JPH01308848A - Highly adhesive heat ray reflecting glass - Google Patents

Highly adhesive heat ray reflecting glass

Info

Publication number
JPH01308848A
JPH01308848A JP13840488A JP13840488A JPH01308848A JP H01308848 A JPH01308848 A JP H01308848A JP 13840488 A JP13840488 A JP 13840488A JP 13840488 A JP13840488 A JP 13840488A JP H01308848 A JPH01308848 A JP H01308848A
Authority
JP
Japan
Prior art keywords
film
ions
boronitride
nitride
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13840488A
Other languages
Japanese (ja)
Other versions
JP2590532B2 (en
Inventor
Koichi Suzuki
巧一 鈴木
Masashi Tada
昌史 多田
Takuji Oyama
卓司 尾山
Susumu Suzuki
すすむ 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP63138404A priority Critical patent/JP2590532B2/en
Publication of JPH01308848A publication Critical patent/JPH01308848A/en
Application granted granted Critical
Publication of JP2590532B2 publication Critical patent/JP2590532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride

Abstract

PURPOSE:To obtain a highly adhesive heat ray reflecting glass excellent in scuff resistance by forming a ground film on a glass substrate, implanting high- energy ions into the film surface and then forming a nitride or boronitride film on the film surface. CONSTITUTION:A heat ray reflecting glass obtained by forming a ground film on a glass substrate, implanting high-energy ions into the ground film surface and forming a nitride or boronitride film on the ion-implanted film surface. Although ions of gases, such as argon, nitrogen or oxygen, or metallic atom ions, etc., obtained by evaporating a metal are usable as the high-energy ions 3, nitrogen ions are especially preferred by considering that the nitride or boronitride film is formed on the ground film 2. The ground film preferably contains at least one or more components common to those of the nitride or boronitride film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車用又は建築用に適する高密着性熱線反射
ガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a highly adhesive heat-reflecting glass suitable for automobiles or architecture.

[従来の技術] 従来、CrやTiなとの遷移金属の金属層が形成された
ガラスは、可視スペクトル帯域で低い透過率を有すると
同時に、太陽光スペクトルもその大部分を遮断するので
ソーラーコントロールパネルと称され、熱線反射の目的
で、建築物の窓ガラスや自動車のサンルーフに使用され
てきた。しかし、これらの金属膜は耐久性、特に耐擦傷
性が十分でなく、又、色調の変化も乏しがった。
[Prior Art] Conventionally, glass on which a metal layer of transition metals such as Cr and Ti is formed has low transmittance in the visible spectrum band and at the same time blocks most of the sunlight spectrum, making it suitable for solar control. They are called panels and have been used in building window glass and automobile sunroofs for the purpose of reflecting heat rays. However, these metal films did not have sufficient durability, especially scratch resistance, and also tended to have poor color change.

かかる金属膜の代替材料として、窒化チタン、窒化ジル
コニム、窒化タンタル、窒化クロムなどの窒化物が知ら
れている。かかる窒化物膜は、電気抵抗が比較的低く、
通常の金属膜並の赤外線反射特性を有するとともに、高
い硬度を有し、さらに、化学的耐久性にも優れている。
Nitrides such as titanium nitride, zirconium nitride, tantalum nitride, and chromium nitride are known as alternative materials for such metal films. Such nitride films have relatively low electrical resistance;
It has infrared reflective properties comparable to ordinary metal films, high hardness, and excellent chemical durability.

又、光沢のある独特の色を呈しているため、ステンレス
等の金属表面に被覆され、超硬材料、装飾物等にも利用
されている。
In addition, because it has a unique lustrous color, it is coated on metal surfaces such as stainless steel, and is also used in carbide materials, decorations, etc.

又、これらの窒化物に硼素を添加した硼窒化物も、電気
抵抗は多少高いが、純粋な窒化物とは異なった色調を有
するので、やはり装飾物等に利用されている。
Boron nitride, which is obtained by adding boron to these nitrides, has a somewhat higher electrical resistance, but has a different color tone than pure nitride, so it is still used for decorations and the like.

[発明の解決しようとする課題] 一般に、窒化物膜は内部応力が高いことが知られている
が、上述の窒化物や硼窒化物は、チタン、ジルコニウム
、タンタル、クロムなどの金属原子がつくるマトリック
ス中に窒素や硼素が侵入した侵入型化合物であるので、
かかる窒化物膜又は硼窒化物膜を金属上に形成した場合
の、窒化物膜又は硼窒化物膜と金属との間の密着性は比
較的良好である。
[Problem to be solved by the invention] It is generally known that nitride films have high internal stress, but the above-mentioned nitrides and boronitrides are made of metal atoms such as titanium, zirconium, tantalum, and chromium. Since it is an interstitial compound in which nitrogen and boron have entered the matrix,
When such a nitride film or boronitride film is formed on a metal, the adhesion between the nitride film or boronitride film and the metal is relatively good.

しかしながら、かかる窒化物膜又は硼窒化物膜をガラス
基板上に形成した場合、金属上に形成する場合と比べて
、かかる膜とガラス基板との密着性が悪く、熱線反射ガ
ラスとして実際に使用する際には耐擦傷性が十分でなく
、膜はがれを起こしやすいという問題点があった。
However, when such a nitride film or boronitride film is formed on a glass substrate, the adhesion between the film and the glass substrate is poorer than when it is formed on a metal, making it difficult to actually use it as a heat-reflecting glass. In some cases, there was a problem in that the scratch resistance was insufficient and the film was likely to peel off.

又、ガラス基板と窒化物膜又は硼窒化物膜との間に酸化
物膜などのバインダー層を挿入して、かかる膜のガラス
基板への付着力の向上を図る方法も研究されているが、
ガラス基板に直接窒化物膜又は硼窒化物膜を高密着力を
もって形成する方法は見出されていなかった。
Research has also been conducted on a method of inserting a binder layer such as an oxide film between the glass substrate and the nitride film or boronitride film to improve the adhesion of the film to the glass substrate.
No method has been found to form a nitride film or boronitride film directly on a glass substrate with high adhesion.

このため、これらの窒化物膜又は硼窒化物膜は、熱線反
射膜としては比較的価れた特性を有しているのに、金属
基材に対してしか利用できず、ガラス上に直接形成し4
こくいため、実際に熱線反射ガラスとして実用化される
範囲を挾めていた。
For this reason, although these nitride films or boronitride films have relatively good properties as heat ray reflective films, they can only be used on metal substrates and cannot be formed directly on glass. Shi4
Due to its large size, it was difficult to put it into practical use as a heat-reflecting glass.

[課題を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであり
、ガラス基板上に下地膜を形成し、該下地膜面に高エネ
ルギーのイオンを照射し、該イオン照射された膜表面に
、窒化物膜又は硼窒化物膜を形成してなる高密着性熱線
反射ガラスを提供するものである。
[Means for Solving the Problems] The present invention was made to solve the above-mentioned problems, and consists of forming a base film on a glass substrate, irradiating the surface of the base film with high-energy ions, and The present invention provides a highly adhesive heat-reflecting glass in which a nitride film or a boronitride film is formed on the surface of the ion-irradiated film.

第1図は、本発明の高密着性熱線反射ガラスの製造方法
の手順を示したものであり、(a)はガラス基板lに下
地膜2を形成する第1段階、fb)は下地膜2面に高エ
ネルギーのイオン3を注入する第2段階、(c)はイオ
ン注入された膜表面に窒化物膜又は硼窒化物膜4を形成
する第3段階を示す。
FIG. 1 shows the steps of the manufacturing method of the highly adhesive heat-reflecting glass of the present invention, in which (a) shows the first step of forming the base film 2 on the glass substrate l, and fb) shows the process of forming the base film 2 on the glass substrate l. A second step is to implant high-energy ions 3 into the surface, and (c) shows a third step to form a nitride film or boronitride film 4 on the ion-implanted film surface.

本発明において下地III 2を形成するガラス基板1
は特に限定されるものではなく、使用目的に応じてソー
ダライムシリケートガラス、アルミノシリケートガラス
、硼珪酸塩ガラス、リチウムアルミノシリケートガラス
、石英ガラスなどが使用できる。
Glass substrate 1 forming base III 2 in the present invention
is not particularly limited, and soda lime silicate glass, aluminosilicate glass, borosilicate glass, lithium aluminosilicate glass, quartz glass, etc. can be used depending on the purpose of use.

又、下地膜2としては、使用目的に応じて、Ti、Zr
、Ta、Cr、Hf、Nb、A1.Mo、Ni、Fe、
Goなどの金属単体、もしくはこれらの少なくとも一種
の金属元素を含む合金、又は窒化物、硼化物、炭化物、
酸化物などの化合物、又は、窒素、硼素、炭素、酸素の
少なくとも2種を含む多元化合物、例えば、炭化硼化物
、窒化硼化物など、あるいは上記各種物質の複合膜など
が使用可能である1本発明において、高エネルギーのイ
オンを注入された下地膜上に熱線反射膜として形成され
る窒化物膜又は硼窒化物膜4との関連を考慮すると、下
地膜2は、窒化物膜又は硼窒化物膜4と共通の成分を少
なくとも1つ以上含有していることが望ましい、なぜな
らば、下地膜2と窒化物膜又は硼窒化物膜4とが共通の
成分を有していれば、実質的に同種の膜が2層形成され
ている状態に近くなり、膜相互の密着性が上がる為と考
^られる。特に、窒化物膜又は硼窒化物膜4としてチタ
ン、ジルコニウム、タンクル、クロム又はこれらの混合
物の窒化物膜又は硼窒化物膜を採用する場合には、下地
膜2は、それぞれ、チタン、ジルコニウム、クンタル、
クロムの金属膜、又はこれらの合金の金属膜が好ましい
Also, as the base film 2, Ti, Zr, etc. can be used depending on the purpose of use.
, Ta, Cr, Hf, Nb, A1. Mo, Ni, Fe,
Simple metals such as Go, or alloys containing at least one of these metal elements, or nitrides, borides, carbides,
Compounds such as oxides, or multi-compounds containing at least two of nitrogen, boron, carbon, and oxygen, such as boron carbide, boron nitride, etc., or a composite film of the above various substances can be used. In the present invention, considering the relationship with the nitride film or boronitride film 4 formed as a heat ray reflecting film on the base film into which high-energy ions are implanted, the base film 2 is formed of a nitride film or boronitride film. It is desirable that the base film 2 and the nitride film or boronitride film 4 contain at least one common component. This is thought to be because the state is similar to that of two layers of the same type of film, and the adhesion between the films increases. In particular, when a nitride film or a boronitride film of titanium, zirconium, tankard, chromium, or a mixture thereof is used as the nitride film or boronitride film 4, the base film 2 is made of titanium, zirconium, chromium, or a mixture thereof. Kuntar,
A metal film of chromium or a metal film of an alloy thereof is preferable.

下地膜2の膜厚は、30〜200人、好ましくは30〜
100人、特に、30〜50人であることが好ましい。
The thickness of the base film 2 is 30 to 200, preferably 30 to 200.
100 people, particularly preferably 30 to 50 people.

薄ずぎると、下地膜としての役割を果たさなくなるし、
厚すぎると、下地膜表面からガラス基板との界面までの
距離が長くなり、注入するイオンが、ガラス基板との界
面に達して混合層を形成できるようにする為には非常に
高エネルギーのイオンを注入しなければならず、その為
には大がかりなイオン注入製雪が必要となってしまうか
らである。
If it is too thin, it will no longer function as a base film,
If it is too thick, the distance from the base film surface to the interface with the glass substrate will be long, and in order for the implanted ions to reach the interface with the glass substrate and form a mixed layer, extremely high-energy ions are required. This is because large-scale ion implantation snow making is required.

本発明において、下地膜の作成方法は特に限定されるも
のではないが、lI厚副制御容易さを考慮すると、スパ
ッタリング法、真空蒸着法、イオンブレーティング法な
どの物理蒸着法が望ましい。
In the present invention, the method for forming the base film is not particularly limited, but physical vapor deposition methods such as sputtering method, vacuum evaporation method, and ion blating method are preferable in consideration of ease of controlling the lI thickness.

第2段階として下地膜2の上から注入される高エネルギ
ーイオン3としては、アルゴン、窒素、酸素などの気体
のイオンや、金属を蒸発させて得られる金属原子イオン
などが使用可能であるが、アルゴンイオン、窒素イオン
、酸素イオンが、イオン作成が容易なため、好ましい。
As the high-energy ions 3 injected from above the base film 2 in the second step, gaseous ions such as argon, nitrogen, and oxygen, and metal atomic ions obtained by evaporating metals can be used. Argon ions, nitrogen ions, and oxygen ions are preferred because they are easy to prepare.

中でも、本発明の第3段階において熱線反射膜として窒
化物膜又は硼窒化物膜が下地膜2の上に形成されること
を考慮すると、特に窒素イオンが好ましい、又、窒素イ
オンには、大きく分けて単原子イオン(No)と分子イ
オン(N 2”)の2種類が存在するが、どちらを使用
しても良い。
Among them, considering that a nitride film or a boronitride film is formed on the base film 2 as a heat ray reflecting film in the third step of the present invention, nitrogen ions are particularly preferable. There are two types of ions, monatomic ions (No) and molecular ions (N 2''), and either one may be used.

本発明において、ガラス基板l上に形成された下地膜2
に注入するイオンのエネルギーは下地II! 2の膜厚
によって変える必要がある。イオンのもぐりこみ深さは
、イオンのエネルギーに依存するので、イオンが下地膜
とガラス基板の境界近傍に到達するように、下地膜の膜
厚に応じて打込むイオンのエネルギーを選択しなければ
ならない。本発明においては、打込むイオンのエネルギ
ーは30KeV以下、好ましくは5〜20にeV 、特
に10〜15KeVが望ましい。これ以下のエネルギー
ではイオンのもぐりこみが小さ(なり、下地膜のスパッ
タ効果が大きくなる為であり、又、これ以上のエネルギ
ーのイオンを注入しようとするとイオンガンのコストも
高くなるためである。
In the present invention, a base film 2 formed on a glass substrate l
The energy of the ions implanted into the base II! It is necessary to change it depending on the film thickness of 2. The depth of ion penetration depends on the ion energy, so the energy of the ions must be selected according to the thickness of the base film so that the ions reach near the boundary between the base film and the glass substrate. . In the present invention, the energy of the implanted ions is 30 KeV or less, preferably 5 to 20 eV, particularly 10 to 15 KeV. This is because if the energy is less than this, the penetration of ions will be small (and the sputtering effect of the base film will be large), and if you try to implant ions with more energy than this, the cost of the ion gun will increase.

注入するイオンの量の上限としては、1.0×1017
ions/cm”、好ましくは58口X 1016io
ns/cm”以下、特に好ましくは3.Ox 10”1
ons/cwt”以下であることが望ましい、これより
多くしようとすると、不純物が混入する割合が多くなり
、イオン打込み処理時間も長くなるとともに、下地膜そ
のものの変質が著しくなり好ましくない。
The upper limit of the amount of ions to be implanted is 1.0×1017
ions/cm”, preferably 58 ports x 1016io
ns/cm" or less, particularly preferably 3.Ox 10"1
Ons/cwt" or less is desirable. If it is made larger than this, the proportion of impurities mixed in will increase, the ion implantation processing time will become longer, and the quality of the base film itself will be significantly altered, which is not preferable.

又、注入するイオンの量の下限としては1.0×10I
8ions/cm”以上であることが好ましい、これよ
り少ないと、充分なミキシング効果が得られないので好
ましくない。
Also, the lower limit of the amount of ions to be implanted is 1.0×10I
It is preferable that the amount is 8 ions/cm" or more; if it is less than this, a sufficient mixing effect cannot be obtained, so it is not preferable.

高エネルギーのイオンを注入する方法としては、原子を
イオン化し、上述のエネルギーのイオンを提供できるも
のであれば、特に限定されるものではないが、イオンガ
ンをイ吏用するのがf49を的である。高エネルギーイ
オン注入時の真空度は、該注入イオンの散乱を防止する
為に、10−’torr台以下が台土下い。
The method of implanting high-energy ions is not particularly limited as long as it can ionize atoms and provide ions with the above-mentioned energy, but using an ion gun is the best way to target f49. be. The degree of vacuum during high-energy ion implantation is set at 10-'torr or less in order to prevent scattering of the implanted ions.

高エネルギーを注入した下地膜2の上に、熱線反射膜と
して形成される窒化物膜又は硼窒化物膜4としては、熱
線反射性能や耐久性を考慮すると、特に、チタン、ジル
コニウム、タンタル、クロムのうち少なくとも1種の金
属元素を含む窒化物膜又は硼窒化物膜が望ましい。
The nitride film or boronitride film 4 formed as a heat ray reflective film on the base film 2 injected with high energy is particularly suitable for titanium, zirconium, tantalum, chromium, etc., considering the heat ray reflection performance and durability. Among them, a nitride film or a boronitride film containing at least one metal element is desirable.

かかる窒化物膜又は硼窒化物膜4の膜厚は、必要な熱線
反射性能や、内部応力等を考慮すると、50人〜100
0人が好ましい。
The film thickness of the nitride film or boronitride film 4 is approximately 50 to 100%, considering the necessary heat ray reflection performance, internal stress, etc.
Preferably 0 people.

かかる窒化物膜や硼窒化物膜4を形成する方法としては
、スパッタリング法、真空蒸着法。
Methods for forming such a nitride film or boronitride film 4 include a sputtering method and a vacuum evaporation method.

イオンブレーティング法、アーク蒸着法などの物理蒸着
法が好ましいが、特に限定されるものではなく、化学的
手法であるCVD法等を用いてもよい。
A physical vapor deposition method such as an ion blasting method or an arc evaporation method is preferable, but is not particularly limited, and a chemical method such as a CVD method may also be used.

下地膜2にイオン注入した後で窒化物膜又は硼窒化物膜
4を形成するが、下地膜2と窒化物膜又は硼窒化物膜4
の付着力を十分強(する為には、下地膜形成工程、イオ
ン注入工程、窒化物膜又は硼窒化物膜形成工程の3つの
工程を、真空を破ることなく、同一真空装置内、即ち、
オンライン型の真空装置内で連続処理すると。
After ion implantation into the base film 2, a nitride film or boronitride film 4 is formed.
In order to have a sufficiently strong adhesion force, the three steps of base film formation, ion implantation, and nitride or boronitride film formation must be performed in the same vacuum apparatus without breaking the vacuum, i.e.
When processed continuously in an online vacuum device.

より高品質の高密着性熱線反射ガラスが製造できるので
好ましい、下地膜を形成した後、あるいはイオン注入を
施した後で基体を大気にさらすと、空気中の水分や油脂
分が付着し、付着力を低下させる原因となるからである
If the substrate is exposed to the atmosphere after forming a base film or ion implantation, which is preferable because it allows for the production of higher quality, highly adhesive heat-reflective glass, moisture and oil in the air will adhere to it, causing adhesion. This is because it causes a decrease in adhesion.

さらに、窒化物膜又は硼窒化物膜4の上に、酸化物膜等
の保護層又はその他色調調整膜など各種機能層を設けて
も良い、かかる保護層又は機能層としては、窒化物膜又
は硼窒化物膜と少な(とも1つ以上の共通の成分を含有
することが特に好ましい。
Further, a protective layer such as an oxide film or various functional layers such as a color tone adjusting film may be provided on the nitride film or boronitride film 4. Such a protective layer or functional layer may include a nitride film or It is particularly preferred that the film contains at least one common component with the boronitride film.

[イ乍用] 本発明は、イオンビームミキシングを利用している。あ
る運動エネルギーを持ったイオンが固体に照射された場
合、そのエネルギーが低い場合は主にスパッタリング現
象が起こる。しかしながら、そのエネルギーが本発明で
提案した程度であるとイオンは固体中に侵入し、固体中
でイオンは原子と繰り返し衝突をし、最後には、イオン
はそのエネルギーのすべてを失い、固体中で静止する。
[Information] The present invention utilizes ion beam mixing. When ions with a certain kinetic energy are irradiated onto a solid, a sputtering phenomenon mainly occurs when the energy is low. However, when the energy is at the level proposed in this invention, the ion enters the solid, and in the solid the ion repeatedly collides with the atoms, and finally, the ion loses all of its energy, and the ion enters the solid. Stand still.

この現象はLSS理論(K。This phenomenon is explained by LSS theory (K.

Dan、Videsk、5elsk、Mat−Fys、
Medd、33 (1963) )によって説明できる
。またイオンが固体中の原子と衝突する際その原子も散
乱され、これが繰り返されていわゆるカスケード衝突が
起こる。そしてこのカスケード衝突が、下地膜とガラス
基板の界面付近で生ずる様に注入するエネルギーを調整
すれば、そこで原子のミキシングが起こり、混合層が形
成される。その結果、下地膜とガラス基板の境界が、乱
れたはっきりしない状態となり、付着力の低下を大幅に
防止できると考えられる。
Dan, Videsk, 5elsk, Mat-Fys,
Medd, 33 (1963)). Furthermore, when ions collide with atoms in a solid, those atoms are also scattered, and this process is repeated, resulting in so-called cascade collisions. If the energy to be injected is adjusted so that this cascade collision occurs near the interface between the base film and the glass substrate, mixing of atoms occurs there and a mixed layer is formed. As a result, the boundary between the base film and the glass substrate becomes disordered and unclear, and it is thought that a decrease in adhesion can be significantly prevented.

高密着性熱線反射ガラスとして、下地膜を設けないで、
ガラス基板上に熱線反射膜として窒化物膜又は硼窒化物
膜を作成した後、イオン注入を行なって、熱線反射膜と
ガラス基板との付着力を向上させた高密着性熱線反射ガ
ラスも考えられる。しかしながら、この場合、注入され
たイオンが熱線反射膜中を通過することとなる為、熱線
反射膜に損傷を与える恐れがある。
As a highly adhesive heat-reflecting glass, without a base film,
A highly adhesive heat-reflecting glass is also considered, in which a nitride film or boronitride film is created as a heat-reflecting film on a glass substrate, and then ion implantation is performed to improve the adhesion between the heat-reflecting film and the glass substrate. . However, in this case, the implanted ions pass through the heat ray reflective film, which may cause damage to the heat ray reflective film.

そこで本発明においては、窒化物膜又は硼窒化物膜上に
イオン注入するのではなく、かかる熱線反射膜を作成す
る前に下地膜を形成し、該下地膜の上からイオン注入す
ることによって下地膜を強固にガラス基板と密着させ、
その上から、上記熱線反射膜を形成することによって、
高耐久性熱線反射ガラスを提供するものである。かかる
熱線反射膜と下地膜との密着性は、かかる熱線反射膜と
ガラス基板との密着性に比べて十分良好であり、特に、
下地膜が熱線反射膜と共通の成分を有している場合には
、下地膜と熱線反射膜との組成の連続性も得られ、大変
良好な密着性が得られる。特に、注入イオンとして窒素
イオンを用いる場合には、下地膜とガラス基板との間で
ミキシングが起こると同時に、下地膜自体もある程度窒
化される為、その上に形成される窒化物膜又は硼窒化物
膜との密着性はより強固になると考えられる。
Therefore, in the present invention, instead of implanting ions onto a nitride film or a boronitride film, a base film is formed before creating such a heat ray reflective film, and ions are implanted from above the base film. The ground film is firmly attached to the glass substrate,
By forming the heat ray reflective film on top of it,
The present invention provides highly durable heat-reflective glass. The adhesion between the heat ray reflective film and the base film is sufficiently better than the adhesion between the heat ray reflection film and the glass substrate, and in particular,
When the base film has the same components as the heat ray reflective film, continuity of composition between the base film and the heat ray reflective film can be obtained, and very good adhesion can be obtained. In particular, when nitrogen ions are used as implanted ions, mixing occurs between the base film and the glass substrate, and at the same time, the base film itself is also nitrided to some extent, so the nitride film or boronitride film formed thereon is It is thought that the adhesion with the material film becomes stronger.

さらに、単に下地膜とガラス基板との間でミキシングを
起こすだけであればアルゴンなどの不活性ガスのイオン
を注入すれば十分であるが、窒素イオンを注入する場合
には、ミキシングが起こり混合層が形成されるだけでな
く、該混合層内で窒素が化学的な結合を作り、窒化物が
形成される為ガラス基板と下地膜との密着性もさらに向
上すると考^られる。
Furthermore, if mixing simply occurs between the base film and the glass substrate, it is sufficient to implant ions of an inert gas such as argon, but when nitrogen ions are implanted, mixing occurs and the mixed layer Not only is this formed, but also nitrogen forms chemical bonds within the mixed layer to form nitrides, which is thought to further improve the adhesion between the glass substrate and the underlying film.

又、本発明の熱線反射ガラスにおいては、上述のように
、下地膜の上からイオンを注入して下地膜とガラス基板
との間に混合層を形成することで熱線反射膜のガラス基
板への付着力を向上させているため、熱線反射ガラス製
造時にガラス基板を特に加熱することなく、十分強い付
着力で窒化物膜又は硼窒化物膜を形成することができる
In addition, in the heat ray reflective glass of the present invention, as described above, ions are implanted from above the base film to form a mixed layer between the base film and the glass substrate, so that the heat ray reflective film can be applied to the glass substrate. Since the adhesion force is improved, a nitride film or boronitride film can be formed with a sufficiently strong adhesion force without particularly heating the glass substrate during the production of heat ray reflective glass.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 パケット型のイオン注入装置を備え付けたマグネトロン
D、C,スパック装置の陰極上に金属Tiターゲットを
セットした0次に2n+n厚のソーダライムガラス基板
を、炭酸カルシウム粉末研磨、流水すすぎ、エタノール
すすぎ、N2乾燥の手順で洗浄した後、上記スパッタ装
置の真空槽内に入れ、油拡散ポンプで4.Ox 10−
’Torr以下まで排気した。 2.2 X to−”
TorrのAr雰囲気中で金属Tiターゲットに2.6
■/cm”のパワーを印加し、金属チタン膜(50人)
を形成した0次に、該金属チクン膜上に、エネルギー1
0KeV 、イオン注入量8.6 x 10”1ons
/cがの条件で窒素イオンを注入した。この時の真空度
は3.2 X 10−’Torrであった。イオン注入
量はイオン電流密度をファラデーカップで測定して調整
した。最後に全圧が2.2X 10−”TorrのAr
:Nz=9:1の混合がス雰囲気中でTiターゲットに
2.6W/cm”のパワーを印加し、窒化チタン膜(4
00人)を製膜した。
Example 1 A soda lime glass substrate of 0-order 2n+n thickness with a metal Ti target set on the cathode of a magnetron D and C equipped with a packet-type ion implantation device and a spackle device was polished with calcium carbonate powder, rinsed with running water, and treated with ethanol. After cleaning with the steps of rinsing and N2 drying, it was placed in the vacuum chamber of the above sputtering device, and was heated using an oil diffusion pump in step 4. Ox 10-
' Exhausted to below Torr. 2.2
2.6 on a metal Ti target in an Ar atmosphere of Torr.
■/cm” power was applied to the metal titanium film (50 people).
Then, an energy of 1 is applied on the metal film.
0KeV, ion implantation amount 8.6 x 10”1ons
Nitrogen ions were implanted under the conditions of /c. The degree of vacuum at this time was 3.2 x 10-'Torr. The amount of ion implantation was adjusted by measuring the ion current density with a Faraday cup. Finally, Ar with a total pressure of 2.2X 10-” Torr
A titanium nitride film (4
00 persons) formed a film.

このようにして作製した熱線反射ガラスを大気中に取り
出し、2IIIff+角の部分にハングをつけて引張強
度試験を行なったところ、1.3kgで破壊した。破断
面はガラス基板に生じおり、ガラス基板から破壊されて
いることが確認できた。
The thus produced heat ray reflective glass was taken out into the atmosphere, a hang was attached to the 2IIIff+ corner part, and a tensile strength test was conducted, and it broke at 1.3 kg. A fracture surface occurred on the glass substrate, and it was confirmed that the glass substrate was broken first.

熱線反射膜は剥離していなかった。The heat ray reflective film was not peeled off.

実施例2 実施例1と同様のマグネトロンD、 C,スパッタ装置
の陰極上にZr:B・7:3の組成を有する硼化ジルコ
ニウムターゲットをセットした。実施例1と同様の手順
で2+nm厚のソーダライムガラス基板を洗浄した後、
上記スパック装置の真空槽内に入れ、2.IX 10−
”TorrのAr雰囲気中で硼化ジルコニウムターゲッ
トに1.6W/c+n”のパワーを印加し、ジルコニウ
ム硼素膜(70人)を形成した0次に該ジルコニウム硼
素膜上に、エネルギー15KeV 、イオン注入量1.
Ox 10”1ons/ca+’の条件で窒素イオンを
注入した。この時の真空度は3.OX 10−’Tor
rであった。イオン注入量はイオン電流密度をファラデ
ーカップで測定して調整した。最後に全圧が1.8X 
10””TorrのAr:N、=88:12の混合がス
雰囲気中で硼化ジルコニムターゲットに2.617cm
”のパワーを印加し、ジルコニウム硼窒化物膜(600
人)を製膜した。
Example 2 A zirconium boride target having a composition of Zr:B.7:3 was set on the cathode of a magnetron D, C, sputtering device similar to that in Example 1. After cleaning a 2+ nm thick soda lime glass substrate in the same manner as in Example 1,
Place it in the vacuum chamber of the above-mentioned spacking device; 2. IX 10-
A power of 1.6 W/c+n was applied to a zirconium boride target in an Ar atmosphere of "Torr" to form a zirconium boron film (70 people). On the zero-order zirconium boron film, an energy of 15 KeV and an ion implantation amount were applied. 1.
Nitrogen ions were implanted under the condition of Ox 10"1ons/ca+'.The degree of vacuum at this time was 3.OX 10-'Tor.
It was r. The amount of ion implantation was adjusted by measuring the ion current density with a Faraday cup. Finally, the total pressure is 1.8X
A mixture of Ar:N, = 88:12 at 10”” Torr was applied to a zirconium boride target at a depth of 2.617 cm in a gas atmosphere.
” power was applied, and the zirconium boronitride film (600
film was formed.

このようにして作製した熱線反射ガラスを大気中に取り
出し、実施例1と同様の引張強度試験を行なったところ
、1.69kgで破壊した。破断面はガラス基板に生じ
ており、熱線反射膜は剥離していなかった。
When the heat ray reflective glass thus produced was taken out into the atmosphere and subjected to the same tensile strength test as in Example 1, it broke at 1.69 kg. A fracture surface occurred on the glass substrate, and the heat ray reflective film was not peeled off.

実施例3 パケット型のイオン注入装置を備え付けたマグネトロン
D、 C,スパッタ装置の陰極上に金属Crターゲット
をセットした0次に2+n+n厚のソーダライムガラス
基板を、炭酸カルシウム粉末研磨、流水すすぎ、エタノ
ールすすぎ、N2乾燥の手順で洗浄した後、上記スパッ
タ装置の真空槽内に入れ、油拡散ポンプで4.OX 1
0−’Torr以下まで排気した。 2.2 X 10
−”TorrのAr雰囲気中で金属Crターゲットに2
.4W/cm”のパワーを印加し、金属クロム膜(50
人)を形成した0次に、該金属クロム膜上に、エネルギ
ー10KeV 、イオン注入量7.5 X 10”1o
ns/cm”の条件で窒素イオンを注入した。この時の
真空度は3.2 XIG−’Torrであった。イオン
注入量はイオン電流密度をファラデーカップで測定して
調整した。最後に全圧が2.2X 1G−”Torrの
Ar:Nz:9:1の混合がス雰囲気中でCrターゲッ
トに2.6W/cm”のパワーを印加し、窒化クロム膜
(400人)を製膜した。
Example 3 A soda lime glass substrate of 2+n+n thickness of zero order with a metal Cr target set on the cathode of a magnetron D and C equipped with a packet-type ion implantation device and a sputtering device was polished with calcium carbonate powder, rinsed with running water, and treated with ethanol. After cleaning with the steps of rinsing and N2 drying, it was placed in the vacuum chamber of the above sputtering device, and was heated using an oil diffusion pump in step 4. OX1
It was evacuated to below 0-'Torr. 2.2 x 10
−”2 to a metal Cr target in an Ar atmosphere of Torr.
.. A power of 4 W/cm” was applied, and a metal chromium film (50
Next, on the metal chromium film, an energy of 10 KeV and an ion implantation amount of 7.5 x 10"1o were applied.
Nitrogen ions were implanted under the condition of ``ns/cm''.The degree of vacuum at this time was 3.2 A power of 2.6 W/cm was applied to a Cr target in an Ar:Nz:9:1 mixture atmosphere with a pressure of 2.2X 1G-''Torr to form a chromium nitride film (400 people). .

このようにして作製した熱線反射ガラスを大気中に取り
出し、2IIIQ角の部分にハンダをつけて引張強度試
験を行なったところ、1.1kgで破壊した。破断面は
ガラス基板に生じおり、ガラス基板から破壊されている
ことが確認できた。
The thus produced heat ray reflective glass was taken out into the atmosphere, soldered to the 2IIIQ square part and subjected to a tensile strength test, and broke at 1.1 kg. A fracture surface occurred on the glass substrate, and it was confirmed that the glass substrate was broken first.

熱線反射膜は剥離していなかった。The heat ray reflective film was not peeled off.

比較例 実施例1と同様のマグネトロンD、C,スパッタ装置の
陰極上に金属Tiターゲットをセットした。実施例1と
同様の手順で2ffiII+厚のソーダライムガラス基
板を洗浄した後、上記スパッタ装置の真空槽内に入れ、
4.0 X 10”’Torr以下まで排気した0次に
、全圧が2.2X 10−’TorrのAr:N2=9
:1の混合ガス雰囲気中でTiターゲットに2.6W/
c+n”のパワーを印加し、窒化チタン膜(400人)
を製膜した。
Comparative Example A metal Ti target was set on the cathode of a magnetron D, C, and sputtering device similar to that in Example 1. After cleaning a 2ffiII+ thick soda lime glass substrate in the same manner as in Example 1, it was placed in the vacuum chamber of the sputtering apparatus, and
Ar: N2 = 9 with a total pressure of 2.2X 10-'Torr after the 0th order was evacuated to 4.0X 10'''Torr or less.
:2.6W/ to Ti target in mixed gas atmosphere of 1
Applying power of “c+n”, titanium nitride film (400 people)
A film was formed.

このようにして作製した熱線反射ガラスを大気中に取り
出し、実施例1と同様の引張強度試験を行なったところ
、0.69kgで破壊した。熱線反射膜の剥離が認めら
れ、破断面はガラス基板には生じていなかった。
When the thus produced heat ray reflective glass was taken out into the atmosphere and subjected to the same tensile strength test as in Example 1, it broke at 0.69 kg. Peeling of the heat ray reflective film was observed, and no fracture surface was observed on the glass substrate.

[効果] 本発明の熱線反射ガラスは、内部応力の大きな窒化物膜
又は硼窒化物膜の熱線反射膜が十分強い付着力でガラス
基板に密着したものであり、かかる熱線反射膜が膜はが
れを起こすことなく、耐擦傷性も大変層れている。従っ
て、自動車用や建築用などの用途に、合わせガラス化又
は複層ガラス化することなく、単板の熱線反射ガラスと
して広く利用することができる。
[Effects] The heat-reflecting glass of the present invention has a heat-reflecting film made of a nitride film or a boronitride film with a large internal stress that adheres closely to the glass substrate with sufficiently strong adhesion, and the heat-reflecting film prevents the film from peeling off. It does not cause any damage and has excellent scratch resistance. Therefore, it can be widely used as a single sheet of heat-reflecting glass for applications such as automobiles and architecture without being made into laminated or double-glazed glass.

又、本発明においては、まず下地膜を形成し、この下地
膜にイオン注入を行なうことによりガラス基板への付着
力を高めているので、熱線反射性能を司る窒化物膜又は
硼窒化物膜自体のイオン注入過程による損傷のない高密
着性熱線反射ガラスを提供できる。
In addition, in the present invention, a base film is first formed and ions are implanted into this base film to improve adhesion to the glass substrate. It is possible to provide a highly adhesive heat-reflecting glass that is not damaged by the ion implantation process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高密着性熱線反射ガラスの各製造工程
におけるガラス基板の断面図により本発明の高密着性熱
線反射ガラスの製造方法を示す説明図である。1はガラ
ス基板、2は下地膜、3は高エネルギーイオン、4は窒
化物膜又は硼窒化物膜を示している。
FIG. 1 is an explanatory view showing the method for manufacturing the highly adhesive heat-reflective glass of the present invention using cross-sectional views of a glass substrate in each manufacturing process of the highly adhesive heat-reflective glass of the present invention. 1 is a glass substrate, 2 is a base film, 3 is a high-energy ion, and 4 is a nitride film or a boronitride film.

Claims (6)

【特許請求の範囲】[Claims] (1)ガラス基板上に下地膜を形成し、該下地膜面に高
エネルギーのイオンを注入し、該イオン注入された膜表
面に、窒化物膜又は硼窒化物膜を形成してなる高密着性
熱線反射ガラス。
(1) High adhesion formed by forming a base film on a glass substrate, implanting high-energy ions into the surface of the base film, and forming a nitride film or boronitride film on the surface of the ion-implanted film. Heat reflective glass.
(2)下地膜に注入されるイオンが窒素イオンであるこ
とを特徴とする請求項1記載の高密着性熱線反射ガラス
(2) The highly adhesive heat-reflecting glass according to claim 1, wherein the ions implanted into the base film are nitrogen ions.
(3)下地膜が、窒化物膜又は硼窒化物膜と共通の成分
を含有していることを特徴とする請求項1又は2記載の
高密着性熱線反射ガラス。
(3) The highly adhesive heat-reflective glass according to claim 1 or 2, wherein the base film contains the same components as the nitride film or the boronitride film.
(4)窒化物膜又は硼窒化物膜が、チタン、ジルコニウ
ム、タンタル、クロムの群から選ばれる少なくとも一種
の金属元素を含むことを特徴とする請求項1〜3のいず
れか一項記載の高密着性熱線反射ガラス。
(4) The nitride film or the boronitride film contains at least one metal element selected from the group of titanium, zirconium, tantalum, and chromium. Adhesive heat reflective glass.
(5)下地膜が、窒化物膜又は硼窒化物膜と共通の金属
元素を含む金属膜であることを特徴とする請求項4記載
の高密着性熱線反射ガラス。
(5) The highly adhesive heat-reflective glass according to claim 4, wherein the base film is a metal film containing the same metal element as the nitride film or the boronitride film.
(6)下地膜の膜厚が30〜200Åであることを特徴
とする請求項1〜5いずれか一項記載の高密着性熱線反
射ガラス。
(6) The highly adhesive heat-reflecting glass according to any one of claims 1 to 5, wherein the base film has a thickness of 30 to 200 Å.
JP63138404A 1988-06-07 1988-06-07 High adhesion heat ray reflective glass Expired - Lifetime JP2590532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138404A JP2590532B2 (en) 1988-06-07 1988-06-07 High adhesion heat ray reflective glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138404A JP2590532B2 (en) 1988-06-07 1988-06-07 High adhesion heat ray reflective glass

Publications (2)

Publication Number Publication Date
JPH01308848A true JPH01308848A (en) 1989-12-13
JP2590532B2 JP2590532B2 (en) 1997-03-12

Family

ID=15221167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138404A Expired - Lifetime JP2590532B2 (en) 1988-06-07 1988-06-07 High adhesion heat ray reflective glass

Country Status (1)

Country Link
JP (1) JP2590532B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166294A (en) * 1988-12-20 1990-06-26 Ngk Insulators Ltd Plated base material
JPH07305163A (en) * 1994-05-10 1995-11-21 Itochu Fine Chem Kk Low-reflection chromium-base film
JP2014034479A (en) * 2012-08-07 2014-02-24 Asahi Glass Co Ltd GLASS SUBSTRATE WITH Ti FILM AND GLASS SUBSTRATE WITH METAL FILM USING THE SAME, PRODUCTION METHOD OF GLASS SUBSTRATE WITH Ti FILM AND GLASS SUBSTRATE WITH METAL FILM USING THE SAME, AND FLATNESS DEGREE EVALUATION METHOD OF GLASS SUBSTRATE SURFACE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02166294A (en) * 1988-12-20 1990-06-26 Ngk Insulators Ltd Plated base material
JPH07305163A (en) * 1994-05-10 1995-11-21 Itochu Fine Chem Kk Low-reflection chromium-base film
JP2014034479A (en) * 2012-08-07 2014-02-24 Asahi Glass Co Ltd GLASS SUBSTRATE WITH Ti FILM AND GLASS SUBSTRATE WITH METAL FILM USING THE SAME, PRODUCTION METHOD OF GLASS SUBSTRATE WITH Ti FILM AND GLASS SUBSTRATE WITH METAL FILM USING THE SAME, AND FLATNESS DEGREE EVALUATION METHOD OF GLASS SUBSTRATE SURFACE

Also Published As

Publication number Publication date
JP2590532B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
US8147972B2 (en) Coated article with ion treated underlayer and corresponding method
KR960015963B1 (en) Improved heat treatable sputter-coated glass system
RU2471732C2 (en) Method of producing coated article, involving ion beam treatment of metal oxide protective film
EP2634286A1 (en) Coated article with ion treated overcoat layer and corresponding method
JPH02138459A (en) Laminated hard material and production thereof
RU2761278C2 (en) Hardenable coatings with diamond-like carbon
JP2014523390A (en) Quenchable and non-quenable transparent nanocomposite layers
JPS60176981A (en) Ceramic enhancement
JPH0158134B2 (en)
JPH10237630A (en) Oxide coating, laminated body and heir production
KR100668091B1 (en) Glass coating and methhod of production thereof
JPH01308848A (en) Highly adhesive heat ray reflecting glass
Hasuyama et al. Adhesive and corrosion-resistant zirconium oxide coatings on stainless steel prepared by ion beam assisted deposition
Martin et al. Oxygen-ion-assisted deposition of thin gold films
EP1032032A3 (en) Tailoring of a wetting/barrier layer to reduce electromigration in an aluminium interconnect
JPH07115890B2 (en) Method for forming thin film on glass substrate surface
US10611678B2 (en) Heat treatable coated article with carbon-doped zirconium based layer(s) in coating
JP2789651B2 (en) Method for forming boron nitride film
JPH0525635A (en) Manufacture of dry ti series plated stainless steel
JPS60224778A (en) Ceramic coated hard parts
JPH1067542A (en) Glass plate having thin film and its production
Legg Surface engineering with ion-assisted coatings
CN1246547A (en) Process for coating on glass to simulate low-radiation film and able to be thermally treated
JPH0211753A (en) Tial-type composite member and its production
JPS63203760A (en) Method and device for forming inorganic film to glass substrate surface