JPS62219468A - Lithium ion conductive gelled electrolyte - Google Patents

Lithium ion conductive gelled electrolyte

Info

Publication number
JPS62219468A
JPS62219468A JP6277686A JP6277686A JPS62219468A JP S62219468 A JPS62219468 A JP S62219468A JP 6277686 A JP6277686 A JP 6277686A JP 6277686 A JP6277686 A JP 6277686A JP S62219468 A JPS62219468 A JP S62219468A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
lithium
copolymer
gel electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6277686A
Other languages
Japanese (ja)
Other versions
JPH0732022B2 (en
Inventor
Tatsu Nagai
龍 長井
Hiroshi Horiie
堀家 浩
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6277686A priority Critical patent/JPH0732022B2/en
Publication of JPS62219468A publication Critical patent/JPS62219468A/en
Publication of JPH0732022B2 publication Critical patent/JPH0732022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To suppress the drop in the performance of a battery, by using a high-molecular polymer having a soluble portion and an insoluble portion as to a nonaqueous solvent, as a gelation-causing agent, to improve the ion conductivity and chemical stability of the battery. CONSTITUTION:A high-molecular polymer, which is used as a gelation-causing agent, is generally a copolymer of a monomer whose homopolymer is soluble to a nonaqueous solvent and another monomer whose homopolymer is insoluble thereto. For example, the copolymer is composed of a monomer represented by a formula I and another monomer represented by a formula II, when a high-boiling-point solvent such as propylene carbonate and gamma-type butylolactone is used as the nonaqueous solvent for the electrolyte of a lithium battery. The structural portion of the copolymer, which results from the monomer represented by the formula I, is soluble to the high-boiling-point solvent, while the structural portion of the copolymer, which results from the monomer represented by the formula II, is insoluble thereto.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、リチウム電池などに使用される非水系電解
質、とくにリチウム塩と非水系溶媒とゲル化剤である高
分子ポリマーとからなるリチウムイオン伝導性ゲル状電
解質に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a non-aqueous electrolyte used in lithium batteries, etc., particularly a lithium ion electrolyte consisting of a lithium salt, a non-aqueous solvent, and a polymer as a gelling agent. It relates to conductive gel electrolytes.

〔従来の技術〕[Conventional technology]

一般に、リチウム電池は、正極集電板と負極集電板との
間に、正極とリチウムまたはリチウム合金からなる負極
とこれら両極間に介在するセパレータおよび非水系電解
質とで構成される電池要素を封入した構造を有している
。そして、上記非水系電解質としては、炭酸プロピレン
やγ−ブチロラクトンなどの高沸点非水系溶媒にリチウ
ム塩を溶解した高流動性の液体電解質が汎用されている
(文献不詳)。
Generally, a lithium battery has a battery element consisting of a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator and a non-aqueous electrolyte interposed between these two electrodes, between a positive current collector plate and a negative current collector plate. It has a similar structure. As the non-aqueous electrolyte, a highly fluid liquid electrolyte in which a lithium salt is dissolved in a high-boiling non-aqueous solvent such as propylene carbonate or γ-butyrolactone is widely used (documents unknown).

ところが、近年における電子機器類の小型化。However, in recent years, electronic devices have become smaller.

軽量化、薄型化などに伴い、これに使用するリチウム電
池としても小型でかつ総厚が0.5 m+程度という極
めて薄型の高性能なものが要望されている。
As devices become lighter and thinner, there is a demand for lithium batteries used in these devices to be compact, extremely thin, and high-performance with a total thickness of about 0.5 m+.

このような薄型電池では、正負両極集電板を非常に扁平
な形状とせざるを得ず、また原型電池のように両極集電
板の周辺部をバッキング材を挾んでかしめ屈曲する封止
手段は構造上および加工技術上の制約から採用困難であ
るため、両極集電板の対向する平坦状の周辺部で接着剤
にて封止する方法を採用せざるを得ない。
In such a thin battery, the positive and negative current collector plates must have a very flat shape, and the sealing means that crimp and bend the periphery of the current collector plate with a backing material in between, as in the original battery, is not necessary. Since it is difficult to adopt this method due to structural and processing technology constraints, it is necessary to use a method of sealing the opposing flat peripheral portions of the bipolar current collector plates with an adhesive.

したがって、かかる薄型電池に上記の高流動性の液体電
解質を使用すると、電池組立時に電解質が外部へ流出し
やすく、これによって電解質量が不足したり、封止部分
が濡れて封止不完全になり、また接着封止材料が熱融着
性のものでは加熱封止時に電解質の飛散を起こす慣れが
あり、さらに電池の使用中においても漏液を生じやすく
、かつ二次電池にあっては負極リチウムのデンドライト
状(樹脂状)析出による短絡を生じて寿命が短くなる傾
向がある。
Therefore, if the above-mentioned highly fluid liquid electrolyte is used in such a thin battery, the electrolyte will easily leak out during battery assembly, resulting in insufficient electrolyte amount or the sealing part getting wet, resulting in incomplete sealing. In addition, if the adhesive sealing material is heat-sealable, the electrolyte tends to scatter during heat sealing, and leakage is likely to occur even when the battery is in use, and in the case of secondary batteries, the negative electrode lithium Short circuits occur due to dendrite-like (resin-like) precipitation, which tends to shorten the service life.

そこで、上述のような電解質の高流動性に起因する問題
を回避するには、電解質に粘性を付与してその流動性を
低下させることが有効であると考えられる。そして、こ
のような粘性を有する電解質としては、従来ではポリメ
タクリル酸メチルをゲル化剤としたゲル状電解質が知ら
れており(特開昭54−104541号公報)、たとえ
ばLiBF4をγ−ブチロラクトンに溶解した溶液中に
ポリメタクリル酸メチルを添加することによって該ポリ
マーが完全に溶解した透明なゲル状の電解質が得られる
Therefore, in order to avoid the problems caused by the high fluidity of the electrolyte as described above, it is considered effective to impart viscosity to the electrolyte to reduce its fluidity. As an electrolyte having such viscosity, a gel electrolyte using polymethyl methacrylate as a gelling agent is conventionally known (Japanese Patent Application Laid-open No. 104541/1983). For example, LiBF4 is mixed with γ-butyrolactone. By adding polymethyl methacrylate to the dissolved solution, a transparent gel-like electrolyte in which the polymer is completely dissolved can be obtained.

〔発明が解決しようとする問題点] ところが、上記の如くゲル化剤としてポリメタクリル酸
メチルを用いた従来のゲル状電解質では、ゲル化剤を使
用しない高流動性の電解質に比較してイオン伝導度の低
下が大きく、かつ化学的安定性も不充分である。また、
このゲル状電解質は、電池製作時に、その粘性を利用し
て不織布などの多孔性材料からなるセパレータに含浸さ
せた形で電池内へ添加できる利点があるが、上記セパレ
ータに外部から力が加わった場合に表面に押し出されて
しまい、セパレータ内部に電解質不足を生じて電池特性
の劣化を招くという問題点があった。
[Problems to be Solved by the Invention] However, as described above, the conventional gel electrolyte using polymethyl methacrylate as a gelling agent has poor ionic conductivity compared to a highly fluid electrolyte that does not use a gelling agent. The chemical stability is also insufficient. Also,
This gel-like electrolyte has the advantage that it can be added to the battery in the form of impregnating it into a separator made of porous material such as non-woven fabric using its viscosity when manufacturing the battery, but if force is applied to the separator from the outside. In some cases, the separator is pushed out to the surface, causing a shortage of electrolyte inside the separator and deteriorating battery characteristics.

〔問題点を解決するための手段] この発明者らは、上記従来の問題点を解決するために鋭
意検討を重ねた結果、ポリメタクリル酸メチルをゲル化
剤とした従来のゲル状電解質がイオン伝導性および化学
的安定性に劣るのは該ゲル化剤がリチウム塩に対しであ
る程度の相互作用を有することに起因するとの知見を得
た。そしてさらに、この発明者らは、上記知見に基づく
継続研究において、ゲル化剤としてポリメタクリル酸メ
チルに代えて特定の高分子ポリマーを使用した場合に良
好なイオン伝導性および化学的安定性を備えたゲル状電
解質が得られ、しかもリチウム電池の組立時にこのゲル
状電解質を多孔性材料からなるセパレータに含浸させた
形で添加する際、該セパレータに外部から力が加わって
もゲル状電解質は表面側へ押し出されにくく、セパレー
タ内部の電解質不足による性能劣化が抑制されることを
見い出し、この発明をなすに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned conventional problems, the inventors found that the conventional gel electrolyte using polymethyl methacrylate as a gelling agent It has been found that the reason for the poor conductivity and chemical stability is that the gelling agent has a certain degree of interaction with the lithium salt. Further, in continuing research based on the above findings, the inventors have found that when a specific high molecular weight polymer is used as a gelling agent instead of polymethyl methacrylate, it has good ionic conductivity and chemical stability. Moreover, when this gel electrolyte is added to a separator made of porous material in the form of impregnation during assembly of a lithium battery, the gel electrolyte does not remain on the surface even if force is applied to the separator from the outside. The inventors have discovered that the separator is less likely to be pushed out to the side, and that deterioration in performance due to lack of electrolyte inside the separator is suppressed, leading to the creation of this invention.

すなわち、この発明は、リチウム塩と非水系溶媒とゲル
化剤である高分子ポリマーとからなるリチウムイオン伝
導性ゲル状電解質において、上記ポリマーが上記非水系
溶媒に対する可溶性部分と不溶性部分とを有することを
特徴とするリチウムイオン伝導性ゲル状電解質に係る。
That is, the present invention provides a lithium ion conductive gel electrolyte comprising a lithium salt, a non-aqueous solvent, and a polymer as a gelling agent, in which the polymer has a soluble portion and an insoluble portion in the non-aqueous solvent. The present invention relates to a lithium ion conductive gel electrolyte characterized by:

〔発明の構成・作用〕[Structure and operation of the invention]

この発明のゲル状電解質においてゲル化剤として使用す
る高分子ポリマーは、前記の如く使用される非水系溶媒
に対する可溶性部分と不溶性部分とを有するものであり
、リチウム塩を非水系溶媒に溶解した溶液に添加した場
合、上記不溶性部分の存在によって完全には溶解しない
が、可溶性部分の作用により層分離のない均一分散状態
となり、通常、白色不透明の均一体からなるゲル状電解
質を与える。
The high molecular weight polymer used as a gelling agent in the gel electrolyte of the present invention has a soluble portion and an insoluble portion in the non-aqueous solvent used as described above, and is a solution in which a lithium salt is dissolved in the non-aqueous solvent. When added to the electrolyte, it is not completely dissolved due to the presence of the insoluble portion, but becomes uniformly dispersed without layer separation due to the action of the soluble portion, and usually provides a gel electrolyte consisting of a white opaque homogeneous body.

このようなゲル状電解質がポリメタクリル酸メチルをゲ
ル化剤とする従来のゲル状電解質に比較して良好なイオ
ン伝導性および化学的安定性を示す理由は、明確ではな
いが、上記ポリメタクリル酸メチルでは一般にこの種の
電解質に使用される炭酸プロピレンやγ−ブチロラクト
ンなどの非水系溶媒に可溶であるため、電解質中でゲル
化剤のポリマー全体がリチウム塩と相互作用してイオン
伝導性を低下させるとともに化学的安定性を損なうのに
対し、この発明で使用するゲル化剤の高分子ポリマーで
はその不溶性部分はリチウム塩と相互作用しないため、
それだけイオン伝導性および化学的安定性に及ぼす悪影
響が軽減されるものと推測される。
The reason why such a gel electrolyte exhibits better ionic conductivity and chemical stability than the conventional gel electrolyte using polymethyl methacrylate as a gelling agent is not clear, but the polymethacrylic acid Because methyl is soluble in non-aqueous solvents such as propylene carbonate and γ-butyrolactone that are commonly used in this type of electrolyte, the entire polymer of the gelling agent interacts with the lithium salt in the electrolyte to increase ionic conductivity. On the other hand, in the high molecular weight gelling agent used in this invention, the insoluble part does not interact with the lithium salt.
It is presumed that the adverse effects on ionic conductivity and chemical stability are reduced accordingly.

また、この発明のゲル状電解質を不織布などの多孔性材
料に含浸させた場合、ゲル化剤である高分子ポリマーの
不溶性部分が液相の保持体として機能してかつ上記多孔
性材料の微細構造中に機械的にからみ込まれるため、電
池製作時にゲル状電解質を含浸させた上記材料からなる
セパレータに取扱い中および電池内への組み込み中に外
部から力が加わっても、表面側へ押し出される電解質量
は少なく、セパレータ内部での電解質不足による抵抗増
加を生じにくく電池性能の低下が抑制されると考えられ
る。
Furthermore, when the gel electrolyte of the present invention is impregnated into a porous material such as a nonwoven fabric, the insoluble part of the high molecular weight polymer serving as the gelling agent functions as a support for the liquid phase, and the microstructure of the porous material Because the electrolyte is mechanically entangled within the battery, even if an external force is applied to the separator made of the above-mentioned material impregnated with gel electrolyte during battery manufacture or during installation into the battery, the electrolyte will be pushed out to the surface. The amount is small, and it is thought that an increase in resistance due to electrolyte shortage inside the separator is less likely to occur, and deterioration in battery performance is suppressed.

この発明でゲル化剤に用いる上記高分子ポリマーとして
は、使用する非水系溶媒の種類に応じてそれぞれ適当な
ものが存在するが、一般的にはそのホモポリマーが上記
非水系溶媒に溶解しうるモノマーと同じく溶解しない七
ツマ−との共重合体が好適である。なお、この共重合体
はブロック共重合体およびランダム共重合体のいずれで
もよい。
As the above-mentioned high molecular weight polymer used as the gelling agent in this invention, there are suitable polymers depending on the type of non-aqueous solvent used, but in general, homopolymers thereof are soluble in the above-mentioned non-aqueous solvent. A copolymer with a heptamer, which does not dissolve like the monomer, is preferred. Note that this copolymer may be either a block copolymer or a random copolymer.

上記共重合体の好適な具体例としては、たとえば非水系
溶媒にリチウム電池の電解質用として代表的な炭酸プロ
ピレン、γ−ブチロラクトンなどの高沸点溶媒を使用す
る場合、下記一般式(I);CH2=C−COOR2・
・(I) (R,は水素またはメチル基、R2はメチル基またはエ
チル基)で示されるモノマーと、下記一般式%式%() (R3は水素またはメチル基、R4は炭素数3以上通常
15までのアルキル基)で示される七ツマ−との共重合
体が挙げられる。すなわち、この共重合体では、上記一
般式(I)のモノマーに基づく構造部が上記高沸点溶媒
に対する可溶性部分となり、また上記一般式(II)の
モノマーに基づく構造部が同じく不溶性部分となる。
Preferred specific examples of the above copolymer include the following general formula (I); CH2 =C-COOR2・
・(I) (R is hydrogen or methyl group, R2 is methyl group or ethyl group) and the following general formula % formula % () (R3 is hydrogen or methyl group, R4 is usually 3 or more carbon atoms) Examples include copolymers with heptamers having up to 15 alkyl groups). That is, in this copolymer, the structural part based on the monomer of the above general formula (I) becomes a soluble part in the high boiling point solvent, and the structural part based on the monomer of the above general formula (II) also becomes an insoluble part.

上述の如きゲル化剤である高分子ポリマーの数平均分子
量は5,000〜100,000程度がよい。
The number average molecular weight of the above-mentioned gelling agent polymer is preferably about 5,000 to 100,000.

またその非水系溶媒に対する可溶性部分/不溶性部分の
割合は、構成上ツマ−のモル比で110.1〜L10.
7程度が好ましく、可溶性部分が多すぎると前記従来の
ゲル状電解質と同様の問題を生起し、逆に不溶性部分が
多すぎると本来のゲル化機能が不充分になるとともに電
解質中で均一な分散状態を呈しにくくなる。さらに、こ
の高分子ポリマーによってゲル化作用を充分に発揮させ
るには、非水系溶媒の種類によっである程度差はあるが
、一般にその使用量を非水系溶媒100重量部に対して
5〜50重量部程度となる割合とするのがよい。
Moreover, the ratio of soluble part to insoluble part in the non-aqueous solvent is 110.1 to L10.
A value of about 7 is preferable; if the soluble portion is too large, problems similar to those of the conventional gel electrolyte described above will occur; conversely, if the insoluble portion is too large, the original gelling function will be insufficient and uniform dispersion in the electrolyte will not be achieved. The condition becomes less likely to occur. Furthermore, in order to fully exhibit the gelling effect of this high molecular weight polymer, it is generally necessary to use an amount of 5 to 50 parts by weight per 100 parts by weight of the non-aqueous solvent, although there are some differences depending on the type of non-aqueous solvent. It is best to set the ratio to about 100%.

この発明のゲル状電解質の構成成分の一つであるリチウ
ム塩としては、従来よりリチウム電池などの電解質成分
として知られる種々のものを使用可能であるが、とくに
好適なものとしてLiBφ4(φはフェニル基を意味す
る)、LiBF4%LiPF6、LiCF3SO3、L
iAsF6などが挙げられ、これらは予め非水系溶媒の
付加物とした形態でも使用でき、2種以上を併用しても
よい。これらリチウム塩の使用量は、電解質中の濃度が
0.3〜2モル/l程度となるような割合とするのがよ
い。
As the lithium salt, which is one of the constituent components of the gel electrolyte of the present invention, various substances conventionally known as electrolyte components for lithium batteries etc. can be used, but a particularly preferred one is LiBφ4 (φ is phenyl ), LiBF4%LiPF6, LiCF3SO3, L
Examples include iAsF6, which can also be used in the form of an adduct of a non-aqueous solvent, or two or more types can be used in combination. The amount of these lithium salts used is preferably such that the concentration in the electrolyte is about 0.3 to 2 mol/l.

非水系溶媒としては、上記リチウム塩と反応せず、この
リチウム塩を溶解でき、かつ前記ゲル化剤の高分子ポリ
マーを部分的に溶解するとともに該ゲル化剤と混合して
ゲル化する性質を有するものであれば種々使用可能であ
る。その代表例としては、既述した炭酸プロピレン、γ
−ブチロラクトンのほか、ジフトキシエタン、ジオキシ
ランなどが挙げられ、これらは単独または2種以上の混
合形態で使用できる。そして、とくにゲル化剤が前記し
た一般式(I)および(II)の七ツマ−の共重合体で
あるとき、炭酸プロピレンおよびγ−ブチロラクトンの
単独または混合溶媒、ならびにこれらを主溶媒としてジ
メトキシエタンを少量加えた混合溶媒が最適であり、後
者のジメトキシエタンを少量混合したものはリチウム電
池用として電池特性を向上する効果がある。
The non-aqueous solvent is one that does not react with the lithium salt, can dissolve the lithium salt, partially dissolves the gelling agent polymer, and has the property of being mixed with the gelling agent to form a gel. Various types of materials can be used as long as they have the following properties. Typical examples include propylene carbonate, γ
-In addition to butyrolactone, examples include diphthoxyethane and dioxirane, and these can be used alone or in a mixture of two or more. In particular, when the gelling agent is a copolymer of heptamers of general formulas (I) and (II) described above, propylene carbonate and γ-butyrolactone may be used alone or as a mixed solvent, and dimethoxyethane using these as the main solvent may be used. A mixed solvent containing a small amount of dimethoxyethane is optimal, and the latter mixed with a small amount of dimethoxyethane is effective for improving battery characteristics for lithium batteries.

なお、この発明のゲル状電解質は、リチウム電池用電解
質に限らず、エレクトロクロミック表示素子その他のリ
チウムイオンが導電イオン種である各種電気化学的素子
に使用されるリチウムイオン伝導性電解質として使用可
能であるが、とくに正負両極集電板の対向する平坦状の
周辺部で接着封止する構造の薄型リチウム電池に対して
最適である。
The gel electrolyte of the present invention can be used not only as an electrolyte for lithium batteries, but also as a lithium ion conductive electrolyte used in electrochromic display elements and other various electrochemical devices in which lithium ions are the conductive ion species. However, it is particularly suitable for thin lithium batteries that have a structure in which the opposing flat peripheral parts of the positive and negative current collector plates are adhesively sealed.

第1図は上記薄型リチウム電池の一例を示すものである
。図において、1はステンレス鋼からなる方形平板状の
正極集電板、2は周辺を一面側へ段状に折曲して主面と
同じ向きの平坦状の周辺部2aを設けたステンレス鋼か
らなる浅い方形皿状の負極集電板、3は両極集電板1,
2の対向する周辺部1a、2a間を封止した接着剤層、
4は両極集電板1,2間に構成される空間5内において
正極集電板1側に配された正極、6は空間5内において
負極集電板2側に装填されたリチウムまたはリチウム合
金からなる負極、7は両極4,6間に介在させた多孔性
ポリプロピレンなどの多孔性材料からなるセパレータ、
8は正極4を取囲むように配設されたポリプロピレンな
どからなる方形環状の枠体である。
FIG. 1 shows an example of the above-mentioned thin lithium battery. In the figure, 1 is a rectangular flat positive electrode current collector plate made of stainless steel, and 2 is a stainless steel plate whose periphery is bent in steps toward one side to provide a flat periphery 2a in the same direction as the main surface. 3 is a bipolar current collector plate 1,
an adhesive layer that sealed between the opposing peripheral parts 1a and 2a of 2;
4 is a positive electrode arranged on the positive electrode current collector plate 1 side in the space 5 formed between the two electrode current collector plates 1 and 2, and 6 is a lithium or lithium alloy loaded in the space 5 on the negative electrode current collector plate 2 side. 7 is a separator made of a porous material such as porous polypropylene interposed between the two electrodes 4 and 6;
Reference numeral 8 denotes a rectangular ring-shaped frame made of polypropylene or the like and disposed so as to surround the positive electrode 4 .

この場合、前述したこの発明のゲル状電解質は通常では
組込み前のセパレータ7に予め塗布して含浸させること
により、電池内部に添加される。
In this case, the above-mentioned gel electrolyte of the present invention is usually added to the interior of the battery by coating and impregnating the separator 7 in advance before assembly.

このときゲル状電解質は、組立て基面に多少の傾斜があ
ったり、振動が加わっても周辺へ流出することがなく、
塗り付は位置から組込み位置へのセパレータ7の運搬時
にも滴下する惧れはなく、かつ添加量を広範囲で調整す
ることが可能である。
At this time, the gel electrolyte will not flow out to the surrounding area even if the assembly base is slightly inclined or vibration is applied.
There is no risk of dripping when the separator 7 is transported from one position to the installation position, and the amount added can be adjusted over a wide range.

一方、接着剤層3としては、一般的な塗料溶液型の接着
剤も使用できるが、とくに熱融着性材料からなるものが
好適である。この熱融着性材料3としでは、熱融着前の
形態が両極集電板1,2の周辺部1a、2aの幅に対応
する幅に予め設定した環状などの成形シートであるもの
を使用できる。すなわち、封止操作は上記同周辺部1a
、2a間に上記成形シートを挾んで圧接し、この状態で
両局辺部1a、2a部分を所定温度まで加熱すればよい
On the other hand, as the adhesive layer 3, a general paint solution type adhesive can also be used, but one made of a heat-fusible material is particularly suitable. The heat-fusible material 3 used is a molded sheet, such as an annular sheet, whose form before heat-sealing is a preset width corresponding to the width of the peripheral parts 1a and 2a of the bipolar current collector plates 1 and 2. can. That is, the sealing operation is performed on the same peripheral portion 1a.
, 2a, and press the molded sheet between them, and in this state, both local portions 1a and 2a are heated to a predetermined temperature.

そして、この加熱過程においては既述のようにゲル状電
解質は従来汎用の高流動性液体からなる電解質のように
飛散することがなく、容易に確実な封止が達成される。
In this heating process, as described above, the gel electrolyte does not scatter unlike electrolytes made of conventional general-purpose highly fluid liquids, and reliable sealing can be easily achieved.

また上述のように熱融着前の形態が固形の成形物である
ことから、取扱い操作および組付は操作が非常に容易で
あると共に、塗料溶液型接着剤を用いる場合のように空
間5内へ流入してゲル状電解質と混じり合う惧れがない
Furthermore, as mentioned above, since the form before heat fusion is a solid molded product, handling and assembly are very easy, and the space 5 can be easily handled and assembled, unlike when using a paint solution type adhesive. There is no risk of it flowing into the electrolyte and mixing with the gel electrolyte.

なお、このような熱融着性材料3にはホットメルト型接
着剤、ハーメチックシール可能なセラミックを始め、種
々のものを使用できる。
Note that various materials can be used as the heat-fusible material 3, including a hot-melt adhesive and a hermetically sealable ceramic.

また、正極4としては、活物質とテフロン粉末などの結
合剤と必要に応じてカルボニルニッケルなどの電子伝導
助剤とを混合してシート状に成形したものを使用しても
よいが、前述したゲル状電解質を活物質と必要に応じて
導電助剤に混練して粘稠物としたものを好適に使用でき
る。すなわぢ後者の粘稠物はスクリーン印刷やスキージ
塗布法などによって正極集電板1上に塗布形成できるた
め、前者のような成形工程が不要となり、形成操作も極
めて簡単で低コスト化が図れると共に、薄層化が容易で
あることから薄型電池への適用性にすぐれる。
Further, as the positive electrode 4, a sheet formed by mixing an active material, a binder such as Teflon powder, and, if necessary, an electron conduction aid such as carbonyl nickel may be used. A viscous material obtained by kneading a gel electrolyte with an active material and, if necessary, a conductive additive, can be suitably used. In other words, the latter viscous material can be applied and formed on the positive electrode current collector plate 1 by screen printing or squeegee coating, so the forming process like the former is unnecessary, and the forming operation is extremely simple and costs can be reduced. In addition, since it can be easily made into a thin layer, it has excellent applicability to thin batteries.

そして、枠体8は正極4として上記粘稠物を使用する場
合にその塗布量を設定する機能を持つものである。すな
わち、予めこの枠体8を正極集電板1上に載置しておき
、その内側に一杯に上記粘稠物を塗布充填することによ
って塗布量が一定になる。
The frame 8 has a function of setting the amount of the viscous material to be applied when the viscous material is used as the positive electrode 4. That is, by placing the frame 8 on the positive electrode current collector plate 1 in advance and filling the inside thereof with the viscous substance, the coating amount becomes constant.

正極4に使用する活物質としては、従来よりリチウム電
池用の正極活物質として知られる種々のものを使用でき
るが、とくに好適なものとしてTiS2、MoS、、 
、Va013、v205、VSe2、N1PS3が挙げ
られ、これらは2種以上を併用してもよい。
As the active material used for the positive electrode 4, various materials conventionally known as positive electrode active materials for lithium batteries can be used, but particularly preferred ones include TiS2, MoS,...
, Va013, v205, VSe2, and N1PS3, and two or more of these may be used in combination.

さらに、゛負極6としてはリチウムおよびリチウム合金
のいずれも使用可能であるが、リチウム単独では長期の
間に前記ゲル状電解質と反応する可能性があるため、ア
ルミニウムなどとの合金化を図ることが望ましい。
Furthermore, although both lithium and lithium alloys can be used as the negative electrode 6, lithium alone may react with the gel electrolyte over a long period of time, so it is not recommended to alloy it with aluminum or the like. desirable.

なお、このような薄型リチウム電池における両極集電板
は、第1図で示すようにその一方を皿形とする以外に、
両方を共に皿形としたり、あるいは両方を共に平板状と
して周辺部間にスペーサを介在させてもよい。また電池
総厚は1.0 mm以下、好適には0.3〜0.7 m
程度である。
In addition, in addition to making one of the current collector plates in such a thin lithium battery dish-shaped as shown in Fig. 1,
Both may be dish-shaped, or both may be plate-shaped and a spacer may be interposed between the peripheral portions. The total thickness of the battery is 1.0 mm or less, preferably 0.3 to 0.7 m.
That's about it.

[発明の効果] この発明に係るリチウムイオン伝導性ゲル状電解質は、
ゲル化剤として非水系溶媒に対する可溶性部分と不溶性
部分とを有する高分子ポリマーを使用しているため、従
来のゲル状電解質に比較してイオン伝導度および化学的
安定性にすぐれており、しかもリチウム電池用電解質と
して多孔性材料からなるセパレータに含浸させた形で電
池内に添加する場合、該セパレータに外部から力が加わ
つても表面へ押し出されにくく、かつ上記高分子ポリマ
ーの不溶性部分が液相の保持体として機能するため、セ
パレータ内部の電解質不足に起因する電池性能の低下が
抑制されるという利点がある。
[Effect of the invention] The lithium ion conductive gel electrolyte according to the present invention has the following features:
Because it uses a high-molecular polymer that has a soluble part and an insoluble part in non-aqueous solvents as a gelling agent, it has superior ionic conductivity and chemical stability compared to conventional gel electrolytes. When added to a battery as an electrolyte in a form impregnated into a separator made of a porous material, it is difficult to be pushed out to the surface even if force is applied to the separator from the outside, and the insoluble portion of the high polymer is in the liquid phase. Since the separator functions as a holder, it has the advantage of suppressing deterioration in battery performance due to electrolyte shortage inside the separator.

[実施例] 以下に、この発明の実施例および比較例を示す。[Example] Examples and comparative examples of the present invention are shown below.

実施例1 炭酸プロピレンにLiCF3SO3を1モル/l濃度で
溶解した溶液100重量部に、メタクリル酸メチルとア
クリル酸2−エチルヘキシルとのモル比82 :18の
共重合体(数平均分子量約50,000)を40重量部
添加混合したのち、100℃にて3時間装置したところ
、白色不透明で均一なゲル状電解質が得られた。このゲ
ル状電解質の10yを採取して、遠心分離機(国産遠心
器社製の形式H−108NA2)にて3,500回/分
の回転速度で5分間遠心分離処理を施したところ、全く
層分離は認められなかった。
Example 1 A copolymer of methyl methacrylate and 2-ethylhexyl acrylate in a molar ratio of 82:18 (number average molecular weight of about 50,000 ) was added and mixed, and when the mixture was heated at 100° C. for 3 hours, a white, opaque, and uniform gel-like electrolyte was obtained. When 10y of this gel electrolyte was collected and centrifuged for 5 minutes at a rotation speed of 3,500 times/min using a centrifuge (model H-108NA2, manufactured by Kokusan Centrifuge Co., Ltd.), no layer was formed. No separation was observed.

実施例2 実施例1の共重合体に代えてメタクリル酸メチルとメタ
クリル酸エチルとメタクリル酸ブチルとのモル比1.2
 : 67.1 : 31.7の共重合体(数平均分子
量約30,000)を40重量部使用した以外は、実施
例1と同様にして白色不透明で均一なゲル状電解質を得
た。このゲル状電解質は実施例1と同様の遠心分離処理
を施しても層分離が全く認められなかった。
Example 2 The copolymer of Example 1 was replaced with methyl methacrylate, ethyl methacrylate, and butyl methacrylate at a molar ratio of 1.2.
A white, opaque, and uniform gel electrolyte was obtained in the same manner as in Example 1, except that 40 parts by weight of a copolymer of : 67.1 : 31.7 (number average molecular weight approximately 30,000) was used. Even when this gel electrolyte was subjected to the same centrifugation treatment as in Example 1, no layer separation was observed.

実施例3 実施例1の共重合体に代えてアクリル酸メチルとメタク
リル酸ブチルとのモル比70:30の共重合体(数平均
分子量約50,000)を40重量部使用した以外は、
実施例1と同様にして白色不透明で均一なゲル状電解質
を得た。このゲル状電解質は実施例1と同様の遠心分離
処理を施しても層分離が全く認められなかった。
Example 3 Except that 40 parts by weight of a copolymer of methyl acrylate and butyl methacrylate in a molar ratio of 70:30 (number average molecular weight about 50,000) was used in place of the copolymer of Example 1.
A white, opaque, and uniform gel electrolyte was obtained in the same manner as in Example 1. Even when this gel electrolyte was subjected to the same centrifugation treatment as in Example 1, no layer separation was observed.

比較例 実施例1の共重合体に代えてポリメタクリル酸メチル(
数平均分子量約20,000)を40重量部使用した以
外は、実施例1と同様にしてゲル状電解質を得た。この
ゲル状電解質は無色透明の均一体であった。
Comparative Example Polymethyl methacrylate (
A gel electrolyte was obtained in the same manner as in Example 1, except for using 40 parts by weight of a gel having a number average molecular weight of approximately 20,000. This gel electrolyte was a colorless and transparent homogeneous body.

以上の実施例および比較例のゲル状電解質について、2
0℃におけるイオン伝導度を測定したところ、つぎの第
1表に示す結果が得られた。
Regarding the gel electrolytes of the above examples and comparative examples, 2
When the ionic conductivity at 0° C. was measured, the results shown in Table 1 below were obtained.

第   1   表 つぎに、実施例および比較例のゲル状電解質をそれぞれ
100μ厚のポリプロピレン製不織布に約100q/c
++fの割合で塗布含浸させ、この不織布の両面に直径
10問、厚さ0.1 mmのリチウム金属板を貼り合わ
せ、両金属板間に100P、500y。
Table 1 Next, about 100 q/c of the gel electrolytes of Examples and Comparative Examples were each applied to a 100 μ thick polypropylene nonwoven fabric.
It was coated and impregnated at a ratio of ++f, and 10 diameter and 0.1 mm thick lithium metal plates were attached to both sides of this nonwoven fabric, and 100P and 500Y were applied between both metal plates.

IKgの圧力を印加してそれぞれ圧力を解いたのちのI
 KHzの交流抵抗を測定したところ、次表で示す結果
が得られた。
I after applying a pressure of IKg and releasing the pressure respectively
When the AC resistance at KHz was measured, the results shown in the following table were obtained.

第   2   表 さらに、上記実施例および比較例のゲル状電解質を用い
てつぎの方法によって第1図で示す構造の薄型リチウム
電池を製作した。
Table 2 Furthermore, a thin lithium battery having the structure shown in FIG. 1 was manufactured using the gel electrolytes of the above Examples and Comparative Examples by the following method.

まず、ゲル状電解質とTiS2粉末とを重量比1:1で
混練し、この混線物をスクリーン印刷性により一辺15
m+++の正方形で厚さ0.1 trttのステンレス
製平板からなる正極集電板の表面に、その上に載置した
ポリプロピレン製の方形枠体の内側に一杯になるように
塗布し、−辺10mの正方形で厚さ0.1馴の正極を形
成した。この正極上に、厚さ100Pのポリプロピレン
不織布からなるセパレータ(ポリプラスチックス社製の
商品名ジュラガード5411)にゲル状電解質を約11
00ff1/fflの割合で塗り付けて均一に含浸させ
たものを積層し、さらにこのセパレータ上にリチウム−
アルミニウム合金製で一辺4朋の正方形箔からなる厚さ
80μの負極を積層した。
First, gel electrolyte and TiS2 powder are kneaded at a weight ratio of 1:1, and this mixed material is screen-printed with 15 mm on each side.
The coating was applied to the surface of a positive electrode current collector plate consisting of a stainless steel flat plate of m+++ square and 0.1 trtt thick, so that it filled the inside of a rectangular frame made of polypropylene placed on top of the positive electrode collector plate, and the negative side was 10 m. A positive electrode with a square shape and a thickness of 0.1 mm was formed. On this positive electrode, a gel electrolyte was applied to a separator made of polypropylene non-woven fabric with a thickness of 100P (product name: Duraguard 5411, manufactured by Polyplastics Co., Ltd.) for about 11 hours.
The separators are coated at a ratio of 0ff1/ffl to be uniformly impregnated, and then lithium is applied on top of this separator.
A negative electrode made of aluminum alloy and having a thickness of 80 μm and consisting of 4 square foils on each side was laminated.

つぎに、正極集電板の周辺部上に厚さ60μ。Next, a layer with a thickness of 60 μm was placed on the periphery of the positive electrode current collector plate.

幅2rImの方形環状シートからなる変性ポリオレフィ
ン系ホットメルト接着剤が載置された状態で一辺15t
sの正方形で厚さ0.1 tmの皿形ステンレス製板か
らなる負極集電板を被冠し、画集電板の周辺部を圧接下
で185℃に加熱して熱融着封止し、電池総厚0.5 
間の薄型リチウム電池を作製した。
A rectangular annular sheet with a width of 2 rIm with a modified polyolefin hot melt adhesive placed on it weighs 15 tons on each side.
A negative electrode current collector plate made of a dish-shaped stainless steel plate with a square size of s and a thickness of 0.1 tm was covered with a negative electrode current collector plate, and the peripheral part of the current collector plate was heated to 185°C under pressure to seal by heat fusion. Battery total thickness 0.5
We fabricated a thin lithium battery between the two.

かくして作製した各薄型リチウム電池について、25°
Cにおいて200fiA定電流放電特性を調べたところ
、第2図に示す結果が得られた。なお、図中の曲線A1
は実施例1、曲線A2は実施例2、曲線A3は実施例3
、曲線Bは比較例のそれぞれゲル状電解質を用いた電池
の特性を示す。
For each thin lithium battery thus produced, 25°
When the 200fiA constant current discharge characteristics of C were investigated, the results shown in FIG. 2 were obtained. In addition, curve A1 in the figure
is Example 1, curve A2 is Example 2, and curve A3 is Example 3.
, Curve B shows the characteristics of batteries using gel electrolytes of comparative examples.

上記第1表および第2表の結果から、この発明のゲル状
電解質(実施例1〜3)は、従来のゲル状電解質(比較
例)に比べ、イオン伝導性にすぐれており、しかも多孔
性材料に含浸させた場合に該材料に圧力が加わっても外
部へ押し出されにくく内部に充分に保持されてその内部
抵抗の増大が抑えられるため、電池製作時に多孔性材料
からなるセパレータに含浸させた形で添加するのに適し
ていることが明らかである。また第2図の結果から、こ
の発明のゲル状電解質を用いた電池(曲線A+ 、A2
 、A3 )は、従来のゲル状電解質を用いた電池(曲
線B)よりも放電特性が良好であることが判る。
From the results in Tables 1 and 2 above, the gel electrolytes of the present invention (Examples 1 to 3) have superior ionic conductivity and porous properties compared to conventional gel electrolytes (comparative examples). When impregnated into a material, it is difficult to be pushed out even if pressure is applied to the material, and is sufficiently retained inside to suppress an increase in internal resistance. Therefore, it is impregnated into a separator made of porous material during battery production. It is clear that it is suitable for addition in form. Furthermore, from the results shown in FIG.
, A3) has better discharge characteristics than the conventional battery using a gel electrolyte (curve B).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は薄型リチウム電池の構造例を示す断面図、第2
図は実施例および比較例のゲル状電解質を使用した薄型
リチウム電池の定電流放電特性図である。 第1図 放電時間 (時間)
Figure 1 is a cross-sectional view showing an example of the structure of a thin lithium battery;
The figure is a constant current discharge characteristic diagram of thin lithium batteries using gel electrolytes of Examples and Comparative Examples. Figure 1 Discharge time (hours)

Claims (2)

【特許請求の範囲】[Claims] (1)リチウム塩と非水系溶媒とゲル化剤である高分子
ポリマーとからなるリチウムイオン伝導性ゲル状電解質
において、上記高分子ポリマーが上記非水系溶媒に対す
る可溶性部分と不溶性部分とを有することを特徴とする
リチウムイオン伝導性ゲル状電解質。
(1) In a lithium ion conductive gel electrolyte consisting of a lithium salt, a nonaqueous solvent, and a polymer as a gelling agent, the polymer has a soluble portion and an insoluble portion in the nonaqueous solvent. Features a lithium ion conductive gel electrolyte.
(2)ゲル化剤である高分子ポリマーが、下記一般式(
I ); ▲数式、化学式、表等があります▼・・・( I ) (R_1は水素原子またはメチル基、R_2はメチル基
またはエチル基)で示されるモノマーと、下記一般式(
II); ▲数式、化学式、表等があります▼・・・(II) (R_3は水素原子またはメチル基、R_4は炭素数3
以上のアルキル基)で示されるモノマーとの共重合体で
ある特許請求の範囲第(1)項記載のリチウムイオン伝
導性ゲル状電解質。
(2) The high molecular weight polymer that is the gelling agent has the following general formula (
I); ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) The monomer represented by (R_1 is a hydrogen atom or methyl group, R_2 is a methyl group or ethyl group) and the following general formula (
II); ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(II) (R_3 is a hydrogen atom or methyl group, R_4 is a carbon number of 3
The lithium ion conductive gel electrolyte according to claim 1, which is a copolymer with a monomer represented by the above alkyl group.
JP6277686A 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte Expired - Lifetime JPH0732022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277686A JPH0732022B2 (en) 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277686A JPH0732022B2 (en) 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte

Publications (2)

Publication Number Publication Date
JPS62219468A true JPS62219468A (en) 1987-09-26
JPH0732022B2 JPH0732022B2 (en) 1995-04-10

Family

ID=13210112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277686A Expired - Lifetime JPH0732022B2 (en) 1986-03-19 1986-03-19 Lithium ion conductive gel electrolyte

Country Status (1)

Country Link
JP (1) JPH0732022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617077B1 (en) 1998-11-30 2003-09-09 Sanyo Electric Co., Ltd. Polymer electrolyte battery and method of fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4239632B2 (en) * 2003-03-20 2009-03-18 住友ベークライト株式会社 Lithium ion conductive gel electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617077B1 (en) 1998-11-30 2003-09-09 Sanyo Electric Co., Ltd. Polymer electrolyte battery and method of fabricating the same

Also Published As

Publication number Publication date
JPH0732022B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPH0652671B2 (en) Rechargeable electrochemical generator
JPS58188063A (en) Electrochemical battery of solid state
KR20160109604A (en) A manufacturing method of all-solid battery using wet-dry process
WO2022135151A1 (en) Battery, electronic device, and mobile apparatus
JPS62219468A (en) Lithium ion conductive gelled electrolyte
JP2002042792A (en) Method for manufacturing battery electrode with solid electrolyte layer
JP7488018B2 (en) How lithium-ion batteries are manufactured
JPS62219469A (en) Lithium battery
WO2006054779A1 (en) Charge storing rubber and electric double-layer capacitor, and lithium battery employing it
JPS6220262A (en) Thin type lithium battery
JPH0574195B2 (en)
CN113921988A (en) Battery diaphragm coating material and preparation method thereof, battery diaphragm and battery
JPS61214374A (en) Thin lithium secondary battery
JPS6222375A (en) Thin lithium battery
JPS5856467B2 (en) Battery manufacturing method
JPS61214365A (en) Thin lithium battery
KR20210040371A (en) Slurry composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, separator for non-aqueous secondary battery, and non-aqueous secondary battery
JPS6220263A (en) Thin type lithium battery
JPS61214364A (en) Thin lithium battery
JPS6222376A (en) Thin lithium battery
JPS59127381A (en) Battery
JP4135198B2 (en) Lithium battery manufacturing method
JPH0384809A (en) Lithium ion conductive polymer electrolyte
JPS59154778A (en) Electrolyte composition
JPS62211866A (en) Lithium battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term