JPS5856467B2 - Battery manufacturing method - Google Patents

Battery manufacturing method

Info

Publication number
JPS5856467B2
JPS5856467B2 JP7134778A JP7134778A JPS5856467B2 JP S5856467 B2 JPS5856467 B2 JP S5856467B2 JP 7134778 A JP7134778 A JP 7134778A JP 7134778 A JP7134778 A JP 7134778A JP S5856467 B2 JPS5856467 B2 JP S5856467B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
gel
polymethyl methacrylate
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7134778A
Other languages
Japanese (ja)
Other versions
JPS54162128A (en
Inventor
信夫 江田
彰克 守田
隆文 藤井
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7134778A priority Critical patent/JPS5856467B2/en
Publication of JPS54162128A publication Critical patent/JPS54162128A/en
Publication of JPS5856467B2 publication Critical patent/JPS5856467B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、軽金属を負極活物質とする有機電解質電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an organic electrolyte battery using a light metal as a negative electrode active material.

さらに詳しくは、有機電解質に可溶であるが、電池反応
には直接関与しないポリマー、ポリメタクリル酸メチル
でゲル化した電解質を用いた電池の製造法を改良するも
のである。
More specifically, the present invention aims to improve a method for manufacturing batteries using an electrolyte gelled with polymethyl methacrylate, a polymer that is soluble in organic electrolytes but does not directly participate in battery reactions.

現在、電子機服用の電源として市販されている電池は、
銀電池や水銀電池が主流であるが、これらは苛性カリや
苛性ソーダの水溶液を電解液として用いているために、
本質的にクリープ性を有している。
Batteries currently on the market as power sources for electronic devices are:
Silver batteries and mercury batteries are the mainstream, but because these use an aqueous solution of caustic potash or caustic soda as an electrolyte,
It inherently has creep properties.

加えて、電極電位との相互作用により、常温でも長期間
保存していると漏液が起こり、使用機詣に重大な損害を
与える危険性を潜在的に有する。
In addition, due to the interaction with the electrode potential, liquid leakage may occur if stored for a long period of time even at room temperature, potentially causing serious damage to the equipment in use.

一方、有機電解質電池は、電解質が非水系であり、かつ
粘度の大きい溶媒を用いており、これまでの実験結果か
らは、アルカリ性電解液を用いた電池に比して漏液は極
めてしにくいが、高温保存時には封目方法の不備などで
漏液を起こすこともあり、皆無ではない。
On the other hand, in organic electrolyte batteries, the electrolyte is non-aqueous and uses a highly viscous solvent, and past experimental results show that they are extremely unlikely to leak compared to batteries using alkaline electrolytes. However, when stored at high temperatures, leakage may occur due to improper sealing, which is not uncommon.

漏液は使用機語に重大な影響を及ぼすため、電池の性能
以上に重要視される。
Leakage has a serious impact on the performance of the device, so it is considered more important than battery performance.

そこで、漏液を無くすには、電解液を固定化することが
最も有効である。
Therefore, the most effective way to eliminate leakage is to immobilize the electrolyte.

一般に電解液を固定化するとイオン電導度は小さくなり
、電池出力も小さくなる傾向にあるため、イオン電導度
の低下を極力低く抑えて、いかに固定化するかが重要で
ある。
Generally, when an electrolyte is immobilized, the ionic conductivity tends to decrease and the battery output also tends to decrease, so it is important to determine how to immobilize the electrolyte while minimizing the decrease in ionic conductivity.

電解液の固定化方法として、本発明者らは、ポリメタク
リル酸メチルを用いてゲルを生成させる方法を提案した
As a method for immobilizing the electrolyte, the present inventors proposed a method of producing a gel using polymethyl methacrylate.

このゲルは次のようにして得られる。This gel is obtained as follows.

まず炭酸プロピレンまたはr−ブチロラクトンのホウフ
ッ化リチウムもしくは過塩素酸リチウムの所定濃度電解
液などポリメタクリル酸メチルを溶解する電解液にポリ
メタクリル酸メチルを20〜40重量%添加し、70〜
100℃に加熱するとゾル化する。
First, 20 to 40% by weight of polymethyl methacrylate is added to an electrolytic solution in which polymethyl methacrylate is dissolved, such as a predetermined concentration electrolytic solution of propylene carbonate or r-butyrolactone lithium borofluoride or lithium perchlorate.
When heated to 100°C, it becomes a sol.

これを冷却するとゼリー状のゲルが形成される。When this is cooled, a jelly-like gel is formed.

このゲルは60℃で保存しても、離液現象は全くみられ
ないので、このゲル電解質を用いた電池は漏液を起こさ
ないわけである。
Even when this gel is stored at 60°C, no syneresis phenomenon is observed, so batteries using this gel electrolyte do not leak.

そして、ポリメタクリル酸メチルのゲルは電気化学的に
も安定であり、イオン電導度も約10−3Ω−1・cm
、1でヨウ化リチウムなどの固体電解質に比して約2桁
大きく、電池性能的にも十分なものである。
Polymethyl methacrylate gel is electrochemically stable and has an ionic conductivity of approximately 10-3 Ω-1 cm.
, 1, which is about two orders of magnitude larger than that of solid electrolytes such as lithium iodide, and is sufficient in terms of battery performance.

しかし、分子構造に起因する凝集エネルギーによりやや
粘着性、接着性を有するため、例えば寒天のように薄片
に切り出し、正、負極間に載置するのはやや困難である
However, it is somewhat sticky and adhesive due to the cohesive energy caused by its molecular structure, so it is somewhat difficult to cut it into thin pieces like agar, for example, and place it between the positive and negative electrodes.

そこで、ポリプロピレン不織布に塗布して正、負極間に
載置するなどの方法も考えられるが、電池の組み立て工
程が煩雑である。
Therefore, methods such as applying it to a polypropylene nonwoven fabric and placing it between the positive and negative electrodes have been considered, but the process for assembling the battery is complicated.

本発明は、以上の点に鑑み、組み立てが容易で、性能の
すぐれた電池の製造法を提供するものである。
In view of the above points, the present invention provides a method for manufacturing a battery that is easy to assemble and has excellent performance.

すなわち、ゲル電解質を構成するポリメタクリル酸メチ
ルを混合分散した電解液を電池容翫内に注入し、封口し
た後、加熱処理することによりゲル化し、電解質を固定
化するものである。
That is, an electrolytic solution in which polymethyl methacrylate constituting the gel electrolyte is mixed and dispersed is injected into a battery container, sealed, and then heated to form a gel and fix the electrolyte.

本発明の方法によれば、電池の組み立て工程において、
ゾルあるいはゲルの粘着性物質を取り扱うことがないの
で、従来の液状電解質を用いる場合とほぼ同様の製造法
で無漏液性の電池を得ることができる。
According to the method of the present invention, in the battery assembly process,
Since there is no need to handle sticky substances such as sol or gel, a leak-free battery can be obtained using almost the same manufacturing method as when using a conventional liquid electrolyte.

以下、本発明をその実施例により説明する。Hereinafter, the present invention will be explained with reference to examples thereof.

実施例 1 第1図において、1はステンレス鋼製のケース、2は同
材質の封目板、3は封目板の内面に溶着したグリッドで
あり、このグリッドの表面に負極のリチウムシート4を
圧着している。
Example 1 In FIG. 1, 1 is a case made of stainless steel, 2 is a sealing plate made of the same material, and 3 is a grid welded to the inner surface of the sealing plate. A lithium sheet 4 as a negative electrode is placed on the surface of this grid. It is crimped.

5はゲルを含む正極であり、フッ化炭素100重量部、
アセチレンブラック10重量部、フッ素樹脂結着剤20
重量部および分子量70万〜75万のポリメタクリル酸
メチルの微小球(径0.05〜0.15 mm)の22
.5重量部を混合したもの0.31gをディスク状に成
型しである。
5 is a positive electrode containing gel, 100 parts by weight of fluorocarbon;
10 parts by weight of acetylene black, 20 parts by weight of fluororesin binder
22 parts by weight and polymethyl methacrylate microspheres (diameter 0.05-0.15 mm) with a molecular weight of 700,000 to 750,000.
.. 0.31 g of a mixture of 5 parts by weight was molded into a disk shape.

6はケース1の内面に溶着したチタン製グリッドである
6 is a titanium grid welded to the inner surface of the case 1.

7はポリプロピレンの織布からなる保液材、8はポリプ
ロピレンの不織布からなるセパレータである。
7 is a liquid retaining material made of a polypropylene woven fabric, and 8 is a separator made of a polypropylene nonwoven fabric.

この電池の製造法は次のとおりである。The method for manufacturing this battery is as follows.

まず、封目板をさかさにしてグリッド3にリチウムを圧
着し、その上に保液材7を載置する。
First, the sealing plate is turned upside down, lithium is pressure-bonded to the grid 3, and the liquid retaining material 7 is placed on top of it.

次に1モル/lのホウフッ化リチウムを溶解した炭酸プ
ロピレン溶液30ccに前記ポリメタクリル酸メチルの
微小球459を分散させ、この0.3 ccを保液材上
に注液すると、ポリマーの微小球は保液材上に残る。
Next, the polymethyl methacrylate microspheres 459 are dispersed in 30 cc of a propylene carbonate solution in which 1 mol/l of lithium borofluoride is dissolved, and when 0.3 cc of this is poured onto the liquid retaining material, polymer microspheres are formed. remains on the liquid retaining material.

このLにセパレータ8と正極成型体5およびケース1を
かぶせ、封口を行なう。
This L is covered with the separator 8, the positive electrode molded body 5, and the case 1, and sealed.

9は封目板と一体にモールドしたポリプロピレン製ガス
ケットである。
9 is a polypropylene gasket molded integrally with the sealing plate.

上記正極は電解液を約0.15cc吸収する。この電池
を70℃にて一夜加熱処理すると、電池内部ではポリメ
タクリル酸メチルの溶解、ゲル化が起こり、ポリマー濃
度で約30重量%のほぼ均一なゲルが形成される。
The positive electrode absorbs about 0.15 cc of electrolyte. When this battery is heated at 70° C. overnight, polymethyl methacrylate dissolves and gels inside the battery, forming a substantially uniform gel with a polymer concentration of about 30% by weight.

実施例 2 正極として、ポリメタクリル酸メチルを混合しない他は
実施例1と同一成分、組成よりなる正極合剤の0.26
9をディスク状に成型したものを用いる。
Example 2 As a positive electrode, 0.26% of a positive electrode mixture having the same components and composition as Example 1 except that polymethyl methacrylate was not mixed was used.
9 molded into a disk shape is used.

そして、1モル/lのホウフッ化リチウムを溶解した炭
酸プロピレン溶液15ccに上記ポリメタクリル酸メチ
ルの微小球459を分散させたもの0.30ccを実施
例1と同様な操作で注液し、封口して、電池を構成し、
70℃にて一夜加熱処理をした。
Then, 0.30 cc of the polymethyl methacrylate microspheres 459 dispersed in 15 cc of a propylene carbonate solution containing 1 mol/l of lithium borofluoride was poured into the solution in the same manner as in Example 1, and the cap was sealed. to configure the battery,
Heat treatment was performed at 70°C overnight.

電池内部には実施例1と同様にゲルが形成された。A gel was formed inside the battery as in Example 1.

比較例 従来の製法による電池で、1モル/lのホウフッ化リチ
ウムを溶解した炭酸プロピレン溶液とポリメタクリル酸
メチルの混合物を加熱した熱ゾルを正極に減圧含浸させ
る。
Comparative Example In a conventional battery, a positive electrode was impregnated under reduced pressure with a heated sol of a mixture of propylene carbonate solution containing 1 mol/l of lithium borofluoride and polymethyl methacrylate.

また同様の熱ゾルを保液材に塗布し、冷却してゲルを形
成させる。
A similar thermosol is also applied to the liquid retaining material and cooled to form a gel.

その他の構成は実施例1と同様である。The other configurations are the same as in the first embodiment.

実施例1,2および比較例の電池A、B−およびCの2
0℃における電気特性を次表に示し、20℃における5
にΩの放電特性を第2図に示す。
Examples 1 and 2 and Comparative Example Batteries A, B-, and C-2
The electrical characteristics at 0°C are shown in the table below, and the electrical characteristics at 20°C are as follows:
Figure 2 shows the discharge characteristics of Ω.

以」二の結果から明らかなように、本発明による電池は
、従来の製造法による電池に比べて性能の面でもすぐれ
ている。
As is clear from the following results, the battery according to the present invention is superior in performance to batteries manufactured using conventional methods.

これは、ゲル電解質の正、負極との密着性、ゲルの電池
内部での均一性などの点ですぐれていることによるもの
と考えられる。
This is thought to be due to the excellent adhesion of the gel electrolyte to the positive and negative electrodes, and the uniformity of the gel inside the battery.

また、本発明によれば、従来の液体有機電解質を用いる
電池とほぼ同一の工程でよいので、従来のゲル電解質を
用いる場合に比べて製造工程を合理化できる。
Further, according to the present invention, the manufacturing process can be streamlined compared to the case where a conventional gel electrolyte is used, since almost the same process as that for a battery using a conventional liquid organic electrolyte is required.

【図面の簡単な説明】 第1図は本発明の実施例におけるフッ化炭素−ノチウム
電池の縦断面図、第2図は各種製造法による電池の放電
特性を示す。 4・・・・・・負極、 5・・・・・・正極、 7・・・・・・含液材、 8・・・ ・・・セパレータ。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal cross-sectional view of a fluorocarbon-notium battery according to an embodiment of the present invention, and FIG. 2 shows discharge characteristics of batteries produced by various manufacturing methods. 4... Negative electrode, 5... Positive electrode, 7... Liquid-containing material, 8... Separator.

Claims (1)

【特許請求の範囲】[Claims] 1 軽金属を活物質とする負極と、ポリメタクリル酸メ
チルでゲル化した有機電解質と、正極とからなる電池の
製造法であって、前記ゲル化した電解質を得る工程が、
ポリメタクリル酸メチルを混合分散した有機電解液を電
池容器内に注入し、封口した後、加熱処理してゲル化す
ることからなることを特徴とする電池の製造法。
1. A method for manufacturing a battery comprising a negative electrode using a light metal as an active material, an organic electrolyte gelled with polymethyl methacrylate, and a positive electrode, the step of obtaining the gelled electrolyte comprising:
1. A method for manufacturing a battery, comprising injecting an organic electrolyte in which polymethyl methacrylate is mixed and dispersed into a battery container, sealing the container, and then heating the container to gel it.
JP7134778A 1978-06-12 1978-06-12 Battery manufacturing method Expired JPS5856467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7134778A JPS5856467B2 (en) 1978-06-12 1978-06-12 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7134778A JPS5856467B2 (en) 1978-06-12 1978-06-12 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS54162128A JPS54162128A (en) 1979-12-22
JPS5856467B2 true JPS5856467B2 (en) 1983-12-15

Family

ID=13457865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7134778A Expired JPS5856467B2 (en) 1978-06-12 1978-06-12 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JPS5856467B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081894A (en) * 1983-10-12 1985-05-09 アイワ株式会社 Method of mounting electric circuit component on printed board
JPS62118473U (en) * 1986-01-20 1987-07-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182666A (en) * 1984-02-28 1985-09-18 Toshiba Battery Co Ltd Manufacture of nonaqueous electrolyte battery
JP4081895B2 (en) * 1998-11-26 2008-04-30 ソニー株式会社 Gel electrolyte for lithium ion secondary battery and gel electrolyte lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081894A (en) * 1983-10-12 1985-05-09 アイワ株式会社 Method of mounting electric circuit component on printed board
JPS62118473U (en) * 1986-01-20 1987-07-28

Also Published As

Publication number Publication date
JPS54162128A (en) 1979-12-22

Similar Documents

Publication Publication Date Title
Choe et al. Characterization of some polyacrylonitrile-based electrolytes
CN105811007A (en) Electrolyte gel, lithium-sulfur battery and method for preparing electrolyte gel
JPS5856467B2 (en) Battery manufacturing method
JPS5919414B2 (en) Manufacturing method of non-aqueous electrolyte battery
JPH05182650A (en) Thin type battery
JPS5836828B2 (en) Battery manufacturing method
JPS62219469A (en) Lithium battery
JPS5856227B2 (en) Organic electrolyte battery and its manufacturing method
JP4474717B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JPS62126544A (en) Manufacture of battery
JPS5836827B2 (en) Battery manufacturing method
JPS5836826B2 (en) Manufacturing method of organic electrolyte battery
JPS6222375A (en) Thin lithium battery
JPS61214374A (en) Thin lithium secondary battery
JPS6220262A (en) Thin type lithium battery
JPS581973A (en) Solid electrolyte battery
JPS61214364A (en) Thin lithium battery
JPS6220263A (en) Thin type lithium battery
JPS62219468A (en) Lithium ion conductive gelled electrolyte
JPH0423384B2 (en)
JPS58137971A (en) Flat type battery
JP2000106212A (en) Lithium battery
JPS6222376A (en) Thin lithium battery
JPH0558229B2 (en)
JPS60172171A (en) Nonaqueous electrolyte battery