JPS6220263A - Thin type lithium battery - Google Patents

Thin type lithium battery

Info

Publication number
JPS6220263A
JPS6220263A JP60158949A JP15894985A JPS6220263A JP S6220263 A JPS6220263 A JP S6220263A JP 60158949 A JP60158949 A JP 60158949A JP 15894985 A JP15894985 A JP 15894985A JP S6220263 A JPS6220263 A JP S6220263A
Authority
JP
Japan
Prior art keywords
lithium
battery
current collector
electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60158949A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60158949A priority Critical patent/JPS6220263A/en
Publication of JPS6220263A publication Critical patent/JPS6220263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase leakage resistance of a thin type lithium battery by using a viscous electrolyte comprising lithium salt, lithium polymethacrylate, and nonaqueous solvent in which these materials are dissolved. CONSTITUTION:A positive electrode 4, a separator 7, and a negative electrode 6 comprising lithium are placed between a positive current collecting flat plate 1 made of stainless steel and a cup-shaped negative current collecting plate whose periphery 2a is pressed in a step form, and the peripheries 1a and 2a are sealed with adhesive 3. A viscous electrolyte comprising lithium salt, lithium polymethacrylate, and nonaqueous solvent in which these materials are dissolved. Leakage of electrolyte can be prevented regardless of hot-melt type sealing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、リチウムまたはリチウム合金を負極とし、
正負両極集電板の対向する平坦状の周辺部で接着封止さ
れた構造を有する薄型のリチウム電池に関する。
[Detailed description of the invention] [Industrial application field] This invention uses lithium or a lithium alloy as a negative electrode,
The present invention relates to a thin lithium battery having a structure in which positive and negative current collector plates are adhesively sealed at opposing flat peripheral parts.

〔従来の技術〕[Conventional technology]

従来より汎用されるボタン型やコイン型などのリチウム
電池は、一般に、正極活物質および結合剤を含む正極と
リチウムまたはリチウム合金からなる負極との間にセパ
レータを介在させ、これらを缶体をなす正極集電板と負
極集電板との間に配置すると共に、電解質であるリチウ
ム塩を非水系溶媒に溶解した高流動性の液体である電解
液をセパレータおよび正極に浸潤させた上で、正極集電
板の立ち上がり周縁部をバッキング材を挾んでかしめ屈
曲して封止した構造を有している(文献不詳)。
Conventionally popular button-type and coin-type lithium batteries generally have a separator interposed between a positive electrode containing a positive electrode active material and a binder and a negative electrode made of lithium or a lithium alloy to form a can. The separator and the positive electrode are placed between the positive electrode current collector plate and the negative electrode current collector plate, and the separator and the positive electrode are infiltrated with an electrolytic solution, which is a highly fluid liquid in which a lithium salt as an electrolyte is dissolved in a non-aqueous solvent. It has a structure in which the rising edge of the current collector plate is sealed by sandwiching a backing material and caulking and bending it (unspecified literature).

しかしながら、近年における電子機器類の小型化、軽量
化、薄型化などに伴って、これに使用するリチウム電池
としてもカード型やフレキシブル型などのたとえば総厚
が0.5 mm程度という非常に薄型で高性能なものが
要望されている。このような薄型電池になると、前記し
たボタン型やコイン型の電池における封止手段では構造
上および加工技術上の制約から電池総厚1. Omm程
度が限界であるため、正負両極集電板の平坦状とした対
向する周縁部で接着剤を介して封止する方式を採用せざ
るを得ない(文献不詳)。
However, as electronic devices have become smaller, lighter, and thinner in recent years, the lithium batteries used in these devices have become very thin, such as card-type or flexible types, with a total thickness of about 0.5 mm. High performance is required. When it comes to such thin batteries, the sealing means for the button-type or coin-type batteries described above has a total battery thickness of 1.5 mm due to structural and processing technology constraints. Since the limit is approximately 0 mm, it is necessary to adopt a method of sealing the flat opposing peripheral edges of the positive and negative current collector plates with an adhesive (unspecified literature).

[発明が解決しようとする問題点〕 しかるに、このような薄型電池において前記した高流動
性の電解液を使用した場合、両極集電板が薄型化のため
にほぼ平板状となることから、電池組立時に電解液が外
部へ流出しやすく、その必要量を確保しにくく、かつ両
極集電板の周辺部の濡れによって封止が非常に困難にな
る。また、組立後の薄型電池は、使用中に幅の狭い封止
部に常に電解液が接触するためにa液を生じやすく、信
頼性に難があり、さらに二次電池とした場合では充放電
の繰り返しによって負極リチウムがデンドライト状(樹
枝状)に析出して短絡を発生しやすく、寿命が短くなる
という問題点があった。
[Problems to be Solved by the Invention] However, when the above-mentioned highly fluid electrolyte is used in such a thin battery, since the bipolar current collector plate becomes almost flat due to the thinning, the battery During assembly, the electrolytic solution tends to leak out, making it difficult to secure the required amount, and sealing becomes extremely difficult due to wetting of the periphery of the bipolar current collector plates. In addition, after assembly, thin batteries tend to produce a-liquid because the electrolyte always comes into contact with the narrow sealing part during use, making reliability difficult. Furthermore, when used as a secondary battery, charging and discharging By repeating this process, the negative electrode lithium precipitates in a dendrite shape, which tends to cause short circuits, resulting in a shortened lifespan.

一方、このような薄型電池の封止をホットメルト型接着
剤などの熱融着性材料による熱融着にて行う場合、該材
料として予め幅や厚みを適当に設定した環状シート形態
のものを使用できるので、一般的な塗料溶液型の接着剤
におけるような塗布操作が不要でかつ電11!2内部へ
の流入の惧れもないという利点がある。ところが、この
場合に従来の電解液では、融着時の加熱にて蒸気圧が高
まり、液が飛散して封止自体を困類にするという問題が
あった。
On the other hand, when sealing such a thin battery by heat fusion using a heat-adhesive material such as a hot-melt adhesive, the material is in the form of an annular sheet with an appropriate width and thickness set in advance. Since it can be used, there is an advantage that there is no need for a coating operation as in the case of a general paint solution type adhesive, and there is no fear of it flowing into the inside of the electrode 11!2. However, in this case, conventional electrolytic solutions have a problem in that the vapor pressure increases during heating during fusion, and the liquid scatters, making sealing itself difficult.

なお、特殊なものとして固体電解質を用いた電池も提案
されており、薄型電池においても固体電解質を用いるこ
とが考えられるが、このような固体電解質は前記電解液
に比較してイオン伝導度が著しく低いために電池性能が
劣り、かつ製造プロセスが複雑でコスト高になるなどの
欠点がある。
Note that special batteries using solid electrolytes have also been proposed, and it is conceivable that solid electrolytes may be used in thin batteries as well, but such solid electrolytes have significantly lower ionic conductivity than the electrolytes described above. There are drawbacks such as poor battery performance due to low battery life, and a complicated manufacturing process that increases costs.

[問題点を解決するための手段] この発明者らは、」二記問題点を解決するために鋭意検
討を重ねた結果、従来の電解液に代えて特定の成分を使
用した粘性体を用いた場合、電池組立時に従来の電解液
のように外部へ流出する惧れがなく、その必要量を確保
できると共に接着剤による封止が支障なく行え、また上
記粘性体は塗り付けによって添加できることから添加際
作も容易であり、しかも熱融着性材料の熱融着による封
止方式を採用しても上記粘性体は飛散を生じず充分な封
止が可能となり、加えて漏液を生じにくく信頼性が高く
二次電池としても高寿命である薄型リチウム電池が得ら
れることを知り、この発明をなすに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the problems described in item 2, the inventors have developed a solution using a viscous material containing specific components in place of the conventional electrolyte. If the electrolyte is assembled into a battery, there is no risk of it leaking out like with conventional electrolytes, the required amount can be secured, sealing with adhesive can be performed without any problems, and the viscous substance can be added by painting. It is easy to add, and even if a sealing method is used by heat-sealing a heat-fusible material, the viscous material does not scatter, allowing for sufficient sealing, and in addition, leakage is less likely to occur. We discovered that a thin lithium battery that is highly reliable and has a long life even as a secondary battery can be obtained, leading us to create this invention.

すなわち、この発明は、正極集電板と負極集電板との間
に正極とリチウムまたはリチウム合金からなる負極と両
極間に介在するセパレータとを含む電池要素が配置され
、両極集電板の対向する平坦状の周辺部で接着封止され
た構造の薄型リチウム電池において、電池内部に、電解
質としてのリチウム塩と、ポリメタクリル酸のリチウム
塩と、これら両者を溶解する非水系溶媒とからなる粘性
体が添加されていることを特徴とする薄型リチウム電池
に係る。
That is, in the present invention, a battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between the two electrodes is arranged between a positive electrode current collector plate and a negative electrode current collector plate, and In a thin lithium battery with a flat periphery adhesive-sealed structure, the battery contains a viscous lithium salt consisting of a lithium salt as an electrolyte, a lithium salt of polymethacrylic acid, and a non-aqueous solvent that dissolves both of them. The present invention relates to a thin lithium battery characterized in that a lithium oxide is added thereto.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において前記粘性体の一成分として使用するポ
リメタクリル酸のリチウム塩は非水系溶媒との間でゲル
化作用を生起するゲル化剤として機能するものであり、
このゲル化によって電解質を含む成分全体が増粘して塗
り付は可能でかつ熱融着による封止時の加熱によっても
飛散しない粘性体となる。
In this invention, the lithium salt of polymethacrylic acid used as a component of the viscous body functions as a gelling agent that causes a gelling action with a non-aqueous solvent,
This gelation increases the viscosity of the entire component including the electrolyte, resulting in a viscous body that can be applied and does not scatter even when heated during sealing by thermal fusion.

なお、このようにゲル化による増粘作用をもたらす添加
剤としては、非水系溶媒に対する溶解性がよく、かつ電
解質のリチウム塩に対して反応性を持たないことが必要
条件となる。この観点から、ポリメタクリル酸はゲル化
作用を期待できるがリチウム塩との反応性を有するため
に不適当であり、これに対してこの発明で使用するポリ
メタクリル酸の一リチウム塩はもはや電解質であるリチ
ウム塩と反応する惧れが全くなくかつ非水系溶媒に対す
る溶解性も良好であると共に電池中での安定性に優れる
Note that the additive that brings about the thickening effect by gelation must have good solubility in non-aqueous solvents and be non-reactive with the lithium salt of the electrolyte. From this point of view, although polymethacrylic acid can be expected to have a gelling effect, it is unsuitable due to its reactivity with lithium salts, whereas the monolithium salt of polymethacrylic acid used in this invention is no longer an electrolyte. There is no risk of reaction with certain lithium salts, and it has good solubility in non-aqueous solvents, as well as excellent stability in batteries.

このようなポリメタクリル酸のリチウム塩としては、メ
タクリル酸リチウムモノマーを適宜手段で重合して得ら
れるもの、ならびにポリメタクリル酸とリチウム成分と
を反応させて得られるもののいずれも使用可能であり、
とくに平均分子量5.000〜12,000程度のもの
が好適である。
As such a lithium salt of polymethacrylic acid, it is possible to use either one obtained by polymerizing a lithium methacrylate monomer by an appropriate means or one obtained by reacting polymethacrylic acid with a lithium component.
Particularly suitable are those having an average molecular weight of about 5.000 to 12,000.

またこのポリメタクリル酸のリチウム塩の使用量は、粘
性体全体の4〜40重量%を占める範囲、最も好適には
10〜20重量%を占める範囲とするのがよい。この使
用量が多すぎると電池の内部抵抗が大きくなると共に粘
性体の粘稠性が高くなり過ぎて塗り付けなどの操作が困
難になり、逆に少なすぎると粘性体の流動性が大きくな
って従来の電解液と同様の問題を生じる。
The amount of the lithium salt of polymethacrylic acid to be used is preferably in the range of 4 to 40% by weight, most preferably in the range of 10 to 20% by weight of the entire viscous body. If the amount used is too large, the internal resistance of the battery will increase and the viscosity of the viscous material will become too high, making operations such as painting difficult. Conversely, if it is too small, the fluidity of the viscous material will increase. Similar problems arise as with conventional electrolytes.

この発明において粘性体中に電解質として配合するリチ
ウム塩は、従来よりリチウム電池用電解質成分として知
られる種々のものを使用可能であるが、とくに好適なも
のとして■、iBφ4(φはフェニル基を意味する)、
L iBFいL + P Fa、LiCF3SO3、L
iAsF6が挙げられ、これらは予め非水系溶媒の付加
物とした形態でも使用でき、2種以上を併用してもよい
。なお、従来より電解質成分として知られるLiclo
、は取扱い上で危険性が大きいため、好ましくない。ま
たこのようなリチウム塩の濃度は03〜3m0l/lが
好ましく、とくに好ましくは05〜1mol/lとする
のが良い。
In this invention, the lithium salt to be mixed into the viscous body as an electrolyte can be any of a variety of substances conventionally known as electrolyte components for lithium batteries; do),
L iBF I L + P Fa, LiCF3SO3, L
Examples include iAsF6, which can also be used in the form of an adduct of a non-aqueous solvent, or two or more types can be used in combination. In addition, Liclo, which is conventionally known as an electrolyte component,
, is undesirable because it is dangerous to handle. Further, the concentration of such a lithium salt is preferably 0.3 to 3 mol/l, particularly preferably 0.5 to 1 mol/l.

非水系溶媒としては、電解質としてのリチウム塩と反応
せず、このリチウム塩およびポリメタクリル酸のリチウ
ム塩の両者を溶解でき、かつポリメタクリル酸のリチウ
ム塩と混合してゲル化する性質を有するものであれは種
々使用可能である。
As a non-aqueous solvent, one that does not react with the lithium salt as an electrolyte, can dissolve both the lithium salt and the lithium salt of polymethacrylic acid, and has the property of gelling when mixed with the lithium salt of polymethacrylic acid. It can be used in various ways.

そしてとくに好適なものとして、プロピレンカーボネー
ト、T−ブチロラクトン、ジメトキシエタン、ジオキシ
ランの4種が挙げられ、これらは2種以上を併用しても
差し支えない。
Particularly preferred are propylene carbonate, T-butyrolactone, dimethoxyethane, and dioxirane, and two or more of these may be used in combination.

以上の3成分を含む粘性体を調製するには非水系溶媒中
にリチウム塩とポリメタクリル酸のリチウム塩とを混合
して溶解させる方法を採用してもよいが、とくに好適な
手段としてリチウム塩を溶解した非水系溶媒中でメタク
リル酸リチウムモノマーを重合反応して得られる反応生
成物をそのまま上記粘性体として用いる方法がある。す
なわち後者の方法では、メタクリル酸リチウムモノマー
の非水系溶媒に対する溶解性が前者の方法のポリメタク
リル酸のリチウム塩よりも大きいため、溶解操作が容易
であり、しかも粘性体として組成的により均一なものを
得やすいという利点がある。
In order to prepare a viscous body containing the above three components, a method of mixing and dissolving a lithium salt and a lithium salt of polymethacrylic acid in a non-aqueous solvent may be adopted, but a particularly suitable method is to use a lithium salt. There is a method in which a reaction product obtained by polymerizing a lithium methacrylate monomer in a nonaqueous solvent in which lithium methacrylate is dissolved is directly used as the viscous body. In other words, in the latter method, the solubility of the lithium methacrylate monomer in non-aqueous solvents is greater than that of the lithium salt of polymethacrylic acid in the former method, so the dissolution operation is easier, and moreover, the viscous material is more uniform in composition. It has the advantage of being easy to obtain.

なお、この発明で使用する電解質を含む粘性体として、
上述したリチウム塩と非水系溶媒との好適な組合せは多
数存在するが、電池特性および粘性体の均質性の面でL
iBφ4のジメトキシエタン付加物とプロピレンカーボ
ネートとの組合せが最も良好な結果が得られている。
In addition, as a viscous body containing an electrolyte used in this invention,
There are many suitable combinations of the above-mentioned lithium salt and non-aqueous solvent, but in terms of battery characteristics and homogeneity of the viscous material, there are many suitable combinations.
The best results have been obtained with the combination of iBφ4 dimethoxyethane adduct and propylene carbonate.

第1図はこの発明に係るリチウム電池の一例を示すもの
である。図において、■はステンレス鋼からなる方形平
板状の正極集電板、2は周辺を一面側へ段状に折曲して
主面と同じ向きの平坦状の周辺部2aを設けたステンレ
ス鋼からなる浅い方形皿状の負極集電板、3は両極集電
板1,2の対向する周辺部1a、2a間を封止した接着
剤層、4は両極集電板1,2間に構成される空間5内に
おいて正極集電板1側に配された正極、6は空間5内に
おいて負極集電板2側に装填されたリチウムまたはリチ
ウム合金からなる負極、7は両極4,6間に介在させた
多孔性ポリプロピレンなどの多孔性材料からなるセパレ
ータ、8は正極4を取囲むように配設されたポリプロピ
レンなどからなる方形環状の枠体である。
FIG. 1 shows an example of a lithium battery according to the present invention. In the figure, ■ is a rectangular flat positive electrode current collector plate made of stainless steel, and 2 is a stainless steel plate whose periphery is bent stepwise toward one side to provide a flat periphery 2a in the same direction as the main surface. 3 is an adhesive layer that seals between the opposing peripheral parts 1a and 2a of the bipolar current collector plates 1 and 2, and 4 is a layer formed between the bipolar current collector plates 1 and 2. a positive electrode arranged on the positive electrode current collector plate 1 side in the space 5; 6 a negative electrode made of lithium or a lithium alloy loaded on the negative electrode current collector plate 2 side in the space 5; 7 interposed between the two electrodes 4 and 6; The separator 8 is made of a porous material such as porous polypropylene, and is a rectangular ring-shaped frame made of polypropylene or the like, which is disposed so as to surround the positive electrode 4 .

この場合、前述した電解質を含む粘性体は通常では組込
み前のセパレータ7に予め塗布して含浸させることによ
り、電池内部に添加される。このとき電解質を含む粘性
体は、組立て基面に多少の傾斜があったり、振動が加わ
っても周辺へ流出することがなく、塗り付は位置から組
込み位置へのセパレータ7の運搬時にも滴下する惧れは
なく、かつ添加量を広範囲で調整することが可能である
In this case, the viscous material containing the electrolyte described above is usually added to the inside of the battery by coating and impregnating the separator 7 in advance before assembly. At this time, the viscous material containing the electrolyte does not flow out to the surrounding area even if the assembly base is slightly inclined or vibration is applied, and the viscous material containing the electrolyte does not drip out even when the separator 7 is transported from the installation position to the installation position. There is no danger, and the amount added can be adjusted over a wide range.

一方、接着剤層3としては、一般的な塗料溶液型の接着
剤も使用できるが、とくに熱融着性材料からなるものが
好適である。この熱融着性材料3としては、熱融着前の
形態が両極集電板1,2の周辺部1a、2aの幅に対応
する幅に予め設定した環状などの成形シートであるもの
を使用できる。すなわち、封止操作は」二記両周辺部1
a、2a間に上記成形シートを挾んで圧接し、この状態
で同周辺部1a、2a部分を所定温度まで加熱すればよ
い。
On the other hand, as the adhesive layer 3, a general paint solution type adhesive can also be used, but one made of a heat-fusible material is particularly suitable. As the heat-fusible material 3, a material whose form before heat-fusion is a molded sheet such as an annular sheet whose width is preset to correspond to the width of the peripheral parts 1a and 2a of the bipolar current collector plates 1 and 2 is used. can. In other words, the sealing operation is performed at both peripheral parts 1 and 2.
The above-mentioned molded sheet may be sandwiched and pressed between a and 2a, and in this state, the peripheral portions 1a and 2a may be heated to a predetermined temperature.

そして、この加熱過程においては既述のように前記粘性
体は従来の電解液のように飛散することがなく、容易に
確実な封止が達成される。また上述のように熱融着前の
形態が固形の成形物であることから、取扱い操作および
組付は操作が非常に容易であると共に、塗料溶液型接着
剤を用いる場合のように空間5内へ流入して粘性体と混
じり合う惧れがない。
In this heating process, as described above, the viscous material does not scatter unlike conventional electrolytes, and reliable sealing is easily achieved. Furthermore, as mentioned above, since the form before heat fusion is a solid molded product, handling and assembly are very easy, and the space 5 can be easily handled and assembled, unlike when using a paint solution type adhesive. There is no risk of it flowing into the tank and mixing with the viscous material.

なお、このような熱融着性材料3にはホットメル1−型
接M剤、ハーメチックシール可能なセラミックを始め、
種々のものを使用できる。
In addition, such heat-fusible materials 3 include hot melt 1-type adhesives, hermetically sealable ceramics, and others.
Various types can be used.

また、正極4としては、活物質とテフロン粉末などの結
合剤と必要に応じてカルボニルニッケルなどの電子伝導
助剤とを混合してシート状に成形したものを使用しても
よいが、前述した電解質を含む粘性体を活物質と必要に
応じて導電助剤に混練して粘稠物としたものを好適に使
用できる。すなわち、後者の粘稠物はスクリーン印刷な
どによって正極集電板1」二に塗布形成できるため、前
者のような成形工程が不要となり、形成操作も極めて簡
単で低コスト化が図れると共に、薄層化が容易であるこ
とから薄型電池への適用性に優れる。
Further, as the positive electrode 4, a sheet formed by mixing an active material, a binder such as Teflon powder, and, if necessary, an electron conduction aid such as carbonyl nickel may be used. A viscous material obtained by kneading a viscous material containing an electrolyte with an active material and, if necessary, a conductive additive, can be preferably used. In other words, the latter viscous material can be applied and formed on the positive electrode current collector plate 1'' by screen printing, etc., so the forming process like the former is not necessary, and the forming operation is extremely simple and cost-effective, as well as being able to form a thin layer. Because it is easy to make, it has excellent applicability to thin batteries.

そして枠体8は正極4として上記粘稠物を使用する場合
にその塗布量を設定する機能を持つものである。すなわ
ち、予めこの枠体8を正極集電板1上に載置しておき、
その内側に一杯に上記粘稠物を塗布充填することによっ
て塗布量が一定になるから、所望の塗布量に応じて枠体
8の厚さと大きさつまり包囲面積を定めればよい。
The frame 8 has a function of setting the amount of the viscous material to be applied when the viscous material is used as the positive electrode 4. That is, this frame 8 is placed on the positive electrode current collector plate 1 in advance,
Since the coating amount becomes constant by filling the inside of the frame with the viscous substance, the thickness and size of the frame 8, that is, the surrounding area, can be determined according to the desired coating amount.

正極4に使用する活物質としては、従来よりリチウム電
池用の正極活物質として知られる種々のものを使用でき
るが、とくに好適なものとしてTiS、、、MoS2、
v60I3、V2O9、VSe2、N i P S 3
が挙げられ、これらは2種以上を併用してもよい。
As the active material used for the positive electrode 4, various materials conventionally known as positive electrode active materials for lithium batteries can be used, but particularly preferred ones include TiS, MoS2,
v60I3, V2O9, VSe2, N i P S 3
These may be used in combination of two or more types.

さらに、負極6としてはリチウムおよびリチウム合金の
いずれも使用可能であるが、リチウム単独では長期の間
に前記粘性体と反応する可能性があるため、アルミニウ
ムなどとの合金化を図ることが望ましい。
Furthermore, both lithium and lithium alloys can be used as the negative electrode 6, but since lithium alone may react with the viscous material over a long period of time, it is desirable to alloy it with aluminum or the like.

以上の如く構成されるこの発明のリチウム電池は、従来
の電解液に代えて特定の粘性体を用いることによる既述
した電池組立て上の利点のほか、後記実施例と比較例の
電池特性の比較において明確に示されるように二次電池
としての寿命が通常の電解液を用いたものに比べて飛躍
的に増大するという重要な特徴点を備えている。この理
由については明確ではないが、ある程度の充放電を繰り
返したのちに電池を分解して詳細に観察すると、通常の
電解液を用いた電池では負極からセパレータを貫通して
正極内部に達するリチウムのデンドライト状析出物が顕
著に認められるのに対して、この発明の電池では」−記
デンドライト状析出物がほとんど認められない。従って
この発明の電池では粘性体中のゲル成分が電着したリチ
ウム面の特異的活性点を殺すように作用し、充放電にお
けるリチウムの溶解析出が負極全面に均一平滑的に行わ
れる結果、デンドライト状析出物に起因する短絡が防止
されるものと推測される。
The lithium battery of the present invention constructed as described above has the above-mentioned advantages in terms of battery assembly by using a specific viscous material in place of the conventional electrolyte, as well as a comparison of battery characteristics between Examples and Comparative Examples described later. As clearly shown in , it has an important characteristic that the life of a secondary battery is dramatically increased compared to those using a normal electrolyte. The reason for this is not clear, but when the battery is disassembled and observed in detail after a certain amount of charging and discharging, it is found that in batteries using a normal electrolyte, lithium reaches from the negative electrode through the separator to the inside of the positive electrode. In contrast, in the battery of the present invention, dendrite-like precipitates are hardly observed. Therefore, in the battery of this invention, the gel component in the viscous material acts to kill the specific active sites on the electrodeposited lithium surface, and as a result, lithium dissolution and precipitation occurs uniformly and smoothly over the entire surface of the negative electrode during charging and discharging, resulting in dendrites. It is presumed that short circuits caused by such precipitates are prevented.

なお、この発明の電池における両極集電板は、第1図で
示すようにその一方を皿形とする以外に、両方を共に皿
形としたり、あるいは両方を共に平板状として周辺部間
にセラミック製などのスペーサを介在させた構造として
もよい。このスペーサを用いる場合はその両面と両極集
電板との間をそれぞれ接着封止することは言うまでもな
い。また電池外形は方形以外の多角形および円形など、
用途に応じた種々の形状とすることができる。さらに電
池の総厚はとくに限定されないが、10賭以下、好まし
くは03〜07朋厚程度においてこの発明の適用効果が
大きい。
In the battery of the present invention, one of the current collector plates may be dish-shaped as shown in FIG. 1, or both may be dish-shaped, or both may be flat plate-shaped with a ceramic layer between the peripheral parts. It is also possible to have a structure in which a spacer, such as a product made of aluminum or the like, is interposed. When using this spacer, it goes without saying that both surfaces of the spacer and the bipolar current collector plates must be adhesively sealed. In addition, the external shape of the battery may be polygonal or circular other than rectangular.
It can be made into various shapes depending on the purpose. Further, although the total thickness of the battery is not particularly limited, the application effect of the present invention is large when the total thickness of the battery is 10 mm or less, preferably about 0.3 to 0.7 mm thick.

〔発明の効果〕〔Effect of the invention〕

この発明の薄型リチウム電池は、電池内部に電解質を含
む特定の粘性体が添加されたものであるから、電池組立
時に上記粘性体が外部へ流出する慣れがなく、その必要
量を塗り付けなどの簡単な操作によって電池内の所定領
域全体に均一に添加でき、その添加量も広範囲で調整可
能であり、接着剤による確実な封止を行うことができ、
加えて電解質が非流動性であるためにこれが封止部に接
触するのを防止できるので漏液を生じにくく、薄型電池
としての適性に優れる。またこの電池では、上記封止に
用いる接着剤として取扱いおよび封止操作が容易なシー
ト状などに成形した熱融着性材料を使用しても、その融
着時の加熱にて粘性体は飛散することがなく、充分な封
止が可能である。
Since the thin lithium battery of the present invention has a specific viscous material containing an electrolyte added to the inside of the battery, the viscous material is not used to flow out when assembling the battery, so it is necessary to apply the required amount by painting, etc. It can be added uniformly to the entire predetermined area within the battery with simple operations, and the amount added can be adjusted over a wide range, allowing for reliable sealing with adhesive.
In addition, since the electrolyte is non-fluid, it can be prevented from coming into contact with the sealing portion, so leakage is less likely to occur, making it highly suitable for use as a thin battery. Furthermore, in this battery, even if a heat-fusible material formed into a sheet shape that is easy to handle and seal is used as the adhesive for sealing, the viscous material will scatter due to the heat during the welding process. It is possible to achieve sufficient sealing without any damage.

さらにこの電池では充放電における負極リチウムの可逆
性が理想的に維持されることから、二次電池として極め
て長寿命である。
Furthermore, since this battery ideally maintains the reversibility of the negative electrode lithium during charging and discharging, it has an extremely long life as a secondary battery.

[実施例] 以下、この発明の実施例を比較例と対比して具体的に説
明する。なお、以下において部とあるのは重量部を意味
する。
[Example] Hereinafter, an example of the present invention will be specifically described in comparison with a comparative example. In addition, in the following, parts mean parts by weight.

実施例I LiBφ4のジメトキシエタン付加物(L i Bφ4
ニジメトキシエタンのモル比1:3)11.2部をプロ
ピレンカーボネート2378部に溶解し、この液中にメ
タクリル酸リチウムモノマー50部を添加して溶解させ
た。つぎにこの溶液中に重合開始剤として過酸化ベンゾ
イル0.05部を添加し、これを耐圧金属容器内に密封
して110 ’Cにて3時間保持して重合反応させ、室
温に冷却したのちに取り出したところ、流動性がほとん
どない半固形状の粘性体が得られた。この粘性体の25
°Cにおけるイオン伝導度は約10×10 S/cTn
であった。
Example I Dimethoxyethane adduct of LiBφ4 (L i Bφ4
11.2 parts of dimethoxyethane (mole ratio 1:3) was dissolved in 2378 parts of propylene carbonate, and 50 parts of lithium methacrylate monomer was added and dissolved in this solution. Next, 0.05 part of benzoyl peroxide was added as a polymerization initiator to this solution, and this was sealed in a pressure-resistant metal container and held at 110'C for 3 hours to cause a polymerization reaction. After cooling to room temperature, When taken out, a semi-solid viscous material with almost no fluidity was obtained. 25 of this viscous material
The ionic conductivity at °C is approximately 10×10 S/cTn
Met.

次に、この粘性体とTiS、、粉末とを重−量比50:
50で混練し、この混練物を、スクリーン印刷法により
一辺1.5+++mの正方形で厚さ0.0部5mmのス
テンレス平板からなる正極集電板の表面に、その上に載
置したポリプロピ1/ン製の方形の枠体の内側に一杯に
なるように塗布し、−辺10期の正方形で厚さ100P
nの正極を形成した。この正極上に厚さ25)mの多孔
性ポリプロピレンからなるセパレータ(ポリプラスチッ
クス社製の商品名ジュラガード24. OO)に凹凸形
状を形成して、上記粘性体を予め塗り付けて全体に均一
に含浸させたものを積層し、さらにこのセパレータ上に
リチウム−アルミニウム合金製で一辺4mmの正方形箔
からなる厚さ801”の負極を積層した。
Next, this viscous body and TiS powder were mixed in a weight ratio of 50:
Polypropylene 1/5 mm was placed on the surface of a positive electrode current collector plate consisting of a square stainless steel plate with a side of 1.5+++ m and a thickness of 0.0 parts and 5 mm. Apply it to the inside of a rectangular frame made of plastic, and make a square with a side of 10 and a thickness of 100P.
n positive electrodes were formed. On this positive electrode, an uneven shape is formed on a porous polypropylene separator (product name: Duraguard 24.OO, manufactured by Polyplastics) with a thickness of 25) m, and the above-mentioned viscous material is applied in advance to uniformly coat the entire surface. A negative electrode made of a lithium-aluminum alloy and having a thickness of 801'' and made of a square foil having a side of 4 mm was further laminated on this separator.

次に、正極集電板の周辺部上に厚さ0.05mm、幅2
rnmの方形環状シートからなる変性ポリオレフィン系
ホットメルト接着剤が載置された状態で、−辺15mm
の正方形で厚さ0.05 mmの皿形ステンレス製板か
らなる負極集電板を被冠し、両極集電板の周辺部を圧接
下で180°Cに加熱して熱融着封止し、第1図で示す
構造の総厚0.5部mmの薄型リチウム電池を作製した
Next, on the peripheral part of the positive electrode current collector plate, a thickness of 0.05 mm and a width of 2
With the modified polyolefin hot melt adhesive made of a rectangular annular sheet of RNM placed on the
A negative electrode current collector plate made of a dish-shaped stainless steel plate with a square shape and a thickness of 0.05 mm was covered with a negative electrode current collector plate, and the peripheral areas of both electrode current collector plates were heated to 180°C under pressure welding and sealed by heat fusion. A thin lithium battery having the structure shown in FIG. 1 and having a total thickness of 0.5 mm was manufactured.

なお、この電池作製過程において、セパレータに含浸し
た粘性体の周辺部への流れ出しは全く認められず、また
熱融着時に上記粘性体の飛散を生じず確実な封止状態が
達成された。
In this battery manufacturing process, no flow of the viscous material impregnated into the separator to the peripheral area was observed, and a reliable sealing state was achieved without scattering of the viscous material during heat fusion.

実施例2 LiBF41.0部をプロピレンカーボネー1−12.
7部に溶解し、この液中にメタクリル酸リチウムモノマ
ー2.05部と重合開始剤としての過酸化ベンゾイル0
.02部とを添加して溶解させた。次いでこの溶液を耐
圧金属容器内に密封して150°Cにて10時間保持し
て重合反応させ、室温に冷却したのちに取り出したとこ
ろ、流動性がほとんどない半固形状の粘性体が得られた
。この粘性体の25°Cにおけるイオン伝導度は約1.
.0X10  S/6mであった。次にこの粘性体を用
いて実施例1と同様にして電池総厚0.5 mmの薄型
リチウム電池を作製した。
Example 2 41.0 parts of LiBF was mixed with 1-12.0 parts of propylene carbonate.
In this solution, 2.05 parts of lithium methacrylate monomer and 0.0 parts of benzoyl peroxide as a polymerization initiator were dissolved in
.. 02 parts were added and dissolved. This solution was then sealed in a pressure-resistant metal container and held at 150°C for 10 hours to allow a polymerization reaction. When taken out after cooling to room temperature, a semi-solid viscous material with almost no fluidity was obtained. Ta. The ionic conductivity of this viscous material at 25°C is approximately 1.
.. It was 0x10 S/6m. Next, using this viscous material, a thin lithium battery having a total battery thickness of 0.5 mm was produced in the same manner as in Example 1.

実施例3 LiPF61部とポリメタクリル酸のリチウム塩(平均
分子量10,000)2部とをプロピレンカーボネート
127部に添加混合して溶解させ、これを密封下で13
0°Cにて30分間加熱して均一な半固形状の粘性体を
得た。この粘性体の25°Cにおけるイオン伝導度は約
1.、5 X ]、 OS/c1nであった。次にこの
粘性体を用いて実施例1と同様にして電池総厚0.5 
mmの薄型リチウム電池を作製した。
Example 3 61 parts of LiPF and 2 parts of lithium salt of polymethacrylic acid (average molecular weight 10,000) were added and mixed to 127 parts of propylene carbonate and dissolved, and this was mixed under sealed conditions for 13
The mixture was heated at 0°C for 30 minutes to obtain a uniform semi-solid viscous body. The ionic conductivity of this viscous material at 25°C is approximately 1. , 5X], OS/c1n. Next, using this viscous material, a battery with a total thickness of 0.5
A thin lithium battery with a diameter of 1 mm was fabricated.

比較例 TiS粉末とテフロン粉末の重量比100:5の混合物
を加圧成形して一辺10πm1厚さO,1mmの正方形
板状正極を作製し、これを実施例1と同様の正極集電板
上に載置した。次にLiBφ4のジメトキシエタン付加
物(実施例1と同じ)112部をプロピレンカーボネー
ト23.78部に溶解して電解液を調製し、この電解液
を上記正極」―に滴下したのち、正極上に電解液を含浸
していない実施例1と同様のセパレータを積層し、この
セパレータ上に上記電解液を添加した上で、実施例1と
同様の負極を積層した。次に正極集電板の周辺部にエポ
キシ系接着剤が塗布された状態で、実施例Jと同様の負
極集電板を被冠して上記接着剤の硬化による封止を行っ
て電池総厚0.5 mmのリチウム電池を作製した。
Comparative Example A square plate-shaped positive electrode with a side of 10πm and a thickness of 0 and 1 mm was prepared by pressure molding a mixture of TiS powder and Teflon powder in a weight ratio of 100:5, and this was placed on the same positive electrode current collector plate as in Example 1. It was placed on. Next, an electrolytic solution was prepared by dissolving 112 parts of LiBφ4 dimethoxyethane adduct (same as in Example 1) in 23.78 parts of propylene carbonate, and this electrolytic solution was dropped onto the above positive electrode. A separator similar to Example 1 which was not impregnated with an electrolytic solution was laminated, and the electrolytic solution was added onto this separator, and then a negative electrode similar to Example 1 was laminated. Next, with an epoxy adhesive applied to the periphery of the positive electrode current collector plate, a negative electrode current collector plate similar to that in Example J is covered, and the adhesive is cured to seal the battery. A 0.5 mm lithium battery was fabricated.

なお、この電池作製過程においては、2回にわたる電解
液の滴下を非常に注意深く行ったにもかかわらず、電解
液の電池周辺側への流出による不良品が高率で発生した
。またエポキシ系接着剤の塗布操作は容易でなかった。
In this battery manufacturing process, even though the electrolytic solution was very carefully dropped twice, a high rate of defective products occurred due to the electrolytic solution flowing out to the periphery of the battery. Moreover, the operation of applying the epoxy adhesive was not easy.

上記各実施例および比較例にて得られた薄型リチウム電
池について二次電池として25°Cの温度下で30μA
の定電流による充放電サイクル特性を充電終止電圧2.
7V、放電終止電圧1.51=して測定した。この結果
を第2図で示す。なお図中の曲線A1は実施例1、A2
は実施例2、A3は実施例3、Bは比較例にそれぞれ対
応している。
The thin lithium batteries obtained in the above examples and comparative examples were used as secondary batteries at a temperature of 30μA at 25°C.
The charging/discharging cycle characteristics due to constant current of 2.
Measurement was made with a discharge end voltage of 7V and a discharge end voltage of 1.51. The results are shown in FIG. Note that the curve A1 in the figure corresponds to Example 1, A2
1 corresponds to Example 2, A3 corresponds to Example 3, and B corresponds to Comparative Example.

この第2図の結果から明らかなように、通常の電解液を
用いた電池では充放電の繰り返しによる放電容量の低下
が著しく、二次電池としての寿命が短いのに対して、電
解質を含む特定の粘性体を使用したこの発明に係る電1
1粒では充放電の繰り返しによる放電容量の低下が極め
て僅かであって二次電池として理想的な長寿命であるこ
とが判る。
As is clear from the results shown in Figure 2, batteries using normal electrolytes have a significant drop in discharge capacity due to repeated charging and discharging, and have a short lifespan as secondary batteries. Electrical device 1 according to the present invention using a viscous material of
It can be seen that with one particle, the decrease in discharge capacity due to repeated charging and discharging is extremely small, and the battery has an ideal long life as a secondary battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る薄型リチウム電池の一例におけ
る縦断面図、第2図はこの発明の実施例および比較例で
得られた電池の充放電サイクル特性図である。 ■・・正極集電板、1a ・周辺部、2 負極集電板、
2a・・周辺部、3 接着剤層、4・・正極、6 負極
、7 ・セパレータ
FIG. 1 is a longitudinal cross-sectional view of an example of a thin lithium battery according to the present invention, and FIG. 2 is a chart of charge-discharge cycle characteristics of batteries obtained in Examples and Comparative Examples of the present invention. ■...Positive electrode current collector plate, 1a - Peripheral part, 2 Negative electrode current collector plate,
2a... Peripheral area, 3 Adhesive layer, 4... Positive electrode, 6 Negative electrode, 7 Separator

Claims (1)

【特許請求の範囲】[Claims] (1)正極集電板と負極集電板との間に正極とリチウム
またはリチウム合金からなる負極と両極間に介在するセ
パレータとを含む電池要素が配置され、両極集電板の対
向する平坦状の周辺部で接着封止された構造の薄型リチ
ウム電池において、電池内部に、電解質としてのリチウ
ム塩と、ポリメタクリル酸のリチウム塩と、これら両者
を溶解する非水系溶媒とからなる粘性体が添加されてい
ることを特徴とする薄型リチウム電池。
(1) A battery element including a positive electrode, a negative electrode made of lithium or a lithium alloy, and a separator interposed between the two electrodes is arranged between a positive electrode current collector plate and a negative electrode current collector plate, and the flat shape of the opposite electrode current collector plates is arranged between the positive electrode current collector plate and the negative electrode current collector plate. In a thin lithium battery with a structure in which the periphery of the battery is adhesively sealed, a viscous material consisting of a lithium salt as an electrolyte, a lithium salt of polymethacrylic acid, and a non-aqueous solvent that dissolves both is added inside the battery. A thin lithium battery characterized by:
JP60158949A 1985-07-18 1985-07-18 Thin type lithium battery Pending JPS6220263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60158949A JPS6220263A (en) 1985-07-18 1985-07-18 Thin type lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60158949A JPS6220263A (en) 1985-07-18 1985-07-18 Thin type lithium battery

Publications (1)

Publication Number Publication Date
JPS6220263A true JPS6220263A (en) 1987-01-28

Family

ID=15682852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60158949A Pending JPS6220263A (en) 1985-07-18 1985-07-18 Thin type lithium battery

Country Status (1)

Country Link
JP (1) JPS6220263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187888A1 (en) * 2016-04-25 2017-11-02 スズキ株式会社 Negative electrode composite structure for lithium air batteries
US11217824B2 (en) * 2017-05-26 2022-01-04 Lg Chem, Ltd. Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187888A1 (en) * 2016-04-25 2017-11-02 スズキ株式会社 Negative electrode composite structure for lithium air batteries
US10622691B2 (en) 2016-04-25 2020-04-14 Suzuki Motor Corporation Anode composite structure for lithium-air battery
US11217824B2 (en) * 2017-05-26 2022-01-04 Lg Chem, Ltd. Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same

Similar Documents

Publication Publication Date Title
EP0284104B1 (en) Structure suitable for solid electrochemical elements
CN100472845C (en) Cell
JP4253886B2 (en) Flat type non-aqueous electrolyte battery and manufacturing method thereof
EP1059681B1 (en) Lithium secondary battery
TWI289948B (en) Secondary battery for surface mounting
KR20070051706A (en) Gel electrolyte and gel electrolyte battery
JP2017521841A (en) Flexible micro battery
RU2683593C1 (en) Flexible micro battery
CN110024048A (en) Semisolid electrolyte layer, cell piece and secondary cell
TW515125B (en) Method for distributing electrolyte in batteries
JPS6220263A (en) Thin type lithium battery
JP4055640B2 (en) Bipolar battery, bipolar battery manufacturing method, battery pack and vehicle
JPS6220262A (en) Thin type lithium battery
JPS62219469A (en) Lithium battery
JP3858465B2 (en) Lithium secondary battery
JPH03129603A (en) Solid electrolyte
JPS6222375A (en) Thin lithium battery
JP2008204858A (en) Electrode integrated polymer electrolyte membrane and electrochemical element using the same
JPS61214374A (en) Thin lithium secondary battery
JPS6222376A (en) Thin lithium battery
JPH0746611B2 (en) Thin lithium battery manufacturing method
JPS5856467B2 (en) Battery manufacturing method
JPH0732022B2 (en) Lithium ion conductive gel electrolyte
JP4190133B2 (en) Gel electrolyte lithium secondary battery
JPS62126544A (en) Manufacture of battery