835062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8459686A Pending JPS62240762A (en) 1986-04-11 1986-04-11 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS62240762A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH682821A5 (en) * 1991-10-01 1993-11-30 Alusuisse Lonza Services Ag Pretreating e.g. plastic film before vacuum depositing seal on it - by passing film round roller where it is exposed to plasmas produced by two successive ribbed high frequency hollow anodes
WO1999049097A1 (en) * 1998-03-26 1999-09-30 Essilor International Organic substrate having optical layers deposited by magnetron sputtering and method for preparing it
WO2001057119A1 (en) * 2000-02-03 2001-08-09 Jenoptik Aktiengesellschaft Method for durable joining of polymer components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH682821A5 (en) * 1991-10-01 1993-11-30 Alusuisse Lonza Services Ag Pretreating e.g. plastic film before vacuum depositing seal on it - by passing film round roller where it is exposed to plasmas produced by two successive ribbed high frequency hollow anodes
WO1999049097A1 (en) * 1998-03-26 1999-09-30 Essilor International Organic substrate having optical layers deposited by magnetron sputtering and method for preparing it
EP0947601A1 (en) * 1998-03-26 1999-10-06 ESSILOR INTERNATIONAL Compagnie Générale d'Optique Organic substrate having optical layers deposited by magnetron sputtering and method for preparing it
WO2001057119A1 (en) * 2000-02-03 2001-08-09 Jenoptik Aktiengesellschaft Method for durable joining of polymer components

Similar Documents

Publication Publication Date Title
JP2010511079A (en) Method for producing nanostructures on plastic surfaces
TWI791739B (en) Organic-inorganic hybrid film , laminate and articles including organic-inorganic hybrid film
KR970003431A (en) Continuous method for forming an improved titanium nitride containing barrier layer
JPS62240762A (en) Formation of thin film
JP5046074B2 (en) Method and apparatus for forming optical thin films
JPS63258938A (en) Method for enhancing metal bonding strength of polypropylene film by plasma treatment using organic vapor
DE19859695A1 (en) Coating plastic substrates with light reflective layer, e.g. in headlight reflector manufacture by precoating with low carbon content thin crosslinked hydrocarbon, silicon oxide, silicon nitride or silicon oxynitride barrier layer
JP7350480B2 (en) Film-forming method, method for manufacturing film-formed products, surface plasmon sensors, and parts for bioinstrumentation equipment
JP3474312B2 (en) Synthetic resin reflecting mirror, method of manufacturing the same, and manufacturing apparatus
JP3192249B2 (en) Gas and moisture barrier film and method for producing the same
KR20190023487A (en) Photomask blank and manufacturing method and sputter machine for flat panel display lithography
KR20140102345A (en) method and apparatus the same for forming aluminium-silicone nitride layer for enhancing the surface hardness and wear resistance of polycarbonate
JPH03153859A (en) Surface-modified plastic
JPH0625448A (en) Production of ultraviolet-barrier film
JP3515966B2 (en) Method for manufacturing magneto-optical recording element
JP3318380B2 (en) Magneto-optical recording element and method of manufacturing the same
JPH01308848A (en) Highly adhesive heat ray reflecting glass
JP3484880B2 (en) Gas barrier film
JPS6250555B2 (en)
Wang et al. Adhesion enhancement by surface pretreatment with argon-helium plasma for antireflection coating on TAC
JPH07115890B2 (en) Method for forming thin film on glass substrate surface
JPS5952526A (en) Method for sputtering metal oxide film
JPH05221690A (en) Water-repellent glass and its production
JPH08333672A (en) Production of optical parts
JPH04177635A (en) Manufacture of optical disc