JPS5836826B2 - Manufacturing method of organic electrolyte battery - Google Patents

Manufacturing method of organic electrolyte battery

Info

Publication number
JPS5836826B2
JPS5836826B2 JP3992178A JP3992178A JPS5836826B2 JP S5836826 B2 JPS5836826 B2 JP S5836826B2 JP 3992178 A JP3992178 A JP 3992178A JP 3992178 A JP3992178 A JP 3992178A JP S5836826 B2 JPS5836826 B2 JP S5836826B2
Authority
JP
Japan
Prior art keywords
battery
electrolyte
gel
positive electrode
organic electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3992178A
Other languages
Japanese (ja)
Other versions
JPS54131724A (en
Inventor
信夫 江田
彰克 守田
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3992178A priority Critical patent/JPS5836826B2/en
Publication of JPS54131724A publication Critical patent/JPS54131724A/en
Publication of JPS5836826B2 publication Critical patent/JPS5836826B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 ,本発明は、軽金属を負極活物質とする有機電解質電池
の改良に関するもので、有機電解質に可溶であるが、電
池反応には直接関与しないポリマーを用いて電解質を固
定し、電池の耐漏液性を向上することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an organic electrolyte battery using a light metal as a negative electrode active material. The purpose is to fix the battery and improve the leakage resistance of the battery.

本発明は、またゲル化した電解質を用いる電池の放電の
立上りおよび電圧平坦性を向上することを目的とする。
Another object of the present invention is to improve the discharge start-up and voltage flatness of a battery using a gelled electrolyte.

現在、電子機器用の電源として市販されているものは、
銀電池や水銀電池が主流であるが、これらは苛性カリや
苛性ソーダの水溶液を電解液として用いているために本
質的にクリープ性を有している。
Currently, the power supplies for electronic devices on the market are:
Silver batteries and mercury batteries are the mainstream, but these batteries inherently have creep properties because they use an aqueous solution of caustic potash or caustic soda as an electrolyte.

加えて、電池の有する電位との相互作用によって、常温
においても長時間保存していると漏液が起こり、使用機
器に重大な損害を与える危険性を潜在的に持っている。
In addition, due to the interaction with the potential of the battery, if stored for a long time even at room temperature, leakage may occur, potentially causing serious damage to the equipment used.

一方、軽金属を負極活物質とする有機電解質電池は非水
系であり、かつ粘度の大きい溶媒を用いているので、ア
ルカリ性電解液を用いた電池に比して漏液は極めてしに
くいが、高温保存時には漏液を起こすこともあり、皆無
とはいかなかった。
On the other hand, organic electrolyte batteries that use light metals as negative electrode active materials are nonaqueous and use solvents with high viscosity, so they are extremely unlikely to leak compared to batteries that use alkaline electrolytes; Occasionally leakage occurred, and it was not completely eliminated.

漏液は使用機器に重大な影響を及ぼすため、機器メーカ
ーが最も嫌うものであり、当該電池の性能以上に重要で
ある。
Leakage is something that equipment manufacturers hate the most because it has a serious impact on the equipment used, and is more important than the performance of the battery in question.

そこで、漏液を無くすには、フリーに存在する電解液を
固定化してしまうのが最も得策である。
Therefore, in order to eliminate liquid leakage, it is best to immobilize the electrolyte that exists freely.

電解液を固定化すると液のイオン伝導度は少なくなり、
これに伴い高率放電性能は低下するが、近年の電子部品
は省電力化の方向に進んでいるので問題は少ない。
When the electrolyte is immobilized, the ionic conductivity of the solution decreases,
Although high-rate discharge performance deteriorates as a result, this is not a problem because recent electronic components are moving towards power saving.

電解液の固定化法として、本発明者らは、先きにポリメ
タクリル酸メチルを用いてゲルを形成する方法を提案し
た。
As a method for immobilizing an electrolytic solution, the present inventors previously proposed a method of forming a gel using polymethyl methacrylate.

ゲルの製造法としては、ポリメタクリル酸メチルを溶解
する有機電解質、例えば炭酸プロピレンやγ−プチロラ
クトンにホウフツ化リチウムもしくは過塩素酸リチウム
を溶解した電解液に、ポリメタクリル酸メチルを20〜
50重量%添加し、90〜100℃の油浴上で加温する
The method for producing the gel is to add 20 to 50% of polymethyl methacrylate to an organic electrolyte that dissolves polymethyl methacrylate, such as propylene carbonate or γ-butyrolactone, in which lithium borofluoride or lithium perchlorate is dissolved.
Add 50% by weight and heat on an oil bath at 90-100°C.

これによって全体がゾル化し、これを冷却するとゼリー
状のゲルが形成される。
This turns the whole into a sol, and when this is cooled, a jelly-like gel is formed.

このゲルは60℃で保存しても充分な柔軟性を有し、離
液現象は全くみられないので、このゲルを用いて製造し
た電池は漏液しないわけである。
This gel has sufficient flexibility even when stored at 60° C., and no syneresis phenomenon is observed, so batteries manufactured using this gel do not leak.

この電池の性能は正極の処理法によって大きく異なる。The performance of this battery varies greatly depending on how the positive electrode is treated.

一般に有機電解質電池においては、電池の内部インピー
ダンスが大きい欠点を有するが、ゲル電解質を用いた場
合、これを単に正、負極間に介在するのみでは、一般に
活物質粉末に導電材および結着剤を加えて成型して得ら
れる正極と電解質との接触が不十分となり、特に放電の
立上り、平坦電圧の点で劣る。
In general, organic electrolyte batteries have the disadvantage of high internal impedance, but when using a gel electrolyte, simply interposing it between the positive and negative electrodes will generally prevent the active material powder from containing a conductive material and a binder. In addition, the contact between the positive electrode obtained by molding and the electrolyte is insufficient, resulting in poor discharge rise and flat voltage, in particular.

本発明はゲル電解質を得る過程の熱ゾルを正極に含浸さ
せることによって、上記のような欠点を解消するもので
ある。
The present invention solves the above-mentioned drawbacks by impregnating the positive electrode with a hot sol during the process of obtaining a gel electrolyte.

以下本発明をその実施例を示す図面を参照して説明する
The present invention will be described below with reference to drawings showing embodiments thereof.

第1図は実施例に用いたフツ化炭素一リチウム電池の概
略構成を示す。
FIG. 1 shows the schematic structure of the carbon-lithium fluoride battery used in the examples.

図において、1は大きさ20x20mm,厚さ1闘のリ
チウムシ一トをニッケルのグリッド2に圧着して構成し
た負極である,3はフツ化炭素100重量部、アセチレ
ンブラック10重量部およびフッ素樹脂結着剤20重量
部の混合物を、チタンのグリッド4を中心として大きさ
20x20闘、厚さ0.8闘に或型した充填量250m
Ahの正極である。
In the figure, 1 is a negative electrode constructed by pressing a lithium sheet with a size of 20 x 20 mm and a thickness of 1 mm onto a nickel grid 2. 3 is a negative electrode composed of 100 parts by weight of fluorocarbon, 10 parts by weight of acetylene black, and a fluororesin bond. A mixture containing 20 parts by weight of the adhesive was molded into a size 20 x 20 mm and a thickness of 0.8 mm with a titanium grid 4 as the center, and the filling amount was 250 m.
This is the positive electrode of Ah.

5はポリプロピレン製のセパレータである。5 is a separator made of polypropylene.

6は厚さ2闘、内径26闘、深さ60mmの円筒型ガラ
スセルである。
6 is a cylindrical glass cell with a thickness of 2 mm, an inner diameter of 26 mm, and a depth of 60 mm.

予め乾燥した分子量70万〜75万のポリメタクリル酸
メチルの微小球(粒径0.05〜0. 1 5 mm:
の3.6gと前記発電要素とをセル6に収納し、1モル
/l濃度のホウフツ化リチウムの炭酸プロピレン電解液
15ccを注入し、95〜97℃の油浴中で10〜12
分間加熱すると電解液はゾル化する。
Pre-dried microspheres of polymethyl methacrylate with a molecular weight of 700,000 to 750,000 (particle size 0.05 to 0.15 mm:
3.6 g of the above-mentioned power generation element were stored in a cell 6, 15 cc of a propylene carbonate electrolyte of lithium borofluoride with a concentration of 1 mol/l was injected, and the cells were heated in an oil bath at 95 to 97°C for 10 to 12 g.
When heated for a minute, the electrolyte becomes a sol.

この時点で、発電要素の全体を30mmHg の減圧に
て1分間含浸を行ない、電解液の熱ゾルを正極中に浸透
含浸させる。
At this point, the entire power generation element is impregnated at a reduced pressure of 30 mmHg for 1 minute, and the hot sol of the electrolyte permeates into the positive electrode.

その後、冷却して得たポリマー濃度24重量%のゲル状
有機電解質が7である。
Thereafter, a gel-like organic electrolyte having a polymer concentration of 24% by weight was obtained by cooling.

上記の構成で、発電要素を熱したゾル状有機電解質中に
浸漬し、減圧にてゾル状電解質を含浸させ、冷却して得
られたゲル状電池をA、発電要素を熱したゾル状電解質
中に浸漬し、冷却して得られたゲル状電池をBとする。
With the above configuration, the power generating element is immersed in a heated sol-like organic electrolyte, impregnated with the sol-like electrolyte under reduced pressure, and cooled to obtain a gel-like battery. The gel-like battery obtained by immersing the battery in water and cooling it is referred to as B.

次表に各電池の20℃における電気特性を、また第2図
に20℃,5KΩでの放電特性を示す。
The following table shows the electrical characteristics of each battery at 20°C, and FIG. 2 shows the discharge characteristics at 20°C and 5KΩ.

これらの結果から明らかなように、熱ゾル電解質を含浸
した正極を用いてなるゲル電池の方が電気特性において
優れ、放電特性においても放電の立上り、平坦電圧の点
で優れている。
As is clear from these results, a gel battery using a positive electrode impregnated with a thermosol electrolyte has superior electrical characteristics, and also superior discharge characteristics in terms of discharge rise and flat voltage.

一般に液体の有機電解質を用いた電池においては、イン
ピーダンスに差があっても平坦電圧は同一であったが、
このようなゲル電池では異なることが分かる。
Generally, in batteries using liquid organic electrolytes, the flat voltage is the same even if there is a difference in impedance.
It turns out that this kind of gel battery is different.

ゲル状電解質を製造するにはいくつかの方法が考えられ
る。
Several methods can be considered for producing gel electrolytes.

そこで熱ゾル電解質を減圧にて正極中に含浸させ、冷却
してゲルを含む正極とする方法、熱ゾル電解質中に正極
を浸漬し、冷却して得られたゲル付着正極とする方法お
よび正極上に単にゲル電解質、負極を積層した電池につ
いての比較結果を説明する。
Therefore, there are methods of impregnating a positive electrode with a thermosol electrolyte under reduced pressure and cooling it to obtain a positive electrode containing gel, methods of immersing a positive electrode in a thermosol electrolyte and cooling it to obtain a gel-adhered positive electrode, and In this section, we will explain the comparative results for batteries that simply stack a gel electrolyte and a negative electrode.

第3図は扁平形に構成したフツ化炭素一リチウム電池を
示す。
FIG. 3 shows a carbon monolithium fluoride battery constructed in a flat shape.

図において、8はステンレス鋼製のケース、9は同材質
の封目板、10は封口板の内面に溶着したグリッドであ
り、このグリッドの表面にリチウムシ一ト11を圧着し
ている。
In the figure, 8 is a case made of stainless steel, 9 is a sealing plate made of the same material, and 10 is a grid welded to the inner surface of the sealing plate, and a lithium sheet 11 is pressure-bonded to the surface of this grid.

12はゲルを含む正極で、フツ化炭素100重量部、ア
セチレンブラック10重量部およびフッ素樹脂結着剤2
0重量部の混合物0. 2 6 gをディスク状に成型
したものに以下の方法でゲルを含ませたものである。
12 is a positive electrode containing gel, 100 parts by weight of carbon fluoride, 10 parts by weight of acetylene black, and fluororesin binder 2.
0 parts by weight of mixture 0. 26 g was molded into a disk shape and impregnated with gel by the following method.

すなわち、分子量70万〜75万のポリメタクリル酸メ
チルの微小球(粒径0.05〜0.15u+)の3.4
5gと15ccの1モル/lのホウフツ化リチウムの炭
酸プロピレン電解質を入れた秤量瓶を油浴中で95〜9
7℃に加温してゾルとなし、このゾル中に前記ディスク
状成型体を浸漬し、30mmHgの減圧にて1分間含浸
させて取り出し、冷却してポリマー濃度23重量%のゲ
ルを含む正極とした。
That is, 3.4 microspheres (particle size 0.05-0.15u+) of polymethyl methacrylate with a molecular weight of 700,000 to 750,000
A weighing bottle containing 5 g and 15 cc of 1 mol/l lithium borofluoride propylene carbonate electrolyte was heated in an oil bath to
The disk-shaped molded body was heated to 7° C. to form a sol, immersed in this sol, impregnated for 1 minute at a reduced pressure of 30 mmHg, taken out, cooled, and formed into a positive electrode containing a gel with a polymer concentration of 23% by weight. did.

この正極はケース8の内面に溶着したチタン製グリッド
13上に載置した。
This positive electrode was placed on a titanium grid 13 welded to the inner surface of the case 8.

一方、上記の電解液12CCに前記と同様のポリメタク
リル酸メチル3.0gを加え同様に加温してゾル化し、
アルミニウム容器上に流し込み、20℃で12時間冷却
して、ポリマー濃度25重量%のゼリー状のゲル電解質
を製造し、所定寸法に切り出してリチウム負極11上に
載置した。
On the other hand, 3.0 g of the same polymethyl methacrylate was added to 12 CC of the above electrolyte and heated in the same manner to form a sol.
It was poured into an aluminum container and cooled at 20° C. for 12 hours to produce a jelly-like gel electrolyte with a polymer concentration of 25% by weight, which was cut into a predetermined size and placed on the lithium negative electrode 11.

14はこの電解質層である。14 is this electrolyte layer.

同時にポリプロピレン製セパレータ15も予め熱ゾルで
濡らした後、徐却して用いた。
At the same time, the polypropylene separator 15 was also wetted with hot sol in advance and then slowly cooled before use.

16はポリプロピレン製ガスケットである。16 is a polypropylene gasket.

この方法で製造した本発明による電池a,熱ゾル電解質
中に正極を浸漬し、冷却して得られたゲル付着正極を用
いてなる電池b、成型したそのままの正極上にゲル電解
質、負極を載置してなる電池をCとする。
Battery a according to the present invention manufactured by this method, battery b using a gel-adhered positive electrode obtained by immersing the positive electrode in a thermosol electrolyte and cooling it, and battery b using a gel-attached positive electrode obtained by immersing the positive electrode in a thermosol electrolyte and cooling it, and a battery b in which a gel electrolyte and a negative electrode are placed on the molded positive electrode as it is. Let C be the battery installed.

第2表はこれらの電池の20℃における電気特性を示す
Table 2 shows the electrical properties of these cells at 20°C.

また第4図は20°C,IIKΩにて放電したときの特
性を示す。
Moreover, FIG. 4 shows the characteristics when discharging at 20°C and IIKΩ.

これらの結果から明らかなように、本発明による電池a
は、電池インピーダンス、短絡電流、放電の立上り、平
坦電圧いずれにおいても優れ、放電容量も1307FL
Ah、利用率76%と優れた性能を有していることがわ
かる。
As is clear from these results, the battery a according to the present invention
is excellent in battery impedance, short circuit current, discharge rise, and flat voltage, and has a discharge capacity of 1307FL.
It can be seen that it has excellent performance with Ah and utilization rate of 76%.

以上のように本発明によれば、優れた性能を有する無漏
液形の電池を得ることができる。
As described above, according to the present invention, a leak-free battery having excellent performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いたフツ化炭素リチウム電
池の縦断面略図、第2図はその放電特性を示す図、第3
図は扁平形電池の縦断面図、第4図はその放電特性を示
す。 1,11・・・・・・負極、3,12・・・・・・正極
、7,14・・・・・・電解質。
Figure 1 is a schematic vertical cross-sectional view of a lithium carbon fluoride battery used in an example of the present invention, Figure 2 is a diagram showing its discharge characteristics, and Figure 3 is a diagram showing its discharge characteristics.
The figure is a longitudinal cross-sectional view of a flat battery, and FIG. 4 shows its discharge characteristics. 1, 11... Negative electrode, 3, 12... Positive electrode, 7, 14... Electrolyte.

Claims (1)

【特許請求の範囲】[Claims] 1 軽金属を活物質とする負極と、ポリメタクリル酸メ
チルでゲル化した有機電解質と、正極とを有する電池の
製造法であって、ポリメタクリル酸メチルと有機電解質
とを加熱して得られる熱ゾルを減圧下で正極に含浸させ
る工程を有することを特徴とする有機電解質電池の製造
法。
1. A method for manufacturing a battery having a negative electrode using a light metal as an active material, an organic electrolyte gelled with polymethyl methacrylate, and a positive electrode, the method comprising a thermosol obtained by heating polymethyl methacrylate and the organic electrolyte. A method for producing an organic electrolyte battery, comprising the step of impregnating a positive electrode with under reduced pressure.
JP3992178A 1978-04-04 1978-04-04 Manufacturing method of organic electrolyte battery Expired JPS5836826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3992178A JPS5836826B2 (en) 1978-04-04 1978-04-04 Manufacturing method of organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3992178A JPS5836826B2 (en) 1978-04-04 1978-04-04 Manufacturing method of organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS54131724A JPS54131724A (en) 1979-10-13
JPS5836826B2 true JPS5836826B2 (en) 1983-08-11

Family

ID=12566391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3992178A Expired JPS5836826B2 (en) 1978-04-04 1978-04-04 Manufacturing method of organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5836826B2 (en)

Also Published As

Publication number Publication date
JPS54131724A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
US6280878B1 (en) Electrode and lithium secondary battery using this electrode
JP4253886B2 (en) Flat type non-aqueous electrolyte battery and manufacturing method thereof
CN105470564A (en) Solid electrolyte membrane, preparation method of solid electrolyte membrane and lithium ion battery
JP2002117841A (en) Nonaqueous electrolyte secondary battery
JP2004146361A (en) Lithium battery negative electrode, and lithium battery including same
JP2009141114A (en) Electric double layer capacitor and manufacturing method thereof
JPH11283672A (en) Polymer solid electrolyte cell and its manufacture
CN114204113B (en) Preparation method of latticed gel polymer electrolyte semi-solid battery
CN105633327A (en) Aluminum-ion secondary battery employing TiS<2> as positive electrode and preparation technology of aluminum-ion secondary battery
JP2002008730A (en) Lithium secondary battery
JP2000133216A (en) Nonaqueous electrolyte battery and manufacture of same
JP2000106213A (en) Lithium secondary battery and manufacture of positive electrode plate for use therein
JP2000124081A (en) Electric double-layer capacitor
JP4161437B2 (en) Lithium battery
CN116169366A (en) Solid-state lithium battery, preparation method thereof and electric equipment
CN109360947A (en) A kind of preparation method of the porous carbon positive electrode of quasi- solid-state lithium-sulfur cell
JPS5836826B2 (en) Manufacturing method of organic electrolyte battery
WO2022140603A1 (en) Electrode-less, membrane-less high voltage batteries
JPS5856227B2 (en) Organic electrolyte battery and its manufacturing method
JPS5856467B2 (en) Battery manufacturing method
JP4054925B2 (en) Lithium battery
JP3247203U (en) Lithium-ion battery and its manufacturing method
JPH10241731A (en) Polymer solid electrolyte battery and manufacture thereof
CN218647975U (en) Pole piece and battery beneficial to infiltration
JPS5836828B2 (en) Battery manufacturing method