JP3515966B2 - Method for manufacturing magneto-optical recording element - Google Patents

Method for manufacturing magneto-optical recording element

Info

Publication number
JP3515966B2
JP3515966B2 JP2001207902A JP2001207902A JP3515966B2 JP 3515966 B2 JP3515966 B2 JP 3515966B2 JP 2001207902 A JP2001207902 A JP 2001207902A JP 2001207902 A JP2001207902 A JP 2001207902A JP 3515966 B2 JP3515966 B2 JP 3515966B2
Authority
JP
Japan
Prior art keywords
substrate
layer
electrode
optical recording
recording element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001207902A
Other languages
Japanese (ja)
Other versions
JP2002074773A (en
Inventor
浩貴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001207902A priority Critical patent/JP3515966B2/en
Publication of JP2002074773A publication Critical patent/JP2002074773A/en
Application granted granted Critical
Publication of JP3515966B2 publication Critical patent/JP3515966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はボンバード処理した
樹脂製基板の一主面に誘電体層や磁気記録層を含む光記
録層を形成する光磁気記録素子の製造方法に関する。 【0002】 【従来の技術】従来より、基板の一主面に薄膜を形成す
るような場合、チャンバー内に導入したガスをプラズマ
状態にして、基板表面にガスイオンを衝突させることに
より、基板表面の化学結合を切断し化学的に活性化させ
て、基板と成膜層との密着性を向上させる、いわゆるボ
ンバード処理を施すことがある。 【0003】 【発明が解決しようとする課題】しかしながら、このボ
ンバード処理はチャンバー内に設けた一対の電極に電圧
を印加してガスのプラズマ化を行うのが一般的な方法で
あるが、この際、ボンバード用の電極がスパッタリング
されて、電極の構成材料が基板へ付着・堆積し、この付
着層上に薄膜を形成する場合には、付着層から薄膜へ不
純物が拡散し薄膜の本来の特性が劣化するなどの問題が
生じる。 【0004】特に、光磁気記録素子を製造する場合にお
いて、樹脂製基板に無機質の誘電体層や磁性層を形成す
る前に、有機質の基板と無機質の成膜層との密着性を向
上させ高い信頼性を得る目的でボンバード処理が行われ
ることがあり、上述したような電極物質による成膜層の
汚染が大きな問題となっていた。このため従来は、ボン
バード処理にはできるだけ分子量の小さいガスを使用
し、電極のスパッタリングを極力抑えることが専ら行わ
れていた。 【0005】ところが、この方法はボンバード用の電極
がスパッタリングによって消耗する速度を抑制するだけ
に止まり、基板表面にはスパッタリングされた電極物質
が少量でも基板表面に付着するため、光磁気記録素子の
電気特性や信頼性に悪影響を及ぼすことがあった。 【0006】そこで、本発明は上述した問題を解消し、
ボンバード処理の使用ガスの種類に依存せず、特性劣化
や信頼性の低下がない光磁気記録素子の製造方法を提供
すると同時に、新規な層構成の光磁気記録素子を提供す
ることを目的とする。 【0007】 【課題を解決するための手段】上記目的を達成する本発
明の光磁気記録素子の製造方法は、チャンバー内に樹脂
基板と非接地のTi遷移金属からなる電極とを配設し、
該電極への電圧印加によりチャンバー内へ導入したガス
をプラズマ化して前記基板の一主面をボンバード処理
し、このボンバード処理した基板の一主面上に、少なく
とも窒化シリコンを主成分とする誘電体層、及び希土類
−遷移金属の磁性層を順次積層することを特徴とする。 【0008】 【発明の実施の形態】本発明に係る実施例を図面に基づ
いて詳細に説明する。図1に示すように、まずチャンバ
ーC内にボンバード用の電極1,1と、ポリカーボネー
ト製の基板2とを配設する。ここで、基板2は接地する
が、後述する理由により電極1,1は接地しない。 【0009】次に、チャンバーC内を 1×10-5Torr以下
の高真空に排気した後、窒素ガスを導入し、0.1 〜 1mT
orr 程度とする。そして、電極1,1に0.5 〜2kV,60
Hzの交流を印加し、窒素ガスをプラズマ状態にし、約1
〜10分程度、基板2のボンバード処理を行う。ここで、
電極1,1の材質には、IVA族の遷移金属であるTi、
VA族の遷移金属であるCr,Fe,Co,Niをそれ
ぞれ主成分とする各種電極を使用した。 【0010】上記ボンバード処理の後、基板2を上記チ
ャンバー(ボンバード槽)Cとは別の成膜室へ搬送し、
この成膜室内を 1×10-7〜10×10-7Torr程度に排気す
る。その後、成膜室内にアルゴンガスを導入して 2〜 5
mTorr とし、高周波出力(ターゲット材への投入電力)
を0.5 〜1.0kW 、ターゲット材表面の水平磁界を所定磁
界に維持しながら高周波スパッタリングを行い、しかる
後にスピンコート法により樹脂の保護層を塗布形成し
て、図2に示すような光磁気記録素子Dを形成させた。 【0011】すなわち、基板2上に、5 〜30Å程度の無
機質層Lb、第1誘電体層L1(約1500ÅのSi−N系
の非晶質層)、磁性層L2(約500 Åの希土類−遷移金
属系、例えばGd−Dy−Fe系の非晶質層)、第2誘
電体層L3(約500 ÅのSi−N系の非晶質層)、反射
層L4(約800 Åの金属アルミニウム層)、及び保護層
L5(約50μm の紫外線硬化樹脂層)を順次積層させ
た。なお、無機質槽Lbの厚さは、厚くなりすぎるとC
/N比が低下していくため、適当なC/N比を維持する
ためには5 〜30Å程度が望ましい。 【0012】次に、表1及び表2に示すような各種電極
を用いて、基板2のボンバード処理を行った後に、作製
した光磁気記録素子のそれぞれについて、信頼性(高温
多湿試験;JIS K5400)及び電気特性(C/N比)に
ついて調べた結果について説明する。なお、電気特性
は、磁性層を基板の中心から20〜42mmの成膜領域におい
て、基板の中心から約24mm位置で測定した。 【0013】 【表1】 【0014】 【表2】【0015】この結果から明らかなように、ボンバード
電極としてFeやCoを主成分としたものでは、試料を
高温高湿槽へ投入してから250 時間以上経過後は、光学
顕微鏡観察により誘電体層L1や磁性層L2において膜
の剥離などが認められ、腐食が著しく進行していること
が判明した。また、ボンバード電極としてCrやNiを
主成分としたものでは腐食はほとんど認められないもの
の、C/N比が低く電気特性が悪化した。 【0016】一方、無機質層LbがTi遷移金属の場
合、誘電体層L1や磁性層L2の腐食が全く認められ
ず、そのうえ電気特性もきわめて良好であった。 【0017】このように、誘電体層L1と基板2との間
に、Ti遷移金属を主成分とする無機質層Lbを適当な
厚み(5 〜30Å)だけ介在させることによって、基板2
と成膜層との密着性を向上させ、成膜層の耐腐食性を高
め、ひいては信頼性を向上させ電気特性の劣化を極力防
止することができる。特に、ボンバード電極としてこの
金属を主成分とするものを用いることにより、スパッタ
率も低いので無機質層Lbが厚く成りすぎることもな
く、基板2のボンバード処理も同時に行うことができる
という利点を有する。 【0018】なお、従来行われてきたようにボンバード
電極1,1のいずれか一方を接地した場合と、本実施例
のように全く接地しない場合とで、成膜層の基板2に対
する密着性が著しく相違することが判明した。すなわ
ち、ボンバード電極1を接地した場合は、上述した高温
高湿試験において250 時間経過でも顕著な密着性の低下
が認められるのに対し、ボンバード電極1,1を接地し
ない場合は、高温高湿試験において500 時間経過後も成
膜層の密着性の劣化が全くないことが判明した。これ
は、ボンバード電極1を接地した場合では、ボンバード
電極1の接地した側と接地した基板2とが同電位とな
り、基板2と接地されていない側のボンバード電極1と
の間に放電が生じて、その結果、基板2自身が損傷を受
けボンバード電極1,1間の実効電流が低下し、ボンバ
ード処理が有効に行えないものと考えられる。これに対
し、ボンバード電極1,1を接地しない場合には、接地
した基板2の電位(ほぼ0V)は両ボンバード電極1,
1の電位の中間にあるため、基板2とボンバード電極
1,1間では放電が生じにくく、電源電流の損失もない
ので、ボンバード電極1,1間の実効電流は低下するこ
とがなく、良好なボンバード処理が実現されるからであ
ると考えられる。 【0019】なおまた、上述したボンバード電極の材質
やボンバード処理に使用されるガスなどはこれらに限定
されるものではなく、本発明の要旨を逸脱しない範囲内
で適宜変更し実施し得る。 【0020】 【発明の効果】以上詳述したように、本発明の光磁気記
録素子の製造方法によれば、ボンバード電極をTi遷移
金属にて成したので、基板表面にボンバード電極成分が
付着することが抑制され、たとえ基板と誘電体層や磁性
層などの成膜層との間にボンバード層が形成されても、
これが原因で成膜層の電気特性を劣化させることはな
く、むしろ基板と成膜層との密着性を向上させ、信頼性
のきわめて優れた光磁気記録素子を提供することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording element in which an optical recording layer including a dielectric layer and a magnetic recording layer is formed on one main surface of a bombarded resin substrate. And a method for producing the same. 2. Description of the Related Art Conventionally, when a thin film is formed on one principal surface of a substrate, a gas introduced into a chamber is brought into a plasma state, and gas ions are made to collide with the substrate surface to thereby form a substrate. In some cases, a so-called bombarding process is performed to cut the chemical bond of the substrate and chemically activate the same to improve the adhesion between the substrate and the film formation layer. [0003] However, in this bombardment treatment, it is a general method to apply a voltage to a pair of electrodes provided in a chamber to convert the gas into plasma. When the electrode for bombardment is sputtered, the constituent materials of the electrode are deposited and deposited on the substrate, and when a thin film is formed on this deposited layer, impurities diffuse from the deposited layer to the thin film, and the original characteristics of the thin film are reduced. Problems such as deterioration occur. In particular, in the case of manufacturing a magneto-optical recording element, before forming an inorganic dielectric layer or a magnetic layer on a resin substrate, the adhesion between the organic substrate and the inorganic film-forming layer is improved. In some cases, bombardment processing is performed for the purpose of obtaining reliability, and the contamination of the film formation layer by the above-mentioned electrode material has been a serious problem. For this reason, conventionally, a gas having as small a molecular weight as possible has been used for the bombarding process, and the sputtering of the electrode has been mainly suppressed as much as possible. However, this method only suppresses the rate at which the bombarding electrode is consumed by sputtering, and even a small amount of the sputtered electrode material adheres to the substrate surface on the substrate surface. In some cases, the characteristics and reliability were adversely affected. Therefore, the present invention solves the above-mentioned problem,
It is an object of the present invention to provide a method of manufacturing a magneto-optical recording element that does not depend on the type of gas used for bombardment processing and that does not cause deterioration in characteristics and reliability, and to provide a magneto-optical recording element having a novel layer configuration. . According to the present invention, there is provided a method of manufacturing a magneto-optical recording element, comprising: disposing a resin substrate and an electrode made of a non-grounded Ti transition metal in a chamber;
A gas introduced into the chamber by applying a voltage to the electrode is turned into plasma to bombard one main surface of the substrate, and a dielectric containing silicon nitride as a main component is formed on one main surface of the bombarded substrate. A magnetic layer of a rare earth-transition metal layer. Embodiments according to the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, first, electrodes 1 and 1 for bombarding and a substrate 2 made of polycarbonate are arranged in a chamber C. Here, the substrate 2 is grounded, but the electrodes 1 and 1 are not grounded for the reason described later. Next, after the inside of the chamber C is evacuated to a high vacuum of 1 × 10 −5 Torr or less, nitrogen gas is introduced, and 0.1 to 1 mT
orr. Then, 0.5 to 2 kV, 60
Hz alternating current, nitrogen gas into plasma state, about 1
Bombarding the substrate 2 is performed for about 10 minutes. here,
The materials of the electrodes 1 and 1 include Ti, which is a IVA group transition metal,
Various electrodes each containing Cr, Fe, Co, and Ni as the main transition metals of the VA group were used. After the bombarding process, the substrate 2 is transferred to a film forming chamber different from the chamber (bombarding tank) C,
The film formation chamber is evacuated to about 1 × 10 −7 to 10 × 10 −7 Torr. Then, introduce argon gas into the deposition chamber to
mTorr, high frequency output (input power to target material)
A high-frequency sputtering is performed while maintaining the horizontal magnetic field on the target material surface at a predetermined magnetic field at 0.5 to 1.0 kW, and then a protective layer of resin is applied by spin coating to form a magneto-optical recording element as shown in FIG. D was formed. That is, on the substrate 2, an inorganic layer Lb of about 5 to 30 °, a first dielectric layer L1 (Si-N based amorphous layer of about 1500 °), and a magnetic layer L2 (rare earth of about 500 °) Transition metal-based, for example, Gd-Dy-Fe-based amorphous layer, second dielectric layer L3 (Si-N-based amorphous layer of about 500 °), reflective layer L4 (about 800 ° of metallic aluminum) Layer) and a protective layer L5 (an ultraviolet curable resin layer of about 50 μm) were sequentially laminated. If the thickness of the inorganic tank Lb is too large, C
Since the / N ratio decreases, it is desirable that the angle is about 5 to 30 ° in order to maintain an appropriate C / N ratio. Next, after bombarding the substrate 2 using various electrodes as shown in Tables 1 and 2, the reliability (high-temperature and high-humidity test; JIS K5400) of each of the produced magneto-optical recording elements was measured. ) And electrical characteristics (C / N ratio) will be described. The electric characteristics were measured at a position of about 24 mm from the center of the substrate in a film formation region of the magnetic layer at 20 to 42 mm from the center of the substrate. [Table 1] [Table 2] As is clear from the results, when the bombardment electrode was mainly composed of Fe or Co, 250 hours or more after the sample was put into the high-temperature and high-humidity tank, the dielectric layer was observed by an optical microscope. Peeling of the film was observed in L1 and the magnetic layer L2, and it was found that the corrosion was significantly advanced. Further, when the bombardment electrode was mainly composed of Cr or Ni, almost no corrosion was observed, but the C / N ratio was low and the electric characteristics were deteriorated. On the other hand, when the inorganic layer Lb was made of a Ti transition metal, no corrosion of the dielectric layer L1 or the magnetic layer L2 was observed, and the electrical characteristics were also very good. As described above, by interposing the inorganic layer Lb containing Ti transition metal as a main component by an appropriate thickness (5 to 30 °) between the dielectric layer L1 and the substrate 2,
The adhesion between the film and the film formation layer can be improved, the corrosion resistance of the film formation layer can be improved, and the reliability can be improved, and the deterioration of the electric characteristics can be prevented as much as possible. In particular, by using a material containing this metal as the main component as the bombardment electrode, the sputter rate is low, so that the inorganic layer Lb does not become too thick, and the bombardment treatment of the substrate 2 can be performed at the same time. The adhesion of the film formation layer to the substrate 2 is different between the case where one of the bombarded electrodes 1 and 1 is grounded as in the conventional case and the case where the bombarded electrode is not grounded as in the present embodiment. It turned out to be significantly different. In other words, when the bombard electrode 1 is grounded, a noticeable decrease in adhesion is observed even after 250 hours in the above-mentioned high-temperature and high-humidity test. It was found that there was no deterioration in the adhesion of the deposited layer even after 500 hours. This is because, when the bombardment electrode 1 is grounded, the grounded side of the bombardment electrode 1 and the grounded substrate 2 have the same potential, and a discharge occurs between the substrate 2 and the ungrounded side bombarded electrode 1. As a result, it is considered that the substrate 2 itself is damaged, the effective current between the bombard electrodes 1 and 1 is reduced, and the bombard process cannot be performed effectively. On the other hand, when the bombard electrodes 1 and 1 are not grounded, the potential of the grounded substrate 2 (almost 0 V) is applied to both the bombard electrodes 1 and 1.
1, the discharge is unlikely to occur between the substrate 2 and the bombarded electrodes 1 and 1, and there is no loss of power supply current. It is considered that the bombard processing is realized. The material of the bombardment electrode and the gas used for the bombardment treatment are not limited to those described above, and may be appropriately changed and implemented without departing from the gist of the present invention. As described in detail above, according to the method for manufacturing a magneto-optical recording element of the present invention, the bombard electrode is made of Ti transition metal, so that the bombard electrode component adheres to the substrate surface. Is suppressed, even if a bombard layer is formed between the substrate and a film forming layer such as a dielectric layer or a magnetic layer,
As a result, the electrical characteristics of the film-forming layer are not degraded, but rather, the adhesion between the substrate and the film-forming layer is improved, and a highly reliable magneto-optical recording element can be provided.

【図面の簡単な説明】 【図1】本発明に係るボンバード槽の一実施例を示す内
部概略構成図である。 【図2】光磁気記録素子の要部断面図である。 【符号の説明】 1 ・・・ ボンバード電極 2 ・・・ 基板 Lb ・・・ 無機質層 L1 ・・・ 第1誘電体層 L2 ・・・ 磁性層 L3 ・・・ 第2誘電体層 L4 ・・・ 反射層 L5 ・・・ 保護層 C ・・・ ボンバード槽
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an internal schematic configuration diagram showing one embodiment of a bombard tank according to the present invention. FIG. 2 is a sectional view of a main part of the magneto-optical recording element. [Description of Signs] 1 ... Bombarded electrode 2 ... Substrate Lb ... Inorganic layer L1 ... First dielectric layer L2 ... Magnetic layer L3 ... Second dielectric layer L4 ... Reflective layer L5 Protective layer C Bombard tank

Claims (1)

(57)【特許請求の範囲】 【請求項1】チャンバー内に樹脂基板と非接地のTi遷
移金属からなる電極とを配設し、該電極への電圧印加に
よりチャンバー内へ導入したガスをプラズマ化して前記
基板の一主面をボンバード処理し、このボンバード処理
した基板の一主面上に、少なくとも窒化シリコンを主成
分とする誘電体層、及び希土類−遷移金属の磁性層を順
次積層することを特徴とする光磁気記録素子の製造方
法。
(57) [Claim 1] A resin substrate and an electrode made of a non-grounded Ti transition metal are disposed in a chamber, and a gas introduced into the chamber by applying a voltage to the electrode is subjected to plasma. And bombarding one main surface of the substrate, and sequentially laminating at least a dielectric layer containing silicon nitride as a main component and a rare earth-transition metal magnetic layer on the one main surface of the bombarded substrate. A method for manufacturing a magneto-optical recording element, comprising:
JP2001207902A 2001-07-09 2001-07-09 Method for manufacturing magneto-optical recording element Expired - Fee Related JP3515966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207902A JP3515966B2 (en) 2001-07-09 2001-07-09 Method for manufacturing magneto-optical recording element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207902A JP3515966B2 (en) 2001-07-09 2001-07-09 Method for manufacturing magneto-optical recording element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01328493A Division JP3318380B2 (en) 1993-01-29 1993-01-29 Magneto-optical recording element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002074773A JP2002074773A (en) 2002-03-15
JP3515966B2 true JP3515966B2 (en) 2004-04-05

Family

ID=19043810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207902A Expired - Fee Related JP3515966B2 (en) 2001-07-09 2001-07-09 Method for manufacturing magneto-optical recording element

Country Status (1)

Country Link
JP (1) JP3515966B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059636A1 (en) * 2002-12-24 2004-07-15 Fujitsu Limited Magneto-optical recording medium and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002074773A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US6274014B1 (en) Method for forming a thin film of a metal compound by vacuum deposition
JP2002500704A (en) Tunable tantalum and tantalum nitride thin films
US5540820A (en) Thin film forming method
EP2871259B1 (en) Method of depositing silicon dioxide onto a substrate
US6383573B1 (en) Process for manufacturing coated plastic body
JPH07224379A (en) Sputtering method and device therefor
CN111235532A (en) Coating device combining ion coating and electron beam evaporation coating and coating method thereof
JP3515966B2 (en) Method for manufacturing magneto-optical recording element
JP2002371355A (en) Method for manufacturing transparent thin film
RU2407820C1 (en) Procedure for application of coating on items out of ceramics in vacuum
JPH11335815A (en) Substrate with transparent conductive film and deposition apparatus
JP3318380B2 (en) Magneto-optical recording element and method of manufacturing the same
JP3727693B2 (en) TiN film manufacturing method
WO1987003013A1 (en) Sputtering method for reducing hillocking in aluminum layers formed on substrates
JPH0734236A (en) D.c. sputtering device and sputtering method
Felmetsger et al. Dual cathode DC–RF and MF–RF coupled S-Guns for reactive sputtering
KR100388294B1 (en) Evaporation method of metal thin film on polyimide for circuit board
JP2000273629A (en) Formation of low resistance metallic thin film
JP3973838B2 (en) Method using hydrogen and oxygen gas in sputter deposition of aluminum-containing film and aluminum-containing film obtained thereby
JPH11279756A (en) Formation of transparent conductive film
CN115874154B (en) Semiconductor structure, chip, application thereof and film deposition method
JP3192249B2 (en) Gas and moisture barrier film and method for producing the same
JP3128597B2 (en) Manufacturing method of dielectric film
JPS619570A (en) Manufacture of thin film
JPH06192832A (en) Thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

LAPS Cancellation because of no payment of annual fees