JPS62219554A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS62219554A
JPS62219554A JP6050686A JP6050686A JPS62219554A JP S62219554 A JPS62219554 A JP S62219554A JP 6050686 A JP6050686 A JP 6050686A JP 6050686 A JP6050686 A JP 6050686A JP S62219554 A JPS62219554 A JP S62219554A
Authority
JP
Japan
Prior art keywords
region
isolation
semiconductor
semiconductor region
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6050686A
Other languages
Japanese (ja)
Inventor
Takahide Ikeda
池田 隆英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6050686A priority Critical patent/JPS62219554A/en
Publication of JPS62219554A publication Critical patent/JPS62219554A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the area of an isolation region and to contrive to enhance the integration of the titled device by providing processes for forming respectively a buried semiconductor region and a semiconductor region for isolation; which have the same conductivity type as those of the respective substrates between semiconductor element forming regions or the other conductivity type and also, have an impurity concentration higher than those of the substrates; on the major surface parts of the substrates. CONSTITUTION:The bottom part of the n-type well region of a p-channel MISFET Qp is constituted of a high-concentration buried semiconductor region 3B, the bottom part of the n-type well region of an n-channel MISFET Qn is constituted of a high-concentration buried semiconductor region 5A like the p-type well region and an isolation region is provided between the regions in which are formed the MISFET Qp and the MISFET Qn respectively that prevent latch-up respectively. Following the process for forming this insulating film 4 for interelement isolation, a p-type impurity is introduced in the major surface parts of the respective epitaxial layers 2 of the MISFET Qn forming region and the isolation region forming region and the buried semiconductor region 5A and a semiconductor region 5B for isolation are each formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路装置に関し、特に、相補型M
 I S FETを有する半導体集積回路装置(以下、
6MO8という)に適用して有効な技術に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor integrated circuit device, and particularly to a complementary M circuit device.
Semiconductor integrated circuit device (hereinafter referred to as
6MO8).

〔従来の技術〕[Conventional technology]

高集積化、低消費電力化を目的とするCMO3は、動作
速度の高速化、大駆動能力化を図ることが要求されてい
る。この要求を実現する技術として、6MO8にバイポ
ーラトランジスタを塔載した所謂混在型の半導体集積回
路装置(以下、B1−CMOSという)がある。
CMO3, which aims to achieve high integration and low power consumption, is required to have high operating speed and large drive capacity. As a technology for realizing this requirement, there is a so-called mixed type semiconductor integrated circuit device (hereinafter referred to as B1-CMOS) in which a bipolar transistor is mounted on a 6MO8.

本願出願人が先に出願した特願昭58−143859号
には、Bi−CMOSにおいて、ラッチアップを防止す
る技術が記載されている。この技術は、CMOS形成領
域の低濃度のp−型の半導体基板とP−型のウェル領域
(n−型のエピタキシャル層)との介在部に、高濃度の
p゛型の埋込半導体領域を形成したものである。このP
+型の埋込半導体領域は、表面部に比べて底部が高い不
純物濃度を有するp型のウェル領域を形成するように構
成されている。つまり、P+型の埋込半導体領域は、p
型のウェル領域をベース領域どする寄生バイポーラ1〜
ランジスタの電流増幅率を小さくし、その動作が生じな
いように構成している。
Japanese Patent Application No. Sho 58-143859, previously filed by the applicant of the present application, describes a technique for preventing latch-up in Bi-CMOS. This technology creates a highly doped p-type buried semiconductor region between the lightly doped p-type semiconductor substrate and the P-type well region (n-type epitaxial layer) in the CMOS formation region. It was formed. This P
The +-type buried semiconductor region is configured to form a p-type well region having a higher impurity concentration at the bottom than at the surface. In other words, the P+ type buried semiconductor region is p
Parasitic bipolar 1~ that makes the well region of the mold the base region
The current amplification factor of the transistor is reduced to prevent its operation from occurring.

前記P゛型の埋込半導体領域は、バイポーラトランジス
タのn4型の埋込コレクタ領域を取囲むように、p−型
の半導体基板とn−型のエピタキシャル層との介在部に
形成される。すなわち、P+型の埋込半導体領域は、そ
れとn′″型の埋込コレクタ領域との間或は埋込コレク
タ領域間において、半導体素子間を電気的に分離する高
濃度のp゛型の分離用半導体領域をも構成している。こ
のP゛型の分離用半導体領域は、エピタキシャル層表面
上に形成されるフィールド絶縁膜とで分離領域を構成す
る。
The P-type buried semiconductor region is formed in an intervening portion between a p-type semiconductor substrate and an n-type epitaxial layer so as to surround the n4-type buried collector region of the bipolar transistor. In other words, between the P+ type buried semiconductor region and the n''' type buried collector region or between the buried collector regions, there is a high concentration p type isolation layer between the P+ type buried semiconductor region and the buried collector region to electrically isolate the semiconductor elements. This P-type isolation semiconductor region forms an isolation region together with a field insulating film formed on the surface of the epitaxial layer.

この種のBi−CMOSは、次の製造工程を施すことで
形成できる。まず、p−型の半導体基板の夫々異なる主
面部に、埋込コレクタ領域を形成するn型の不純物と埋
込半導体領域及び分離用半導体領域を形成するp型の不
純物とを順次導入する。
This type of Bi-CMOS can be formed by performing the following manufacturing process. First, an n-type impurity for forming a buried collector region and a p-type impurity for forming a buried semiconductor region and an isolation semiconductor region are sequentially introduced into different main surface portions of a p-type semiconductor substrate.

この後に、半導体基板主面上にn−型のエピタキシャル
層を積層し、このエピタキシャル層にCMOSを構成す
るn−型及びp−型のウェル領域を形成する。そして、
半導体素子形成領域間のエピタキシャル層の主面上部に
フィールド絶縁膜(素子間分離用絶縁膜)を形成する。
Thereafter, an n-type epitaxial layer is laminated on the main surface of the semiconductor substrate, and n-type and p-type well regions constituting the CMOS are formed in this epitaxial layer. and,
A field insulating film (device isolation insulating film) is formed on the main surface of the epitaxial layer between the semiconductor element forming regions.

この後、エピタキシャル層の主面に、コレクタ領域、ベ
ース領域及びエミッタ領域を順次形成してバイポーラト
ランジスタを形成する。このバイポーラトランジスタの
形成とともに、π型、p”型のウェル領域の夫々の主面
にpチャネル、nチャネルMISFETを夫々形成する
。これら一連の製造工程を施すことで、Bi−CMOS
が完成する。
Thereafter, a collector region, a base region, and an emitter region are sequentially formed on the main surface of the epitaxial layer to form a bipolar transistor. Along with the formation of this bipolar transistor, p-channel and n-channel MISFETs are formed on the main surfaces of the π-type and p''-type well regions, respectively.By performing these series of manufacturing steps, Bi-CMOS
is completed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、前述のBi−CMOSについて検討した結
果、次のような問題点が生じることを見出した。
As a result of studying the above-mentioned Bi-CMOS, the inventor found that the following problems occur.

前記エピタキシャル層は、薄膜化することができない。The epitaxial layer cannot be made thin.

すなわち、バイポーラトランジスタのエミッターコレク
タ接合耐圧が低下するためである。
That is, this is because the emitter-collector junction breakdown voltage of the bipolar transistor is reduced.

また、MISFETのソース領域及びドレイン領域と、
n゛型の埋込半導体領域(又は埋込コレクタ領域)戒は
P゛型の埋込半導体領域とのpn接合容量が増大するこ
とを防止するためである。
Moreover, the source region and drain region of MISFET,
The purpose of the n-type buried semiconductor region (or buried collector region) is to prevent the pn junction capacitance with the P-type buried semiconductor region from increasing.

このため、エピタキシャル層の膜厚に対応して、P4型
の分離用半導体領域と素子間分離用絶縁膜との間に、低
濃度のp型の分離用半導体領域が形成される。このp型
の分離用半導体領域は、p−型のウェル領域と同一製造
工程で形成されたP壁領域にさらに濃度を高めるために
不純物(ボロン)を導人して形成される。
Therefore, a low concentration p-type isolation semiconductor region is formed between the P4-type isolation semiconductor region and the element isolation insulating film in accordance with the thickness of the epitaxial layer. This p-type isolation semiconductor region is formed by introducing an impurity (boron) into the P-wall region, which is formed in the same manufacturing process as the p-type well region, to further increase the concentration.

ところが、p型の素子間分離用半導体領域は、その表面
上に分離用絶縁膜を形成する際(酸化工程)に、不純物
が著しく食われるので、その不純物濃度の制御が不安定
であるとともにその濃度が低くなる。このため、半導体
素子間のパンチスルーによる絶縁耐圧が低下するので、
分離領域の面積が増大し、Bi−CMOSの集積度が低
下する。
However, when forming an isolation insulating film on the surface of a p-type semiconductor region for isolation between elements (oxidation process), impurities are significantly eaten away, making control of the impurity concentration unstable and concentration becomes lower. For this reason, the withstand voltage due to punch-through between semiconductor elements decreases.
The area of the isolation region increases, and the degree of integration of Bi-CMOS decreases.

本発明の目的は1分離領域の面積を縮小し、半導体集積
回路装置の高集積化を図ることが可能な技術を提供する
ことにある。
An object of the present invention is to provide a technique that can reduce the area of one isolation region and increase the degree of integration of a semiconductor integrated circuit device.

また、本発明の他の目的は、分離領域の面積を縮小する
ととに1分離領域を形成するための製造工程を低減する
ことが可能な技術を提供することにある。
Another object of the present invention is to provide a technique that can reduce the area of the isolation region and reduce the number of manufacturing steps required to form one isolation region.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述及び添付図面によって明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔問題点を解決するための手段〕[Means for solving problems]

本願において開示される発明のうち1代表的なものの概
要を説明すれば、下記のとおりである。
An overview of one typical invention disclosed in this application is as follows.

半導体素子形成領域間の基体主面上に素子間分離用絶縁
膜を形成し、半導体素子形成領域、前記素子間分離用絶
縁膜を通した半導体素子形成領域間の基体主面部に夫々
不純物を導入し、半導体素子形成領域、半導体素子形成
領域間の夫々の基体主面部に、基体と同一導電型又は反
対導電型でそれよりも高い不純物濃度の埋込半導体領域
、分離用半導体領域を夫々に形成する。
An insulating film for element isolation is formed on the main surface of the substrate between the semiconductor element formation regions, and impurities are introduced into the semiconductor element formation region and the main surface of the substrate between the semiconductor element formation regions through the element isolation insulating film. Then, a buried semiconductor region and an isolation semiconductor region having an impurity concentration of the same conductivity type or opposite conductivity type and higher impurity concentration than the base body are formed in the semiconductor element formation region and the main surface portion of the base body between the semiconductor element formation regions, respectively. do.

〔作 用〕[For production]

上記した手段によれば、前記分離用半導体領域を、素子
間分離用絶縁膜を形成した後にそれを通して形成したの
で、高濃度でしがも分離用絶縁膜に接触するように形成
することができる。したがって、分離領域の面積を縮小
し、半導体集積回路装置の高集積化を図ることができる
According to the above-mentioned means, since the semiconductor region for isolation is formed through the insulating film for isolation after forming the insulating film for isolation, it is possible to form the isolation semiconductor region in contact with the insulating film for isolation at a high concentration. . Therefore, the area of the isolation region can be reduced and higher integration of the semiconductor integrated circuit device can be achieved.

また、埋込半導体領域と同一製造工程で分離用半導体領
域を形成することができるので1分離領域を形成するた
めの製造工程を低減することができる。
Further, since the isolation semiconductor region can be formed in the same manufacturing process as the buried semiconductor region, the number of manufacturing steps for forming one isolation region can be reduced.

以下、本発明の構成について、本発明をBi−CuO2
に適用した一実施例とともに説明する。
Hereinafter, regarding the structure of the present invention, the present invention will be described as Bi-CuO2
This will be explained along with an example in which the present invention is applied to.

なお、全回において、同一の機能を有するものは同一の
符号を付け、その繰り返しの説明は省略する。
In addition, in all the episodes, parts having the same functions are given the same reference numerals, and repeated explanations thereof will be omitted.

[実施例I〕 本実施例■は、Bi−CuO2(7)nチャネ/l/M
ISFET形成領域に本発明を適用した実施例である。
[Example I] This example
This is an example in which the present invention is applied to an ISFET formation region.

本発明の実施例IであるB i−CuO2の概略構成を
第1図(要部断面図)で示す。
The schematic structure of B i-CuO2, which is Example I of the present invention, is shown in FIG. 1 (a sectional view of the main part).

第1図において、1は単結晶シリコンからなるP−型の
半導体基板、2は半導体基板lの主面上に積層されたn
−型のエピタキシャル層である。半導体基板l及びエピ
タキシャル層2は、本実施例Iで言う基体を構成する。
In FIG. 1, 1 is a P-type semiconductor substrate made of single-crystal silicon, 2 is an n-type semiconductor substrate laminated on the main surface of the semiconductor substrate
- type epitaxial layer. The semiconductor substrate 1 and the epitaxial layer 2 constitute the base body referred to in Example I.

バイポーラトランジスタ形成領域の半導体基板1とエピ
タキシャル層2との介在部には、高濃度のn″″型の埋
込コレクタ領域3Aが設けられている。
A heavily doped n'' type buried collector region 3A is provided in the bipolar transistor forming region between the semiconductor substrate 1 and the epitaxial layer 2.

pチャネルMIS’FET形成領域の半導体基板1とエ
ピタキシャル層2との介在部には、高濃度のt型の埋込
半導体領域3Bが設けられている。
A heavily doped t-type buried semiconductor region 3B is provided between the semiconductor substrate 1 and the epitaxial layer 2 in the p-channel MIS'FET formation region.

Bi−CuO3のバイポーラトランジスタTrは、第1
図の左側に示すように、n+型の埋込コレクタ領域3A
、高濃度のが型のコレクタ領域7゜エピタキシャル層2
.P型のベース領域8、高濃度のが型のエミッタ領域1
1Bで構成されている。
The Bi-CuO3 bipolar transistor Tr has a first
As shown on the left side of the figure, n+ type buried collector region 3A
, highly doped collector region 7° epitaxial layer 2
.. P-type base region 8, high concentration p-type emitter region 1
It consists of 1B.

バイポーラトランジスタTrのコレクタ領域は、埋込コ
レクタ領域3A、コレクタ領域7及びエピタキシャル層
2で構成されている。コレクタ領域7は、層間絶縁膜1
3に設けられた接続孔14を通したコレクタ領域用電極
15と接続されている。
The collector region of the bipolar transistor Tr is composed of a buried collector region 3A, a collector region 7, and an epitaxial layer 2. Collector region 7 includes interlayer insulating film 1
The collector region electrode 15 is connected to the collector region electrode 15 through a connection hole 14 provided at 3.

ベース領域8は、接続孔14を通したベース領域用電極
15と電気的に接続されている。エミッタ領域lIBは
、絶縁膜9に設けられた接続孔(符号は付けていない)
を通したエミッタ領域用電極10Bと電気的に接続され
ている。
The base region 8 is electrically connected to the base region electrode 15 through the connection hole 14 . The emitter region IIB is a connection hole (not numbered) provided in the insulating film 9.
It is electrically connected to the emitter region electrode 10B through which the emitter region electrode 10B is passed.

Bi−CuO2のpチャネルMISFETQPは、第1
図の中央部に示すように、高濃度の埋込半導体領域3B
と低濃度のエピタキシャル層2からなるn型のウェル領
域、ゲート絶縁膜9、ゲート電極10A、高濃度のp+
型のソース領域及びドレイン領域12で構成されている
。n型のウェル領域は、底部が高濃度の埋込半導体領域
3Bで構成されており、このn型のウェル領域をベース
領域とする寄生バイポーラトランジスタの電流増幅率を
小さくし、その動作を防止する(ラッチアップを防止す
る)ように構成されている。ソース領域及びドレイン領
域12は、接続孔14を通したソース領域用又はドレイ
ン領域用電極15と電気的に接続されている。
The Bi-CuO2 p-channel MISFET QP is
As shown in the center of the figure, a high concentration buried semiconductor region 3B
an n-type well region consisting of a low concentration epitaxial layer 2, a gate insulating film 9, a gate electrode 10A, a high concentration p+
It consists of a source region and a drain region 12 of the type. The n-type well region is composed of a buried semiconductor region 3B with a high concentration at the bottom, and reduces the current amplification factor of the parasitic bipolar transistor whose base region is this n-type well region, thereby preventing its operation. (to prevent latch-up). The source region and drain region 12 are electrically connected to a source region electrode 15 or a drain region electrode 15 through a contact hole 14 .

Bi−CuO2のnチャネルM I S F’ETQn
は、第1図の右側に示すように、高濃度のp″″型の埋
込半導体領域5Aと低濃度のp型の半導体領域6からな
るp型のウェル領域、グー1−絶縁膜9゜ゲート電極1
0A、高濃度のn+型のソース領域及びドレイン領域l
IAで構成されている。n型のウェル領域は、p型のウ
ェル領域と同様に、底部が高濃度の埋込半導体領域5A
で構成されており、ラッチアップを防止するように構成
されている。
Bi-CuO2 n-channel M I S F'ETQn
As shown on the right side of FIG. 1, a p-type well region consisting of a heavily doped p'' type buried semiconductor region 5A and a lightly doped p-type semiconductor region 6, a goo 1-insulating film 9. Gate electrode 1
0A, high concentration n+ type source and drain regions l
It is composed of IA. Similar to the p-type well region, the n-type well region has a bottom portion that is a highly doped buried semiconductor region 5A.
It is configured to prevent latch-up.

ソース領域及びドレイン領域11Aは、接続孔14を通
したソース領域用又はトレイン領域用電極15と電気的
に接続されている。
The source region and drain region 11A are electrically connected to the source region or train region electrode 15 through the connection hole 14.

前記埋込半導体領I!!125Aは、第2図(第1図の
T−I線における不純物濃度分布図)に符号5Aを付け
て示すように構成される。つまり、埋込半導体領域5A
は、エピタキシャル層2の表面からの深さd+が1.2
−1.6 E p m ]程度の位置に、lXl0” 
 [aシoms/cm″]程度の不純物濃度でピーク値
を有するように構成される。埋込半導体領域5Aは、例
えは、ボロンを500 [K e V ]程度の高エネ
ルギのイオン打込みで導入することで形成できる。
The embedded semiconductor region I! ! 125A is constructed as shown with reference numeral 5A in FIG. 2 (the impurity concentration distribution diagram along the T-I line in FIG. 1). In other words, the buried semiconductor region 5A
is, the depth d+ from the surface of the epitaxial layer 2 is 1.2
−1.6 E p m ], lXl0”
The buried semiconductor region 5A is configured to have a peak value at an impurity concentration of about [a oms/cm'']. For example, boron is introduced by high-energy ion implantation of about 500 [K e V ]. It can be formed by

第2図において、符号6はp型のウェル領域の低濃度の
半導体領域6であり、I X 10”  [atoms
/cm21程度のボロンを150[KeV]程度のエネ
ルギのイオン打込みで導入することで形成できる。
In FIG. 2, reference numeral 6 denotes a low concentration semiconductor region 6 in a p-type well region, which has a structure of I x 10" [atoms
It can be formed by introducing boron of about /cm21 by ion implantation with an energy of about 150 [KeV].

この半導体領域6は、0.4[μm]程度の深さに不純
物濃度のピーク値を有するように形成される。
This semiconductor region 6 is formed so as to have a peak value of impurity concentration at a depth of about 0.4 [μm].

符号11Aはソース領域又はドレイン領域11Aである
Reference numeral 11A indicates a source region or drain region 11A.

このBi−CuO2を構成するバイポーラ1、ランジス
タ]、”r、MI 5FETQP、MI 5FETQn
の夫々の形成領域間には、分離領域が設けられている。
Bipolar 1, transistor], “r, MI 5FETQP, MI 5FETQn that constitutes this Bi-CuO2
A separation region is provided between each formation region.

この分離領域は、エピタキシャル層2の主面」二に設け
られた素子間分画用絶縁膜(フィールド絶縁v)4及び
素子量分m用絶M膜4の下面に接触しかつ埋込半導体領
域5Aよりも浅い位置のエピタキシャル層2の主面部に
設けられた高濃度のp“型の分離用半導体領域5Bで構
成されている。
This isolation region is in contact with the lower surface of the inter-element division insulating film (field insulation v) 4 provided on the main surface 2 of the epitaxial layer 2 and the isolation M film 4 for element amount m, and is in contact with the buried semiconductor region. It is composed of a highly doped p'' type isolation semiconductor region 5B provided on the main surface of the epitaxial layer 2 at a shallower position than 5A.

この分離用半導体領域5Bは、第:3図(第1図の■−
■線における不純物濃度分布図)に符号5Bを付けて示
すように構成される。分離用゛l′:導体領域5Bを形
成するボロンは、埋込半導体領域5Aと同一製造工程で
素子間分離用絶縁膜(例えば、0.7[μm]の膜厚の
S i 02 : d:+ )4を通して導入される。
This isolation semiconductor region 5B is shown in FIG.
The impurity concentration distribution diagram on the line (2) is shown with reference numeral 5B attached thereto. Isolation l': The boron forming the conductor region 5B is formed into an insulating film for element isolation (for example, Si02 with a film thickness of 0.7 [μm]) in the same manufacturing process as the buried semiconductor region 5A. +) introduced through 4.

つまり、分離用半導体領域5Bは、素子間分離用絶縁膜
4中のボロンの飛程が約0.9[μm]程度(500[
KeV]程度のエネルギの場合)なので、エピタキシャ
ル層2の表面がらの深さd2が0.2〜0.3[μm]
程度の位置すなわち素子間分離用絶縁膜4の下面に不純
物濃度のピーク値が近接するように構成される。半導体
領域6を形成するボロンは、素子間分離用絶縁膜4中に
吸収される。
In other words, in the isolation semiconductor region 5B, the range of boron in the element isolation insulating film 4 is approximately 0.9 μm (500 μm).
KeV), so the depth d2 of the surface of the epitaxial layer 2 is 0.2 to 0.3 [μm].
The structure is such that the peak value of the impurity concentration is close to the lower surface of the insulating film 4 for isolation between elements. Boron forming the semiconductor region 6 is absorbed into the element isolation insulating film 4.

次に、第4図乃至第6図(3製造工程毎に示す要部断面
図)を用いて、本実施例のBi−CuO2の製造方法を
簡単に説明する。
Next, the method for manufacturing Bi-CuO2 of this example will be briefly described using FIGS. 4 to 6 (cross-sectional views of main parts shown for each of the three manufacturing steps).

まず、P−型の半導体基板lを用意する。そして、バイ
ポーラトランジスタTr形成領域、pチャネルMISF
ETQP形成領域の夫々の半導体基板1の主面部に、n
4型の埋込コレクタ領域3A、n”型の埋込半導体領域
3Bを夫々形成する。
First, a P-type semiconductor substrate l is prepared. Then, bipolar transistor Tr formation region, p channel MISF
n on the main surface of each semiconductor substrate 1 in the ETQP formation region.
A 4-type buried collector region 3A and an n'' type buried semiconductor region 3B are formed, respectively.

この後、第4図に示すように、半導体基板lの主面上に
n−型のエピタキシャル層2を積層させる。
Thereafter, as shown in FIG. 4, an n-type epitaxial layer 2 is laminated on the main surface of the semiconductor substrate l.

第4図に示すエピタキシャル層2を形成する工程の後に
、第5図に示すように、半導体素子形成領域間のエピタ
キシャル層2の主面上に、素子間分離用絶縁膜4を形成
する。素子間分離用絶縁膜4は、例えば、窒化シリコン
膜を熱酸化マスクとして用い、エピタキシャル層2の主
面を酸化した酸化シリコン膜で形成する。この素子間分
離用絶縁膜4は、前述したように、例えば、0.7Eμ
m]程度の膜厚で形成する。
After the step of forming the epitaxial layer 2 shown in FIG. 4, as shown in FIG. 5, an insulating film 4 for isolation between elements is formed on the main surface of the epitaxial layer 2 between the semiconductor element forming regions. The element isolation insulating film 4 is formed of a silicon oxide film in which the main surface of the epitaxial layer 2 is oxidized using, for example, a silicon nitride film as a thermal oxidation mask. As mentioned above, this insulating film 4 for element isolation is, for example, 0.7 Eμ.
The thickness of the film is approximately 100 m.

第5図に示す素子間分離用絶縁膜4を形成する工程の後
に、nチャネルMISFETQn形成領域、分離領域形
成領域の夫々のエピタキシャル層2の主面部にP1型の
埋込半導体領域5Δ、P4型の分離用半導体領域5Bを
夫々形成する。さらに、第6図に示すように、主として
、nチャネルMISFETQn形成領域のエピタキシャ
ル層2の主面部にp型の半導体領域6を形成する。
After the step of forming the element isolation insulating film 4 shown in FIG. 5, a P1 type buried semiconductor region 5Δ, a P4 type Separation semiconductor regions 5B are formed respectively. Furthermore, as shown in FIG. 6, a p-type semiconductor region 6 is formed mainly on the main surface of the epitaxial layer 2 in the n-channel MISFETQn formation region.

埋込半導体領域5A、分離用半導体領域5B及びp型の
半導体領域6は、第6図に符号16をイ」けて一点鎖線
で示す不純物導入用マスクを用い、前述のイオン打込み
条件で形成する。不純物導入用マスク16は、例えば、
フオトレジス1〜膜の樹脂膜、酸化シリコン膜や窒化シ
リコン膜の絶縁膜、Afl、Mo等の金属膜等で形成す
る。
The buried semiconductor region 5A, the isolation semiconductor region 5B, and the p-type semiconductor region 6 are formed under the above-mentioned ion implantation conditions using an impurity introduction mask shown by a dashed line with the reference numeral 16 in FIG. . The impurity introduction mask 16 is, for example,
The photoresist 1 is formed of a resin film, an insulating film such as a silicon oxide film or a silicon nitride film, or a metal film such as Afl or Mo.

この埋込半導体領域5Aを形成する工程で、埋込半導体
領域5Aと半導体領域6とからなるp型のウェル領域が
形成される。また、分離用半導体領域5Bを形成する工
程で、他の領域と電気的に分離されたバイポーラトラン
ジスタTrのコレクタ領域(埋込コレクタ領域3A、エ
ピタキシャル層2)が略形成され、埋込半導体領域3B
とエピタキシャル層2とからなるn型のウェル領域が形
成される。さらに、素子間分離用絶縁膜4と分離用半導
体領域5B(及び半導体基板1)とで分離領域が形成さ
れる。
In the step of forming the buried semiconductor region 5A, a p-type well region consisting of the buried semiconductor region 5A and the semiconductor region 6 is formed. In addition, in the step of forming the isolation semiconductor region 5B, the collector region (buried collector region 3A, epitaxial layer 2) of the bipolar transistor Tr electrically isolated from other regions is substantially formed, and the buried semiconductor region 3B
An n-type well region consisting of the epitaxial layer 2 and the epitaxial layer 2 is formed. Further, an isolation region is formed by the element isolation insulating film 4 and the isolation semiconductor region 5B (and the semiconductor substrate 1).

このように、素子間分離用絶縁膜4を形成する工程の後
に1Ml5FETQn形成領域、分離領域形成領域の夫
々のエピタキシャル層2の主面部にp型の不純物を導入
し、埋込半導体領域5A、分離用半導体領域5Bを夫々
形成することにより、前記分離用半導体領域5Bを素子
間分離用絶縁膜4を形成した後にそれを通して形成した
ので、分離用半導体領域5Bの不純物が素子間分離用絶
縁膜4に吸収されず、分離用半導体領域5Bを高濃度で
しかも素子間分離用絶縁膜4に接触するように形成する
ことができる。したがって、素子間分離領域4の面積を
縮小することができるので、半導体集積回路装置の高集
積化を図ることができる。
In this way, after the step of forming the element isolation insulating film 4, p-type impurities are introduced into the main surface of the epitaxial layer 2 in the 1Ml5FETQn formation region and the isolation region formation region, and the buried semiconductor region 5A, isolation By forming the semiconductor regions 5B for isolation, the semiconductor regions 5B for isolation are formed through the insulating film 4 for element isolation after forming the semiconductor regions 5B for isolation, so that impurities in the semiconductor regions 5B for isolation are removed from the insulating film 4 for isolation between elements. The isolation semiconductor region 5B can be formed at a high concentration and in contact with the element isolation insulating film 4. Therefore, since the area of the element isolation region 4 can be reduced, the semiconductor integrated circuit device can be highly integrated.

また、分離用半導体領域5Bは、埋込半導体領域5Aと
同一製造工程で形成することができるので、それを形成
するための製造工程を低減することができる。
Moreover, since the isolation semiconductor region 5B can be formed in the same manufacturing process as the buried semiconductor region 5A, the manufacturing process for forming it can be reduced.

また、分離用半導体領域5Bは、素子間分離用絶縁膜4
を形成した後に形成しているので、導入された不純物の
引き伸し拡散(熱処理)時間を短くすることができる。
Further, the semiconductor region for isolation 5B is formed by the insulating film 4 for isolation between elements.
Since it is formed after forming the impurities, the time for stretching and diffusing the introduced impurities (heat treatment) can be shortened.

したがって、埋込コレクタ領域3A、埋込半導体領域3
B及び埋込半導体領域5Aの夫々を形成する不純物がエ
ピタキシャル層2内へ拡散(わき」ニリ)することを低
減し、エピタキシャル層2の膜厚を薄くできる。エピタ
キシャル層2の薄膜化は、α線の飛程を短くして少数キ
ャリアの発生量を低減し、特に記憶機能を有するBi−
CuO2においてはラフ1−エラーを防止することがで
きる。
Therefore, the buried collector region 3A, the buried semiconductor region 3
Diffusion of impurities forming each of B and the buried semiconductor region 5A into the epitaxial layer 2 can be reduced, and the thickness of the epitaxial layer 2 can be reduced. The thinning of the epitaxial layer 2 shortens the range of α rays and reduces the amount of minority carriers generated.
Rough 1-error can be prevented in CuO2.

第6図に示す埋込半導体領域5A及び分離用半導体領域
5Bを形成する工程の後に、前記第1図に示すように、
バイポーラトランジスタTr、MI 5FETQn及Q
pを順次形成する。すなわち。
After the step of forming the buried semiconductor region 5A and isolation semiconductor region 5B shown in FIG. 6, as shown in FIG.
Bipolar transistor Tr, MI 5FETQn and Q
p is formed sequentially. Namely.

バイポーラトランジスタTr形成領域においては、コレ
クタ領域7、ベース領域8及びエミッタ領域11Bを順
次形成する。エミッタ領域11Bは、電極10Bを形成
した後に形成される。MISFETQn形成領域におい
ては、ゲート絶縁膜9、ゲート電極10A、ソース領域
及びドレイン領域11Aを順次形成する。MISFET
Qp形成領域においては、ゲート絶縁膜9、ゲート電極
lOA、ソース領域及びドレイン領域12を順次形成す
る。そして1層間絶縁膜13、接続孔14を形成した後
に、夫々の電極15を形成する。
In the bipolar transistor Tr formation region, a collector region 7, a base region 8, and an emitter region 11B are formed in this order. Emitter region 11B is formed after forming electrode 10B. In the MISFETQn formation region, a gate insulating film 9, a gate electrode 10A, a source region and a drain region 11A are formed in this order. MISFET
In the Qp formation region, a gate insulating film 9, a gate electrode IOA, a source region, and a drain region 12 are sequentially formed. After forming the one-layer insulating film 13 and the connection hole 14, the respective electrodes 15 are formed.

これら一連の製造工程を施すことにより、本実施例のB
i−CuO2は完成する。
By performing these series of manufacturing steps, B of this example
i-CuO2 is completed.

〔実施例■〕[Example ■]

本実施例■は、Bi−CuO2のバイポーラトランジス
タ形成領域、nチャネルMISFET形成領域及びPチ
ャネルMIsFET形成領域に本発明を適用した実施例
である。
Embodiment 2 is an example in which the present invention is applied to a Bi-CuO2 bipolar transistor formation region, an n-channel MISFET formation region, and a P-channel MIsFET formation region.

本発明の実施例■であるBi−CuO2の概略構成を第
7図(要部断面図)で示す。
A schematic structure of Bi-CuO2, which is Example 2 of the present invention, is shown in FIG. 7 (a sectional view of the main part).

本実施例■のBi−CuO2は、第7図で示すように、
バイポーラトランジスタTrの高濃度のn4型の埋込コ
レクタ領域5C,n型のウェル領域の高濃度のn゛型の
埋込半導体領域5Dが前記高濃度のp4型の埋込半導体
領域5Aと同様に構成されている。すなわち、埋込コレ
クタ領域5c及び埋込半導体領域5Dは、例えば、lX
l0”  [atoms/cm2]程度のリン(又はヒ
素)を2 [MeV] 8度のエネルギのイオン打込み
で半導体基板1の主面部に導入することで形成できる。
As shown in FIG. 7, the Bi-CuO2 of this example
The heavily doped n4 type buried collector region 5C of the bipolar transistor Tr and the heavily doped n' type buried semiconductor region 5D of the n type well region are similar to the heavily doped p4 type buried semiconductor region 5A. It is configured. That is, the buried collector region 5c and the buried semiconductor region 5D are, for example, lX
It can be formed by introducing approximately 10'' [atoms/cm2] of phosphorus (or arsenic) into the main surface of the semiconductor substrate 1 by ion implantation with an energy of 2 [MeV] and 8 degrees.

この導入されるリンは、半導体基板lの表面からの深さ
が2[μm]程度の位置に不純物濃度のピーク値を有す
るように形成される。
The introduced phosphorus is formed so that the impurity concentration has a peak value at a depth of approximately 2 [μm] from the surface of the semiconductor substrate l.

このように、素子間分離用絶縁膜4を形成した後に、B
i−CuO3の埋込コレクタ領域5C1埋込半導体領域
5D、埋込半導体領域5A及び分雌用半導体領域5Bを
形成することにより、前記実施例Iと略同様の効果を得
ることができる。
In this way, after forming the inter-element isolation insulating film 4,
By forming the buried collector region 5C1 of i-CuO3, the buried semiconductor region 5D, the buried semiconductor region 5A, and the semiconductor region 5B, substantially the same effect as in Example I can be obtained.

さらに、埋込コレクタ領域5C1埋込半導体領域5D、
埋込半導体領域5A及び分離用半導体領域5Bを素子間
分離用絶縁膜4を形成した後に、イオン打込みで形成す
ることにより、前記実施例Iのように埋込コレクタ領域
3A及び埋込半導体領域3Bを形成する必要がなくなる
。したがって、半導体基板1にエピタキシャル層2を形
成することなく、B i−CuO2を構成することがで
きる。
Further, a buried collector region 5C1 a buried semiconductor region 5D,
By forming the buried semiconductor region 5A and the isolation semiconductor region 5B by ion implantation after forming the element isolation insulating film 4, the buried collector region 3A and the buried semiconductor region 3B are formed as in Example I. There is no need to form. Therefore, Bi-CuO2 can be formed without forming the epitaxial layer 2 on the semiconductor substrate 1.

なお、本実施例Hの基体は、半導体基板lで構成される
Note that the base body of Example H is composed of a semiconductor substrate l.

以上、本発明者によってなされた発明を、前記実施例に
基づき具体的に説明したが、本発明は、前記実施例に限
定されるものではなく、その要旨を逸脱しない範囲にお
いて、種々変形し得ることは勿論である。
As above, the invention made by the present inventor has been specifically explained based on the above embodiments, but the present invention is not limited to the above embodiments, and can be modified in various ways without departing from the gist thereof. Of course.

例えば、前記実施例■及び■はBi−CuO2に本発明
を適用した場合について説明したが、本発明は、バイポ
ーラトランジスタを有していない0MO8に適用しても
よい。
For example, in Examples 1 and 2 above, the present invention was applied to Bi-CuO2, but the present invention may also be applied to 0MO8 which does not have a bipolar transistor.

〔発明の効果〕〔Effect of the invention〕

本願において開示された発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、次のとおりであ
る。
Among the inventions disclosed in this application, effects obtained by typical inventions will be briefly described as follows.

半導体素子形成領域間の基体主面上に素子間分離用絶縁
膜を形成し、半導体素子形成領域、前記素子間分離用絶
縁膜を通した半導体素子形成領域間の基体主面部に夫々
不純物を導入し、半導体素子形成領域、半導体素子形成
領域間の夫々の基体主面部に、基体と同一導電型又は反
対導電型でそれよりも高い不純物濃度の埋込半導体領域
、分離用半導体領域を夫々に形成することにより、前記
分離用半導体領域を、素子間分離用絶縁膜を形成した後
にそれを通して形成したので、高濃度でしかも素子間分
離用絶縁膜に接触するように形成することができる。し
たがって、分離領域の面積を縮小し、半導体集積回路装
置の高集積化を図ることができる。
An insulating film for element isolation is formed on the main surface of the substrate between the semiconductor element formation regions, and impurities are introduced into the semiconductor element formation region and the main surface of the substrate between the semiconductor element formation regions through the element isolation insulating film. Then, a buried semiconductor region and an isolation semiconductor region having an impurity concentration of the same conductivity type or opposite conductivity type and higher impurity concentration than the base body are formed in the semiconductor element formation region and the main surface portion of the base body between the semiconductor element formation regions, respectively. By doing so, the semiconductor region for isolation is formed through the insulating film for element isolation after the formation of the insulating film for element isolation, so that it can be formed at a high concentration and in contact with the insulating film for element isolation. Therefore, the area of the isolation region can be reduced and higher integration of the semiconductor integrated circuit device can be achieved.

また、埋込半導体領域と同一製造工程で分離用=19− 半導体領域を形成することができるので、分離領域を形
成するための製造工程を低減することができる。
Further, since the isolation semiconductor region can be formed in the same manufacturing process as the buried semiconductor region, the number of manufacturing steps for forming the isolation region can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例IであるBi−0MO8の概
略構成を示す要部断面図、 第2図は、第1図のI−I線における不純物濃度分布図
。 第3図は、第1図の■−■線における不純物濃度分布図
、 第4図乃至第6図は、前記第1図に示すBi−0MO8
を各製造工程毎に示す要部断面図、第7図は、本発明の
実施例■であるBi−0MO8の概略構成を示す要部断
面図である。 図中、1・・・半導体基板、2・・・エピタキシャル層
、3A・・・埋込コレクタ領域、3B、5A、5C,5
D・・・埋込半導体領域、5B・・・分離用半導体領域
、6・・・半導体領域、7・・・コレクタ領域、8・・
・ベース領域、11B・・・エミッタ領域、9・・・ゲ
ート絶縁膜、10A・・・ゲート電極、IIA、12・
・・ソース領域又はドレイン領域、Q・・・MISFE
T、Tr・・・バイポーラトランジスタである。
FIG. 1 is a sectional view of a main part showing a schematic structure of Bi-0MO8 which is Example I of the present invention, and FIG. 2 is an impurity concentration distribution diagram along the line II in FIG. 1. Figure 3 is an impurity concentration distribution diagram along the line ■-■ in Figure 1, and Figures 4 to 6 are Bi-0MO8 shown in Figure 1 above.
FIG. 7 is a cross-sectional view of a main part showing the schematic structure of Bi-0MO8, which is Example 2 of the present invention. In the figure, 1... Semiconductor substrate, 2... Epitaxial layer, 3A... Buried collector region, 3B, 5A, 5C, 5
D... Buried semiconductor region, 5B... Semiconductor region for isolation, 6... Semiconductor region, 7... Collector region, 8...
・Base region, 11B... Emitter region, 9... Gate insulating film, 10A... Gate electrode, IIA, 12.
...Source region or drain region, Q...MISFE
T, Tr... Bipolar transistor.

Claims (1)

【特許請求の範囲】 1、半導体集積回路装置の製造方法であって、半導体素
子形成領域間の基体主面上に、素子間分離用絶縁膜を形
成する工程と、半導体素子形成領域及び前記素子間分離
用絶縁膜を通した半導体素子形成領域間の基体主面部に
不純物を導入し、半導体素子形成領域、半導体素子形成
領域間の夫々の基体主面部に、前記基体と同一導電型又
は反対導電型でかつそれよりも高い不純物濃度の埋込半
導体領域、分離用半導体領域を夫夫に形成する工程とを
備えたことを特徴とする半導体集積回路装置の製造方法
。 2、前記埋込半導体領域は、表面に比べて底部に高い不
純物濃度を有するウェル領域又はバイポーラトランジス
タの埋込コレクタ領域を形成することを特徴とする特許
請求の範囲第1項に記載の半導体集積回路装置の製造方
法。 3、前記素子間分離用絶縁膜は、基体を選択的に酸化し
た酸化シリコン膜で形成されることを特徴とする特許請
求の範囲第1項に記載の半導体集積回路装置の製造方法
。 4、前記分離用半導体領域は、前記埋込半導体領域に比
べて基体からの深さが浅く形成され、かつ素子間分離用
絶縁膜の下面に接触するように形成されることを特徴と
する特許請求の範囲第1項に記載の半導体集積回路装置
の製造方法。
[Claims] 1. A method for manufacturing a semiconductor integrated circuit device, which includes the steps of: forming an insulating film for isolation between elements on the main surface of a substrate between semiconductor element forming regions; Impurities are introduced into the main surface of the substrate between the semiconductor element formation regions through an isolation insulating film, and the impurities are introduced into the semiconductor element formation region and the main surface of the substrate between the semiconductor element formation regions to have the same or opposite conductivity as the substrate. 1. A method for manufacturing a semiconductor integrated circuit device, comprising the steps of: forming a buried semiconductor region having a higher impurity concentration than the buried semiconductor region; and a step of forming an isolation semiconductor region at the same time. 2. The semiconductor integrated device according to claim 1, wherein the buried semiconductor region forms a well region or a buried collector region of a bipolar transistor having a higher impurity concentration at the bottom than at the surface. A method of manufacturing a circuit device. 3. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the insulating film for isolation between elements is formed of a silicon oxide film obtained by selectively oxidizing a base. 4. A patent characterized in that the isolation semiconductor region is formed at a shallower depth from the base body than the buried semiconductor region, and is formed so as to be in contact with the lower surface of the element isolation insulating film. A method for manufacturing a semiconductor integrated circuit device according to claim 1.
JP6050686A 1986-03-20 1986-03-20 Manufacture of semiconductor integrated circuit device Pending JPS62219554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6050686A JPS62219554A (en) 1986-03-20 1986-03-20 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6050686A JPS62219554A (en) 1986-03-20 1986-03-20 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS62219554A true JPS62219554A (en) 1987-09-26

Family

ID=13144262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6050686A Pending JPS62219554A (en) 1986-03-20 1986-03-20 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS62219554A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227760A (en) * 1988-07-15 1990-01-30 Sony Corp Manufacture of semiconductor device
JPH02264464A (en) * 1989-04-05 1990-10-29 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02271566A (en) * 1989-04-12 1990-11-06 Hitachi Ltd Semiconductor device and its manufacture
JPH03194963A (en) * 1989-12-22 1991-08-26 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0443673A (en) * 1990-06-11 1992-02-13 Matsushita Electron Corp Semiconductor device and its manufacture
US5350939A (en) * 1992-04-03 1994-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227760A (en) * 1988-07-15 1990-01-30 Sony Corp Manufacture of semiconductor device
JPH02264464A (en) * 1989-04-05 1990-10-29 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02271566A (en) * 1989-04-12 1990-11-06 Hitachi Ltd Semiconductor device and its manufacture
JPH03194963A (en) * 1989-12-22 1991-08-26 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0443673A (en) * 1990-06-11 1992-02-13 Matsushita Electron Corp Semiconductor device and its manufacture
US5350939A (en) * 1992-04-03 1994-09-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
JPH077094A (en) Bicdmos structure and its manufacture
JPS62174966A (en) Manufacture of semiconductor device
KR20020071768A (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure and method for manufacturing the same
JP2000286346A (en) Semiconductor device and manufacture thereof
JP2745228B2 (en) Semiconductor device and manufacturing method thereof
JPS62219554A (en) Manufacture of semiconductor integrated circuit device
JP3186043B2 (en) Method for manufacturing semiconductor device
JPH0351309B2 (en)
JP2611450B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS63291473A (en) Manufacture of vertical field-effect transistor
JPS6153762A (en) Semiconductor integrated circuit device
JPS6020571A (en) Semiconductor device
JP2508218B2 (en) Complementary MIS integrated circuit
KR20050000001A (en) Semiconductor device and manufacturing method thereof
JP3066036B2 (en) Semiconductor device
JPS61127147A (en) Semiconductor device
JP3902412B2 (en) Manufacturing method of semiconductor device
JP2924038B2 (en) Semiconductor device
KR100332115B1 (en) Semiconductor power device and fabricating method thereof
JPH04269835A (en) Semiconductor device with trench type electrode and its manufacture
JPH05109994A (en) Semiconductor device
JPH02219237A (en) Mis type semiconductor device
JP3272596B2 (en) Semiconductor device and manufacturing method thereof
JP2573303B2 (en) Method for manufacturing semiconductor device
JPH0982960A (en) High breakdown-strength mos transistor and manufacture thereof